next up previous contents
Next: * Behavior for und Up: Central Potentials in Three Previous: Central Potentials in Three   Contents

Separations of Variables (20 min)

Show by using the definition of the Laplace operator in polar coordinates and the definition of the angular momentum square,
$\displaystyle {\bf\hat{L}}^2=
-\hbar^2 \left[\frac{1}{\sin \theta}\frac{\partia...
...ta}\right)
+\frac{1}{\sin^2 \theta}\frac{\partial^2}{\partial \varphi^2}\right]$     (43)

that the stationary Schrödinger equation for energy $ E$ for the motion of a particle with mass $ m$ in a central potential $ U(r)$ can be separated with the Ansatz for the wave function

$\displaystyle \Psi(r,\theta,\phi)=R(r)Y_{lm}(\theta,\phi).$ (44)

In order to do so, define the radial function $ \chi(r):=rR(r)$ and show

$\displaystyle \frac{d^2\chi(r)}{dr^2}+\left[\frac{2m}{\hbar^2}(E-U(r))-\frac{l(l+1)}{r^2}\right]\chi(r)=0.$ (45)

Which values are possible for $ l$ (without proof)?



Tobias Brandes 2004-02-04