next up previous contents index
Next: . Up: Molecules Previous: Molecules   Contents   Index

.

Assume a Hamiltonian
$\displaystyle \mathcal{H}= \mathcal{H}_{\rm e}(q,p)+ \mathcal{H}_{\rm n}(X,P) + \mathcal{H}_{\rm en}(q,X)$     (5.1)

for the interaction between electrons \bgroup\color{col1}$ e$\egroup and nuclei \bgroup\color{col1}$ n$\egroup in a molecule, where \bgroup\color{col1}$ X$\egroup stands for the nuclear and \bgroup\color{col1}$ q$\egroup for the electronic coordinates.

a) Write down the Schrödinger equation for i) the electronic wave function \bgroup\color{col1}$ \psi_e(q,X) $\egroup, and ii) the nuclear wave function \bgroup\color{col1}$ \phi_n(X)$\egroup in the Born-Oppenheimer approximation.

b) Briefly explain the idea of the Born-Oppenheimer approximation.

c) Assuming a basis of electronic states \bgroup\color{col1}$ \psi_\alpha(q,X)$\egroup, write the total wave function of a molecule as \bgroup\color{col1}$ \Psi(q,X)=\sum_\alpha \phi_\alpha (X) \psi_\alpha(q,X)$\egroup. Hence derive the Schrödinger equation for the nuclear part,

$\displaystyle \left[-\frac{\hbar^2}{2M}\nabla_X^2 +E_\alpha(X) -\frac{\hbar^2}{2M}G(X) -\frac{\hbar^2}{M}F(X)\right]
\vert\phi_\alpha\rangle_n$ $\displaystyle =$ $\displaystyle \mathcal{E} \vert\phi_\alpha\rangle_n$  
$\displaystyle G(X)\equiv \langle \psi_\alpha\vert\nabla^2_X\psi_\alpha\rangle,\quad
F(X)\equiv \langle \psi_\alpha\vert\nabla_X\psi_\alpha\rangle$   $\displaystyle ,$ (5.2)



Tobias Brandes 2005-04-26