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Abstract. We discuss a scheme for performing simple adiabatic state vector rotations in
coupled semiconductor quantum dots, including a current ‘read-out’ mechanism that enables
one to visualise quantum coherent oscillations and the effect of dissipation in an electronic
‘pump’ current.

1. Introduction

Time-dependent Hamiltonians are models for quantum mechanical systems with external
control parameters. They are of particular interest if one wishes to utilize structures with
few degrees of freedoms in order to create and steer, e.g., superpositions of wavefunctions. A
simple example is the adiabatic following of a spin 1/2 in a slowly varying magnetic field. The
probably first quantitative analyis goes back to Landau, Zener and Rosen [1]: ‘Landau-Zener
tunneling’ between adiabatic levels occurs if the parameter are changed too fast.

In quantum optics, ‘adiabatic following’, i.e. the rotation of a ground state, is performed
by taking use of the coherent population trapping effect in three-level systems which
usually requires two laser pulses [2]. Semiconductor double quantum dots [3–7] have many
similarities with real atoms, but the transfer of quantum optics concepts [8, 9] has to be done
with care: interaction effects and dissipation are different in a semiconductor environment.

We have previously suggested a scheme of how to realize adiabatic following and to
extract relevant dephasing times in coupled semiconductor quantum dots [10]. In this paper, I
discuss the conceptually (and probably experimentally) simpler situation of steering a single
electron charge on two electrostatically coupled quantum dots which themselves are coupled
to electron reservoirs. This is perhaps the most primitive ‘non-main stream’ solid state
realization of a one-qubit operation in the sense that it is neither based on Cooper pairs [11]
nor the spin [12], but simply on the electron charge [13], yet it leads to the prediction
of controllable ‘charge-pumping’ [14] (read-out) in what could be called a ‘Nakamura-
experiment’ [15] in dots.

Adiabatic quantum pumps have been realized [16] and discussed [17–21] in a regime of
weak Coulomb correlations, where mesoscopic scattering theory of non-interacting systems
can be applied. We have recently suggested adiabatic control of the wave function in
the opposite strong Coulomb blockade regime of a triple quantum dot [14]. Furthermore,
adiabatic quantum computation with Cooper pairs [22] and adiabatic controlled-NOT gates
for quantum computation have been proposed by Averin [23].

On the theoretical side, the physics discussed below is essentially the adiabatic Landau-
Zener-Rosen problem [1] in presence of dissipation [24], modified by the fact that the two-
level system (double quantum dot groundstates) is connected to external electron reservoirs,
although the latter are treated in a rather elementary way here. Real non-equilibrium or many-
body-effects due to Kondo physics still have to be explored. More details on the calculations
related to the results presented here can be found in [25].
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2. Model

In our model, the ‘charge qubit’ is realized in two coupled quantum dots defined by two
electron states |L〉 and |R〉 with a time-dependent energy difference ε(t) and coupled by a
tunnel matrix element Tc(t), as described by the time-dependent Hamiltonian

H0(t) =
ε(t)

2
σz + Tc(t)σx, (1)

with σz := |L〉〈L| − |R〉〈R| and σx := |L〉〈R| + |R〉〈L|. This system is coupled to two
external leads (source and drain) with fixed chemical potentials, cf. Fig. (1) right.

The initial state |in〉 is an additional electron in the left dot with an energy εL well below
the chemical potential of the left lead. Naively, one would guess that transfer to the right
dot is possible by slowly increasing and then decreasing the tunnel coupling Tc, but quantum
mechanics requires the simultaneous change of at least two parameters, i.e., Tc(t) and ε(t).

The instantaneous, hybridized eigenstates of the isolated coupled quantum dot are

|±〉 =
1

N±

[±2Tc|L〉+ (∆∓ ε)|R〉] (2)

N± :=
√

4|Tc|2 + (∆∓ ε)2, ∆ :=
√

ε2 + 4|Tc|2.
The eigenvalues ε± = ±1

2
∆ of the coupled system represent two energy surfaces over the

Tc-ε plane the lower of which is shown in Fig. (1), left.
Due to the adiabatic theorem, the initial groundstate |L〉 of the system is rotated into the

instantaneous eigenstate |−〉, Eq. (2), if the speed (frequency) of the rotation is much smaller
than ∆/h̄. In this case, the time enters as a parameter into the state |−〉 via Tc(t) and ε(t), and
it can be used to calculate approximate expectation values such as

〈σz〉ad = −ε(t)/∆(t), (3)

which excellently reproduces the overall form of the numerically obtained 〈σz〉t. The exact
solution exhibits the expected quantum mechanical oscillations with frequency ∆(t)/h̄ around
the adiabatic value, which are strongest when the tunnel coupling is fully switched on. Due
to Landau–Zener tunneling from the adiabatic ground state |−〉 to the excited state |+〉, there
is always a finite albeit small probability PL for the electron to remain in the left dot, i.e., the
excited state after the rotation. PL can be made exponentially small for large enough level
splitting ∆ and slow pulses, but depends on the exact pulse shape ε(t), Tc(t).

3. Dissipation and Fidelity

The adiabatic transfer remains incomplete in the presence of dissipation, i.e. 〈σz〉 can
considerably deviate from its non-dissipative ‘ideal’ value−1 corresponding to the electron in
the right dot. Clearly, for too long swap duration, inelastic transitions to the excited level will
have sufficient time to destroy the coherent transfer. On the other hand, if the swap operation
proceeds too fast, Landau-Zener transitions become stronger and again lead to deviations
δ〈σz〉 > 0. This means that for a given inelastic scattering rate Γin there should be an optimal
swap duration such that these two competing processes balance each other. One problem in
quantifying this argument [26] is that Γin naturally is time-dependent itself.

Instead, one can use time-dependent perturbation theory [24] to find the probability for a
transition from − to + due to the interaction with environmental bosons (phonons, electron-
hole excitations in the leads)

P+−(t) =
∫

∞

0
dωρ(ω)

{

nB(ω)f(ω, t) + [1 + nB(ω)] f(−ω, t)
}
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Figure 1. LEFT: lower adiabatic energy surface of double quantum dot with energy difference
ε and tunnel coupling Tc. The curve on the surface corresponds to a time-dependent ε − Tc-
pulse that adiabatically rotates the ground state from the left into the right dot. Competing
processes are Landau-Zener (LZ) tunneling into the excited state and absorption and emissions
of bosons. RIGHT: Scheme for adiabatic charge pumping.
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∣

∣
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2

. (4)

Here, nB(ω) is the equilibrium distribution of bosons at temperature T with an effective
spectral density ρ(ω) [25]. The main idea now is to proceed by introducing ‘elliptic’ pulses
(Tc(t), ε(t)) that are defined by curves on the ε−-surface with constant energy difference ∆
to the excited state ε+. For the particular sinusoidal form

Tc(t) = − ∆

2
sin Ωt, ε(t) = −∆ cos Ωt (5)

of Tc(t) and ε(t), the time-dependent Hamiltonian

H0(t) = −∆

2
[cos(Ωt)σz + sin(Ωt)σx] (6)

becomes exactly integrable: it corresponds to a spin 1
2

in a magnetic field that rotates within
the x–z–plane around the y–axis with frequency Ω. The solution for the inversion 〈σz〉t
is easily obtained by transforming the Schrödinger equation into a rotating frame (Rabi
solution). One obtains

〈σz〉Rabi
t =

[

(

∆

ωR

)2

+
(

Ω

ωR

)2

cos(ωRt)

]

cos(Ωt) +
Ω

ωR
sin(ωRt) sin(Ωt)

ωR :=
√

Ω2 + ∆2. (7)

Here, the Rabi frequency ωR corresponds to maximal ‘detuning’ δ = Ω− 0 since there is no
static ‘magnetic field’ ∝ σy in y–direction.

The use of the harmonic pulse, Eq. (5), has the further advantage that the quantity f(ω, t),
Eq. (4), can be evaluated analytically. The swap operation requires a pulse acting half a period
from the initial time t = 0 to the final time tf = π/Ω. Using t = tf in f(ω, t), we obtain

f
(

ω,
π

Ω

)

=
1

Ω2





cos
(

π
2
x
)

x2 − 1





2

, x := (∆− ω)/Ω. (8)
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In the adiabatic limit Ω/∆ → 0, we find an approximation to the integrals Eq. (4). In that
limit, one has

f
(

ω,
π

Ω

)

→ c

Ω
δ(∆− ω), c =

π3J3/2(π)

4
√

2
(9)

whence the dissipation induced change of the inversion becomes

δ〈σz〉diss
f = 2P+−(tf) = 2

c

Ω
ρ(∆)nB(∆). (10)

The sum of the coherent contribution δ〈σz〉t from the Rabi solution at t = tf , Eq. (7), and the
perturbative dissipative contribution δ〈σz〉diss

f leads to

δ〈σz〉f ≈ 1−
[

(

∆

ωR

)2

+
(

Ω

ωR

)2

cos
(

πωR

Ω

)

]

(11)

+ 2
c

Ω

ρ(∆)

exp(∆/kBT )− 1
, Ω � ∆, c = 2.4674.

The 1/Ω dependence at small Ω of the dissipative contribution to δ〈σz〉f indicates that for
too long pulse duration, the electron swap remains incomplete due to incoherent dissipation.
On the other hand, if the pulse duration is too short (larger Ω), the oscillatory coherent
contribution from 〈σz〉Rabi

f dominates.
A suppression of the phonon spectral density ρ(ω) at certain frequencies ω = ω0 has

been predicted for double dots in free-standing phonon cavities (thin plate model) due to
symmetry and geometrical confinement [27]. If the Rabi rotation pulse runs at a constant
energy difference ∆(t) = h̄ω0, it effectively ‘switches off’ the decoherence, at least within
second order in the (small) electron-boson coupling constant. Consequently, this defines a
one-dimensional ‘decoherence-free manifold’ (curve) on the adiabatic groundstate energy
surface of the system.

Note that Eq. (11) is an approximation that only holds in the limit of an infinitely slow
adiabatic change, i.e. tf = π/Ω → ∞. In fact, for any finite pulse duration tf < ∞, even in
the limit of zero temperature T = 0, Eq. (4) yields

P+−(tf) =
∫

∞

0
dωρ(ω)f(−ω, tf), (12)

which shows that there is a small, but finite probability for inelastic transitions from |−〉 to
|+〉 even at zero temperature. These transitions are due to the spontaneous emission of bosons
which occur during Landau–Zener transitions from |−〉 to |+〉with a finite probability as long
as tf is finite. The interaction with the bosonic environment therefore changes the results even
at zero temperature, in agreement with Grifoni and Hänggi [24].

4. Discussion

We now discuss the electron pump that combines Coulomb blockade and quantum adiabaticity
in a double dot coupled to external leads. The main idea is to apply time-dependent pulses
such that the quantum mechanical time evolution of the two-level system is well separated
from a merely ‘classical’ decharging and charging process. One complete cycle of such an
operation is sketched in Fig. 1. The cyle starts with an additional electron in the left dot and
an adiabatic rotation of the parameters (ε(t), Tc(t)) such as, e.g., in Eq. (5). This completely
quantum-mechanical part of the cycle is performed in the ‘save haven’ of the Coulomb- and
the Pauli-blockade, i.e., with the left and right energy levels of the two dots well below the
chemical potentials µ of the leads (which are assumed identical here for simplicity). The cycle
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continues with leaving the coupling at Tc = 0; the two dots then are still in a superposition
of the left and the right state. The subsequent lifting of the right level above the chemical
potential of the right lead constitutes a measurement of that superposition (collapse of the
wave-function): the electron is either in the right dot (with a high probability 1− 1

2
〈σz〉f ) and

tunnels out, or the electron is in the left dot (and nothing happens because the left level is still
below µ and the system is Coulomb blocked).

We assume that the tunnel rates ΓR, ΓL to the right and left leads are sufficiently larger
than the inverse of the cyle duration tcycle,

ΓR, ΓL � t−1
cycle. (13)

In this case, the decharging of the right dot and the re-charging of the left dot from the left lead
is fast enough to bring the system back into its initial state with one additional electron on the
left dot. The precise value of ΓR, ΓL and the precise shape of the ε(t)-pulse for tf < t < tcycle

then have no effect on the total charge transfered within one cycle. Then, since the probability
to transfer one electron from the left to the right in one cycle is given by 1 − 1

2
〈σz〉f , on the

average an electron current

〈I〉 = −e
1− 1

2
〈σz〉f

tcycle
(14)

flows from left to right. If condition Eq.(13) is no longer fulfilled, a full master equation
including dissipative terms due to electron reservoir coupling has to be solved [28].

5. Conclusion

In our scheme, the leads essentially act as classical measurement devices of the quantum-
mechanical time-evolution between the two dots. Measuring the current 〈I〉 as a function of
the pulse length tf = π/Ω then offers a scheme to make quantum mechanical oscillations such
as those predicted in Eq. (11) visible in the electronic current, similar to the recent experiment
by Nakamura et al. in a superconducting Cooper pair box [15].

This work was supported by the German DFG project Br 1528/4-1, the UK project
EPSRC GR44690/01, and the UK Quantum Circuits Network. Discussions with R. H.
Blick, S. De Franceschi, E. M. Höhberger, L. P. Kouwenhoven, and F. Renzoni are gratefully
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