next up previous contents
Next: Absorption Experiment (5 min) Up: The Two-Level System I Previous: Model (20 min)   Contents

Eigenvalues of the energy, eigenvectors (50 min)

Calculate the two eigenvectors $ \vert{i}\rangle$ and eigenvalues $ \varepsilon_{i}$ of $ \hat{H}$, eq. (3.29), that is the solutions of
$\displaystyle \hat{H}\vert{i}\rangle = \varepsilon_{i} \vert{i}\rangle,\quad i=1,2.$     (30)

Show that
$\displaystyle \vert 1\rangle$ $\displaystyle =$ $\displaystyle \frac{1}{N_1}\left[-2T \vert L\rangle + (\Delta +\varepsilon) \ve...
...quad \varepsilon_1=\frac{1}{2}\left(\varepsilon_L+\varepsilon_R - \Delta\right)$  
$\displaystyle \vert 2\rangle$ $\displaystyle =$ $\displaystyle \frac{1}{N_2}\left[\phantom{-}2T \vert L\rangle + (\Delta -\varep...
...quad \varepsilon_2=\frac{1}{2}\left(\varepsilon_L+\varepsilon_R + \Delta\right)$  
$\displaystyle \varepsilon$ $\displaystyle :=$ $\displaystyle \varepsilon_L-\varepsilon_{R},\quad
\Delta:=\varepsilon_2-\varepsilon_1=\sqrt{\varepsilon^2+4\vert T\vert^2}$  
$\displaystyle N_{1,2}$ $\displaystyle :=$ $\displaystyle \sqrt{4\vert T\vert^2+(\Delta\pm \varepsilon)^2}.$ (31)



Tobias Brandes 2004-02-04