next up previous contents index
Next: Two-electron Atoms and Ions Up: The Exchange Interaction Previous: Perturbation Theory   Contents   Index

Direct and Exchange Term: Discussion

1. For \bgroup\color{col1}$ \alpha=\beta$\egroup the anti-symmetrical orbital state vanishes and one has
$\displaystyle A_{\alpha\alpha}=J_{\alpha\alpha}.$     (2.27)

In this case there is only one singlet state and there are no triplet states.

2. Extreme examples for the interaction potential:

$\displaystyle a)\quad U\left(\vert{\bf r}_1 -{\bf r}_2\vert\right)$ $\displaystyle =$ $\displaystyle U={\rm const}$  
  $\displaystyle \leadsto$ $\displaystyle A_{\alpha\beta} = U,\quad J_{\alpha\beta}=U\delta_{\alpha\beta}$ (2.28)
$\displaystyle b) \quad U\left(\vert{\bf r}_1 -{\bf r}_2\vert\right)$ $\displaystyle =$ $\displaystyle U_0\delta({\bf r}_1 -{\bf r}_2)$  
  $\displaystyle \leadsto$ $\displaystyle A_{\alpha\beta}=J_{\alpha\beta}
=U_0\int d{\bf r} \vert\phi_\alpha({\bf r})\vert^2 \vert\phi_\beta({\bf r})\vert^2.$ (2.29)



Tobias Brandes 2005-04-26