next up previous contents
Next: ** Generating Function (5-30 Up: The Harmonic Oscillator Previous: Energies (2 min)   Contents

Linear combination (10-20 min)

We introduce our `vector notation' (Dirac notation) from section 3, where the normalized wave functions $ \psi_n(x)$ are denoted as $ \vert n\rangle$, because they are vectors in a Hilbert space. In this problem, the $ \vert n\rangle$ shall correspond to the normalized wave functions of the one-dimensional harmonic oscillator of frequency $ \omega$. The $ \vert n\rangle$ form an orthogonal system; we write the scalar product as
$\displaystyle \langle n\vert m\rangle \equiv \int_{-\infty}^{\infty}dx \psi^*_n(x)\psi_m(x)= \delta_{n,m}.$     (33)

1. Consider the state

$\displaystyle \vert\phi\rangle = a\vert 1\rangle + b \vert 3\rangle,\quad a,b, \in C.$     (34)

Which condition must the coefficients $ a$,$ b$ fulfill in order that $ \vert\phi\rangle$ is normalized? Write the normalization condition in the `abstract, elegant form', using
$\displaystyle \langle\phi\vert = a^*\langle 1\vert + b^* \langle 3\vert,$     (35)

as $ 1=\langle \phi\vert \phi \rangle =...$

2. What is the probability to find the energy values $ E_1$ and $ E_3$ in an energy measurement of a system in the state $ \vert\psi\rangle $ ?

3. Calculate the expectation value of the energy in the state $ \vert\phi\rangle$ for general $ a$ and $ b$ and for $ a=b=1/\sqrt{2}$.


next up previous contents
Next: ** Generating Function (5-30 Up: The Harmonic Oscillator Previous: Energies (2 min)   Contents
Tobias Brandes 2004-02-04