next up previous contents
Next: Ladder Operators, Phonons and Up: The Harmonic Oscillator II Previous: Infinite Well Energies   Contents

Harmonic Oscillator: Expectation Values

We calculate the ground state expectation values
$\displaystyle \langle 0\vert x^2 \vert\rangle = \int_{-\infty}^{\infty}dx x^2 \...
...{m\omega}{\pi\hbar}}\int_{-\infty}^{\infty}dx x^2e^{-\frac{m\omega}{\hbar}x^2}.$     (257)

This integral is evaluated using
$\displaystyle \int_{-\infty}^{\infty}dxe^{-\alpha x^2}=\sqrt{\frac{\pi}{\alpha}...
...l \alpha}\sqrt{\frac{\pi}{\alpha}} = \frac{1}{2\alpha}\sqrt{\frac{\pi}{\alpha}}$     (258)

(integration by differentiation). Therefore,
$\displaystyle \langle 0\vert x^2 \vert\rangle = \frac{1}{2}\frac{\hbar}{m\omega}.$     (259)

Similarily,
$\displaystyle \langle 0\vert p^2 \vert\rangle = -\hbar^2 \int_{-\infty}^{\infty...
...mega - m^2 \omega^2 \langle 0\vert x^2 \vert\rangle= \frac{1}{2}m \hbar \omega.$     (260)

Using this, we can calculate the expectation value of the potential and the kinetic energy in the ground state,
$\displaystyle \langle 0 \vert E_{\rm kin} \vert \rangle$ $\displaystyle =$ $\displaystyle \frac{1}{2m}\langle 0\vert p^2 \vert\rangle
= \frac{1}{4}\hbar \omega$  
$\displaystyle \langle 0 \vert E_{\rm pot} \vert \rangle$ $\displaystyle =$ $\displaystyle \frac{1}{2}m\omega^2\langle 0\vert x^2 \vert\rangle
= \frac{1}{4}\hbar \omega.$ (261)

Note that we have $ \langle 0 \vert E_{\rm kin} \vert \rangle=\langle 0 \vert E_{\rm pot} \vert \rangle$ (Virial theorem).


next up previous contents
Next: Ladder Operators, Phonons and Up: The Harmonic Oscillator II Previous: Infinite Well Energies   Contents
Tobias Brandes 2004-02-04