next up previous contents index
Next: Matrix Elements Up: Second oder term: (London) Previous: Physical Picture   Contents   Index

Derivation from Second Order Term

We have
$\displaystyle V_{\rm eff}^{(2)}$ $\displaystyle \equiv$ $\displaystyle \sum_{kk'} p_{k}p_{k'} \langle kk'\vert VG_0(E_{kk'}) V \vert kk'\rangle$  
  $\displaystyle =$ $\displaystyle \sum_{kk'nn'} p_{k}p_{k'} \frac{\langle kk'\vert V\vert nn'\rangle \langle nn' \vert V \vert kk'\rangle}
{E_{k}+E_{k'} -E_{n}-E_{n'}},$ (2.26)

where we have inserted \bgroup\color{col1}$ \hat{1}= \sum_{nn'} \vert nn'\rangle \langle nn'\vert$\egroup twice and used
$\displaystyle \langle nn'\vert G_0(z)\vert mm'\rangle = \frac{\delta_{nm}\delta_{mm'}}{z-E_{nn'}}.$     (2.27)

Exercise: verify these expressions.



Tobias Brandes 2005-04-26