next up previous contents
Next: * Hamilton function (10min) Up: Position and Momentum in Previous: Expectation values in quantum   Contents

Wave packet (10-30 min)

We consider the wave function (wave packet)
$\displaystyle \Psi(x)= \frac{1}{\sqrt{\sqrt{\pi a^2}}}
\exp{\left(-\frac{x^2}{2a^2}\right)}.$     (5)

1. Show that this wave function is normalized (remember what normalization means!)

2. Using this wave function, calculate the expectation values $ \langle x^2\rangle$, $ \quad \langle p^2\rangle$, and their product $ \langle x^2\rangle \cdot \langle p^2\rangle$. You have to use the integral $ \int_{-\infty}^{\infty}dy y^2e^{-a^2y^2}=\sqrt{\pi}/(2a^3)$.



Tobias Brandes 2004-02-04