next up previous contents
Next: Ladder Operator (5 min) Up: Ladder Operators and Phonons Previous: Commutator (5 min)   Contents

Hamiltonian (10 min)

Prove that the Hamiltonian of the one-dimensional harmonic oscillator can be rewritten with the help of ladder operators as
$\displaystyle \hat{H}=\frac{\hat{p}^2}{2m}+\frac{1}{2}m\omega^2\hat{x}^2
= \hbar \omega \left( a^+a + \frac{1}{2} \right),$     (39)



Tobias Brandes 2004-02-04