next up previous contents index
Next: Orbital Angular Momentum Up: Hydrogen Atom (non-relativistic) Previous: Non-relativistic Single Particle Quantum   Contents   Index

Coulomb Potential

The hydrogen atom therefore leads to a special case $ Z=1$ of the solution of a stationary Schrödinger equation in the central potential
$\displaystyle {\color{col1}V(r) = - \frac{Ze^2}{4\pi \varepsilon_0 r}.}$     (1.6)

Here, $ Ze$ is introduced in order to be able to later generalise from proton charge $ +e$ to arbitrary charge $ Ze$. We use Dirac kets and write the stationary Schrödinger equation for $ \hat{H}$
$\displaystyle \hat{H} \vert\Psi\rangle = E \vert\Psi\rangle \leftrightarrow
\left[- \frac{\hbar^2}{2m}\Delta + V(r)\right] \Psi({\bf r}) = E \Psi({\bf r})$     (1.7)

with the Hamiltonian
$\displaystyle \hat{H}=- \frac{\hbar^2}{2m}\Delta - \frac{Ze^2}{4\pi \varepsilon_0 r}.$     (1.8)



Tobias Brandes 2005-04-26