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PREFACE

Two decades after the discovery of the quantum Hall effect [1], quantum
coherent electronic transport can be considered as one of the central subjects
of modern solid state physics [2–10]. Phase coherence of quantum states
leads to effects such as, e.g., localization [11, 12] of electron wave functions,
the quantization of the Hall resistance in two–dimensional electron gases
[5,13,14] or steps in the conductance of quasi one–dimensional quantum wires
or quantum point contacts [15–18]. Quantum mechanical effects appear as
Aharonov–Bohm like interference oscillations of the conductance of metallic
rings or cylinders [19]. It has become possible to observe quantum mechanical
coherence on its smallest scale in artificial semiconductor structures like single
[20–26] or coupled quantum dots [27–31], where single charging effects [32]
like the Coulomb blockade occurs.

It was the experimental progress in the last few years which has opened
the test–ground of a number of fundamental physical concepts related to the
motion of electrons in lower dimensions. The quantum Hall effect was only
one of the first highlights of the new physics that by now has established itself
as the area of ‘mesoscopic phenomena’. The theoretical understanding of the
related physical effects like electron–electron interactions in low dimensions
[33–38] and even the concept of phase coherence in mesoscopic systems itself
[39–48] is still on a very rudimentary level. This is due to the fact that in
low–dimensional structures, the interactions of electrons with one another
and with other degrees of freedoms such as lattice vibrations or light give
rise to new phenomena that are very different from those familiar in the
bulk material [49]. At the same time, in order to describe fast transport
processes in small nanostructures [6,50,51], not only the interaction but also
the non–equilibrium aspect of quantum transport becomes of fundamental
importance. This means that theories are required which comprise both the
non–equilibrium and the interaction aspect.

Although the development of such theories is a demanding task for a
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theorist, in this thesis I will take a more modest attitude and look at only
one of the central issues that is common in many of the above mentioned
effects: in the widest sence, it is interference which is the key issue towards
the understanding of many of the experiments.

The present thesis is devoted to the study of the Dicke effect in electronic
systems. This effect was predicted by Dicke in 1954 [52] and is originally
known in quantum optics as the collective spontaneous decay of a coherent
ensemble of a large number of radiating atoms. Dicke also predicted an-
other, but related effect in 1953 [53] as a narrowing of spectral line shapes
of radiating atoms due to collisions. The Dicke effect 1 has been extensively
studied both theoretically and experimentally in quantum optics, and only
recently the interest in its analogon and in similar coherent coupling effects
in electronic systems has started to increase.

Here, we will not try to give a complete review over this still emerging
field, but rather concentrate on the appearance of the effect in a number of
physical interesting situations which mainly summarize, not surprisingly, our
own contributions during the last few years. We therefore discuss the Dicke
effect in the spontaneous emission of phonons in double quantum dots and
its relation to the emission of light from laser–trapped ions, furthermore a
superradiance model for the effect in quantum dot arrays and in the coherent
optical properties of two–dimensional magnetoplasmas. Finally, we shortly
review the Dicke spectral line narrowing effect and its recent re–discovery
in resonant tunneling, as well as a new prediction for its appearance in the
AC electronic transport properties of disordered quantum wires in magnetic
fields.

We close this preface with the remark that mesoscopic physics nowadays
is a field situated not only at the junction between large and small size scales,
but also between two at first glance largely independent disciplines: modern
optics and electronic transport. Our believe is that more and more concepts
in particular from quantum optics will enter (and have already entered) the
field of coherent electronic transport. The inclusion of optics as a new di-
rection for mesoscopic physics has come about as a natural consequence of
the trend toward smaller optical devices exploiting coherent and intense laser
light. From a more idealistic point of view, one could even argue that bring-

1 In this thesis, we will use the singular form ‘Dicke effect’ throughout. The (1954) Dicke
superradiance effect is a generalization (as will become clear in the following chapters) of
the splitting of coupled modes into one sub– and one superradiant mode. This splitting,
on the other hand, is the reason for the spectral line narrowing (Dicke 1953 effect).



iii

ing together electronics and optics at the mesoscopic scale is the continuation
of a historic endeavor which originated at the very beginning of quantum me-
chanics itself [54–56]. The present thesis tries to contribute to the transfer
of ideas between both disciplines. In the end, both of them are based on and
formulated in the framework of a physical language that was born exactly
one century ago: quantum mechanics.

Hamburg, January 2000 Tobias Brandes
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1. PHONONS IN DOUBLE QUANTUM
DOTS

Abstract

We present the theory of interference effects in the spontaneous emission properties

of coupled real and artificial atoms. Electron–phonon interactions can dominate

the nonlinear transport properties of coupled semiconductor quantum dots even for

temperatures close to zero. The intradot electron tunnel process leads to a ‘shake

up’ of the phonon system and is dominated by a double–slit–like interference effect

of spontaneously emitted phonons. The effect is closely related to subradiance

of photons in a laser–trapped two–ion system and explains the experimentally

observed oscillations in the nonlinear current–voltage characteristics of coupled

dots.

1.1 Quantum Dots

1.1.1 Quantum dots and Coulomb blockade

Quantum dots are artificial atoms in semiconductor nano-structures fabri-
cated with typical sizes in the sub-micrometer range [21–24,57]. Many prop-
erties of such systems can be investigated by transport, i.e. current-voltage
measurements, if the dots are fabricated between contacts acting as source
and drain for electrons which can enter or leave the dot. In contrast to real
atoms, quantum dots are open systems where the number of electrons N
can vary depending on external parameters. By changing the size and the
shape of the dot with external gate voltages, one can conduct atomic physics
experiments with large artificial atoms that can be ‘scanned through the pe-
riodic table’. In fact, quantum effects such as discrete energy levels (atomic
shell structure) and quantum chaos (as in atom nuclei) are observable in a
controlled manner in quantum dots [24]. Moreover, the experiments can be
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conducted in a regime which usually is not accessible to experiments with
real atoms. For example, a singlet-triplet transition should occur in real he-
lium atoms for magnetic fields such large as of the order of 105T, as the they
occur only in the vicinity of white dwarfs and pulsars [58]. In artificial atoms,
which have a much larger size than real atoms, much smaller magnetic fields
are sufficient to observe such effects [59, 60].

Many properties of quantum dots are studied by transport experiments
which are very sensitive to energy scales down to a few micro electron volts.
Transport through quantum dots is basically determined by two effects: 1.
The tunnel effect, which is a quantum mechanical phenomenon in which
electrons can penetrate tunnel barriers. 2. A classical charging effect which
is due to the discreteness of the electron charge and which leads to the so-
called Coulomb blockade effect. This last effect becomes important if the
charging energy U = e2/2C of one additional electron becomes a relevant
energy scale. Here, e is the electron charge and C an estimated effective
‘capacitance’ of the dot. The geometric smallness of the dots can then lead
to very small capacitances such that U becomes a relevant energy scale.

1.1.2 Coulomb blockade in single dots: a simple model

The main essence of the Coulomb blockade effect in single quantum dots,
connected to equilibrium electron reservoirs (source and drain) at chemical
potentials µL and µR < µL, can be understood in a simple model that we
shortly discuss in the following [62, 63]. We assume that the confinement
area of the dot is coupled to the reservoirs via high tunnel barriers, and that
the confinement leads to discrete one-particle levels, the lowest of which we
denote by E1 = ε1 + eVg and E ′

1 = ε2 + eVg (ε1 < ε2), where the gate voltage
Vg is an external parameter that can shift the levels up or down. We restrict
ourselves to these two single-particle levels and introduce the energy for two
electrons in the dot E2 = ε1+ε2+2eVg+U , where U is a Hubbard interaction
energy that mimics the Coulomb repulsion between electrons. The dot then
has the four possible states ‘empty’, ‘one electron in the lower level/upper
level’, and ‘two electrons’.

The tunneling of electrons in or out of the dot can lead to a finite sta-
tionary current at an applied bias VSD = µL − µR between left and right
reservoir (Fig.(1.1)). Energy conservation requires that a current can only
flow through the system if the ground state energy difference EN+1−EN for a
transition from N to N+1 electrons is within the window [µL, µR]. For small
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Fig. 1.1: Scheme of a single quantum dot coupled via tunnel barriers (shaded)
to electron reservoirs. Levels within the dot indicate the position of the chem-
ical potentials for adding the first and the second electron to the dot. The
chemical potentials can be moved up or down with a gate voltage VG so that
one can tune the system from a current carrying state to a state where current
flow is energetically forbidden (Coulomb blockade). Continuous tuning of the
gate voltage in systems with more levels involved leads to the Coulomb block-
ade oscillations, i.e. a sequence of peaks in the current–gate voltage curve, see
Fig. (1.2). Ei (i = 0, 1, 2) is the energy for i electrons in the dot (see text).

source drain voltage µL ≈ µR, this condition means either µL = ε1 + eVg or
µL = ε2 +U + eVg. For fixed εi and fixed source drain voltage, the condition
for current flow can be fulfilled by varying the gate voltage Vg. As a function
of Vg, the current therefore shows peaks where the chemical potential µL of
the reservoir hits the chemical potential of the dot, i.e. the energy required
to add one additional electron to the dot.

This simple model demonstrates that this addition energy is a combina-
tion of the charging energy and the single particle energies. Thus, transport
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Fig. 1.2: Coulomb blockade oscillations as observed by Meirav, Kastner and
Wind [61]. Left: view of the sample, right: conductance versus gate voltage
for different samples. Each oscillation corresponds to the addition of a single
electron. Temperature T = 50 mK.

spectroscopy is sensitive to both the effect of quantum confinement and the
electron correlations within the dot.

1.2 Coupled atoms and spontaneous emission

1.2.1 Spontaneous emission of photons and phonons

Spontaneous emission is one of the fundamental concepts of quantum me-
chanics that can be traced back to such early works as that of Albert Ein-
stein [55]. An excited state of a single atom decays exponentially at a rate Γ
due to the coupling to photons. In frequency space, this leads to the Wigner–
Weisskopf form of spectral lines [64–66] that have a Lorentzian lineshape with
half width Γ/2 [67].
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Fig. 1.3: Comparison between spontaneous decay behavior of a single atom
and a two–atom system. For the latter case, the dashed curve indicates the
emission of light from two independent atoms, cp. Fig.(1.6).

In a system of two atoms interacting via the common photon field, the
decay splits into a (slow) sub- and a (fast) superradiant channel. The details
of this splitting are described in section 1.2.2. In Fig.(1.3), the comparison
between the time–dependence of the decay of a single atom and a two atom
‘molecule’ is indicated. This effect is a precursor of the famous Dicke su-
perradiance phenomenon [52] which will be the central subject of section
2. For the case of two radiators, it was verified experimentally by DeVoe
and Brewer in the spontaneous emission of photons from two trapped ions in
1996 [68], see below. Recently, in a completely different physical system, the
emission of phonons from two artificial atoms has been observed [30]. Here,
the coupling to the phonon degrees of freedom turned out to dominate the
non–linear electron transport through semiconductor double quantum dots
even at mK temperatures.

Double quantum dots are well-defined artificial systems for the study of
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Fig. 1.4: Image of a two–ion ‘molecule’ from the experiment of DeVoe and
Brewer [68]

interaction [31,69] and coherent time-dependent [27–30,70] effects. Here, we
propose a theory for a new non–linear transport effect in double quantum
dots which corresponds to the Dicke effect, i.e. the collective decay of initially
excited real atoms. In our theory, the tunneling of single electrons through
coupled artificial atoms is renormalized by the interaction with piezoelectric
acoustic phonons and leads to an orthogonality catastrophe of the phonon
bath if an electron tunnels between the dots. This ‘boson shake up’ effect
[71, 72] is determined by an effective density of states ρ(ω) of the phonon
modes Q that couple to the tunnel process. These interfere like in a double
slit experiment when interacting with the electron densities in the two dots.
As a result, ρ(ω) shows oscillations on a scale ωd := cs/d, where cs is the
speed of sound and d the distance between the centers of the two dots. It
turns out that the non–linear current peak as a function of the difference ε
between the two relevant many-particle energies is determined by the shape
of ρ(ω = ε/~).
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Furthermore, this quantity is analogous to the rate for emission of sub-
radiant photons from two laser–trapped ions [68], when cs is replaced by the
speed of light and d by the distance of the ions. Thus, both phenomena are
physically closely related. This provides the microscopic mechanism for the
oscillations observed recently in a double dot current spectrum [30].

Finally, we predict that future experiments with artificial atoms can ex-
ploit this analogy to real atoms in more detail. In particular, our results in
chapter 2 and 4 imply that coherent effects such as superradiance [73] can
be manipulated by gate–voltages and external leads.

1.2.2 Sub– and superradiance of two ions: theory

As mentioned above, the spontaneous emission of phonons from double dots
is closely analogous to the subradiant spontaneous decay by emissions of
photons from a laser–trapped two–ion system , as observed by DeVoe and
Brewer [68] .

In a two–ion system, the interaction of the atomic dipoles d̂i at positions
ri (i = 1, 2) with a transverse quantized electromagnetic field within a volume
V is of the form [74]

Heph =
∑

Qs

g̃Qs

(

a−Qs + a+
Qs

)

[

d̂1 exp i(Qr1) + d̂2 exp i(Qr2)
]

, (1.1)

with the coupling matrix element

g̃Qs = −i
(

2πcQ

V

)1/2

~εQs. (1.2)

Here, c is the speed of light, Q the photon wave vector, and the light polariza-
tion vectors are ~εQ,s for polarization direction s. The spontaneous emission
rate Γ of photons is proportional to the square of the interaction (Fermi’s
Golden Rule). The contribution ΓQ of a mode with wave vector Q to Γ is

ΓQ ∝ |d̂1 exp i(Qr1) + d̂2 exp i(Qr2)|2
= | exp i(Qr1) ± exp i(Qr2)|2, (1.3)

where the two signs ± correspond to the two different relative orientations
of the dipole moments of the two ions. In fact, a more detailed calculation
leads to

Γ(Q)± = Γ0(Q)

[

1 ± α
sin(Qd)

(Qd)

]

, Q = ω0/c (1.4)
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with α = 1 (α = 3/2) if the vector character of the light is (not) neglected,
Q = ω0/c, and Γ0(Q) ∝ Q3. Here, d = |r2 − r1| is the distance between
the two ions and ω0 the transition frequency, i.e. the energy difference of the
upper and the lower level in both atoms (~ = 1). The assumption of identical
transition frequencies ω0 for both atoms is of importance for the Dicke effect
to occur in its pure form as discussed below.

Eq. (1.4) can be easily derived from second order perturbation theory
(Fermi’s Golden Rule): The Hamiltonian for two atoms interacting with the
electromagnetic field reads

H = H0 +Heph +Hph

H0 :=
1

2
ω0

(

σ1
z + σ2

z

)

Heph :=
∑

Qs

gQs

(

a−Qs + a+
Qs

) [

eiQr1σ1
x + eiQr2σ2

x

]

Hph :=
∑

Qs

ωQa
+
QsaQs, gQs = g̃Qsd, (1.5)

where the dipole operators are d̂i = dσi
x, and σi

z and σi
x are the Pauli matrices

in the 2× 2 space of the upper/lower level | ↑〉i,| ↓〉i of atom i. Furthermore,
ωQ = c|Q|, and a+

Qs creates a photon with wave vector Q and polarization s.

One defines the basis of so–called Dicke states (which are the usual singlet
and triplet combinations in this case of two atoms here),

|S0〉 :=
1√
2

(| ↑↓〉 − | ↓↑〉)

|T1〉 := | ↑↑〉

|T0〉 :=
1√
2

(| ↑↓〉 + | ↓↑〉)

|T−1〉 := | ↓↓〉. (1.6)
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1T

Fig. 1.5: Decay scheme for two–ion system. Indicated are the four states,
Eq. (1.6), and the subradiant (Γ−) and superradiant (Γ+) decay channels.

Using this basis, one can easily calculate the matrix elements

〈T1|σi
x|T1〉 = 〈T1|σi

x|T−1〉 = 0, i = 1, 2

〈T1|σi
x|T0〉 = 〈T0|σi

x|T−1〉 =
1√
2
, i = 1, 2

〈T0|σi
x|S0〉 = 0, i = 1, 2

〈T1|σ1
x|S0〉 = − 1√

2
, 〈T1|σ2

x|S0〉 =
1√
2

〈S0|σ1
x|T−1〉 =

1√
2
, 〈S0|σ2

x|T−1〉 = − 1√
2
. (1.7)

This means that there are only two transition rates Γ± (see Fig.(1.5)) for
spontaneous emission of photons into a photon vacuum,

Γ±(Q) = 2π
∑

Qs

|αQs ± βQs|2
2

δ(ω0 − ωQ), Q = ω0/c, (1.8)
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Fig. 1.6: Emission rate intensity of radiation from the coherent (I2(t)) and
incoherent (2I1(t)) decay of a system consisting of two radiators. The radiation
rate of one individual radiator is Γ.

where we defined the coupling constants αQs = gQse
iQr1 and βQs = gQse

iQr2.
Evaluation of this expression with Eq. (1.2) yields the expression Eq. (1.4),
cp. [73].

The appearance of two decay channels, that is the super- and subradiant
decay channels ± in the emission rate, has been discovered by Dicke [52].
This effect is the precursor of the more general case of N radiators (ions,
atoms,...), where the phenomenon is known as Dicke superradiance and will
be discussed in detail in chapter 2. Here, we show how the time-dependence
of the collective decay of two radiators differs from the decay of two single
radiators.

We denote the occupation probabilities of the four levels, Eq.(1.6), by
T1(t), T0(t), T−1(t), and S0(t), respectively. The time dependence of the
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occupations is then govered by the two decay rates Γ+ and Γ−:

Ṫ1 = −(Γ− + Γ+)T1

Ṡ0 = Γ−(T1 − S0)

Ṫ0 = Γ+(T1 − T0)

Ṫ−1 = Γ−S0 + Γ+T0. (1.9)

For simplicity, we consider the case where the subradiant channel is com-
pletely suppressed, i.e. a situation where Γ− = 0 and Γ+ = 2Γ. This
would correspond to the case α = 1 and Qd → 0 in Eq. (1.4), i.e. the
so–called small–sample limit where the wave length of the emitted light is
much larger than the distance between the two radiators. Furthermore, in
this case Γ = Γ0(Q) is the emission rate of one individual radiator.

The above equations can be easily solved [75],

T1(t) = e−Γ+t

T0(t) = Γ+te
−Γ+t

T−1(t) = 1 − e−Γ+t(1 + Γ+t), (1.10)

where initial conditions T1(0) = 1, T0(0) = S0(0) = T−1(0) = 0 have been
assumed. The total coherent emission rate I2(t) at time t is the sum of the
emission rates from T1 and T0 (the lowest level T−1 does not radiate):

I2(t) = E0Γ+e
−Γ+t(1 + Γ+t), Γ+ = 2Γ, (1.11)

where E0 is a constant with dimension energy. This has to be compared with
the incoherent sum 2I1(t) of the emission rates I1(t) from two independent
radiators, which would give

2I1(t) = 2E0Γe
−Γt. (1.12)

We conclude this short discussion, which followed the one by Gross and
Haroche [75], by comparing the time-dependence of the coherent and the
incoherent rate in Fig.(1.6). The effect is not very drastic in the time domain
(in the frequency domain it is, cp. chapter 5). Still, one clearly reckognizes
that the coherent emission rate is larger than its coherent counterpart for time
t > 0 up to larger times, where it becomes smaller again: energy conservation
requires that the total emitted energies are the same in both the coherent
and the incoherent case, i.e.

∫ ∞

0

dtI2(t) =

∫ ∞

0

dt2I1(t) (= 2E0). (1.13)
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1.2.3 Sub– and superradiance of two ions: experiments

DeVoe and Brewer [68] measured the spontaneous emission rate of two ions 1

as a function of the ion–ion distance in a trap of planar geometry which was
strong enough to bring the ions (Ba+

138) to a distance of the order of 1µm of
each other. The idea of their experiment was to determine Γ±(Q), Eq. (1.4),
and to compare it to the spontaneous emission rate Γ0(Q) of a single ion
within the same setup. This was done in a transient technique by exciting
the ion molecule by a short laser pulse and recording the subsequent signal,
i.e. the time of arrival of spontaneously emitted photons.

Fig. 1.7: Setup of the ‘double ion’ trap experiment by DeVoe and Brewer [68].
The two–ion molecule is confined within a 80µm radius planar trap and excited
with a laser pulse. The time–to–digital converter (TDC) records the time of
arrival of spontaneously emitted photons.

1 DeVoe and Brewer [68] called their system a ‘two–ion–crystal’. Since the term ‘crystal’
is usually used for a periodic structure of a large number of masses (like in solid state
physics), we find the term ‘two–ion–molecule’ more appropriate.
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Fig. 1.8: Comparison of theory, see Eq. (1.4), and measured data in the
experiment of deVoe and Brewer [68] for the identification of sub– and super-
radiance (Dicke effect) in a two–ion molecule. A laser beam excites the system
at t = 0; the start of the exciting pulse and the arrival of the spontaneous pho-
tons are recorded on a time to digital converter, which is fit to an exponential
decay. The dashed line indicates the lifetime of a single ion in the same trap.
Full circles with error bars are data for laser polarization perpendicular to the
axis connecting the two ions, crosses are for parallel polarization. The points
below the dashed line belong to the superradiant decay channel, whereas the
points above the dashed line indicate belong to the subradiant channel.

It turned out that the best way to distinguish between the sub– and the
superradiant decay channel, cp. Fig.(1.5), was to choose the initial states of
the system as the two states S0 (singlet) and T0 (triplet), which yield the sub-
radiant and the superradiant emission rate, respectively. This was achieved
by coherent excitation of the two–ion molecule, exciting dipole moments in
the two ions with a phase difference of 0 or π. Due to level degeneracy of
the relevant 62P1/2 to 62S1/2 transition and due to loss of coherence because
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of micromotion Doppler shifts, the theoretical value for an effective factor
α in Eq.(1.4) turned out to be α = 0.33. Diffraction limited images of the
molecule, viewed through a window with a microscope, give the information
on the distance between the ions [68], see Fig.(1.4).

Measurements of the spontaneous rate Γ at three different ion distances
turned out to be in good agreement with the (parameter free) theoretical
prediction [76], Eq.(1.4). The data (statistical and systematic tests were
performed) were averaged over a large number of runs.

1.3 Phonons in double quantum dots: Experiments

We now turn from experiments with reals atoms (ions) to a description of
a recent experiment in coupled artificial atoms, that is coupled quantum
dots. Here, we describe the main results of the experiment by Fujisawa and
co–workers (TU Delft, [30]).

The double quantum dot is realized in a 2DEG AlGaAs–GaAs semicon-
ductor heterostructure [29], see Fig.(1.9). Focused ion beam implanted in–
plane gates define a narrow channel of tunable width which connects source
and drain (left and right electron reservoir). On top of it, three Schottky
gates define tunable tunnel barriers for electrons moving through the chan-
nel. By applying negative voltages to the left, central, and right Schottky
gate, two quantum dots (left L and right R) are defined which are coupled
to each other and to the source and to the drain. The tunneling of electrons
through the structure is large enough to detect current but small enough to
have a well–defined number of electrons (∼ 15 and ∼ 25) on the left and the
right dot, respectively. The Coulomb charging energy (∼ 4 meV and ∼ 1
meV) for putting an additional electron onto the dots is the largest energy
scale, see Fig.(1.10). By tuning simultaneously the gate voltages of the left
and the right gate while keeping the central gate voltage constant, the double
dot switches between the three states |0〉 = |NL, NR〉, |L〉 = |NL + 1, NR〉,
and |R〉 = |NL, NR + 1〉 with only one additional electron either in the left
or in the right dot (see the following section, where the model is explained
in detail).

The main experimental trick is to keep the system within these states
and to change only the energy difference ε = εL − εR of the dots without
changing too much, e.g., the barrier transmissions. The measured average
spacing between single–particle states (∼ 0.5 and ∼ 0.25 meV) is still a large
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Fig. 1.9: Schematic diagram of a ‘double gate single electron transistor’ by
Fujisawa and Tarucha [29]. The 2DEG is located 100 nm below the surface
of an AlGaAs/GaAs modulation–doped heterostructure with mobility 8 · 105

cm2 (Vs)−1 and carrier concentration 3 · 1011 cm−2 at 1.6 K in the dark and
ungated. Ga focused ion beam implanted in–plane gates and Schottky gates
define the dot system. A double dot is formed by applying negative gate
voltages to the gates GL, GC, and GR. The structure can also be used for
single–dot experiments, where negative voltages are applied to GL and GC
only.

energy scale compared to the scale on which ε is varied. The largest value of
ε is determined by the source–drain voltage which is around 0.14 meV.

The main findings are the following:

1. At a low temperature of 23 mK, the stationary tunnel current I as a
function of ε shows a peak at ε = 0 with a broad shoulder for ε > 0 that
oscillates on a scale of ≈ 20 − 30µeV, see Fig.(1.11).

2. For larger temperatures T , the current increases stronger on the ab-
sorption side ε < 0 than on the emission side. The data for larger T can be
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Fig. 1.10: Double quantum dots as used in the experiment by Fujisawa et

al. [30] (top view). Transport of electrons is through the narrow channel
that connects source and drain. The gates themselves have widths of 40 nm.
The two quantum dots contain approximately 15 (Left, L) and 25 (Right, R)
electrons. The charging energies are 4 meV (L) and 1 meV (R), the energy
spacing for single particle states in both dots is approximately 0.5 meV (L)
and 0.25 meV (R).

reconstructed from the 23 mK data by multiplication with the Einstein–Bose
factors n(T ) and 1 + n(T ) for emission and absorption, see section 1.8.2.

3. The energy dependence of the current on the emission side is between
1/ε and 1/ε2. For larger distance of the left and right barrier (600 nm on a
surface gate sample instead of 380 nm for a focused ion beam sample), the
period of the oscillations on the emission side appears to become shorter, see
Fig.(1.13).

From these experimental findings, Fujisawa et al. concluded that the
coupling to a bosonic environment is of key importance in this experiment. To
identify the microscopic mechanism of the spontaneous emission, they placed
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Fig. 1.11: Current at temperature T = 23mK as a function of the energy
difference ε in the experiment by Fujisawa et al. [30]. The total measured
current is decomposed into an elastic and an inelastic component. If the
difference ε between left and right dot energies EL and ER is larger than the
source–drain–voltage, tunneling is no longer possible and the current drops to
zero. The red circle marks the region of spontaneous emission, characterized
by the large ‘shoulder’ for ε > 0 with an oscillation–like structure on top of it.

the double dot in different electromagnetic environments in order to test if
a coupling to photons was responsible for these effects. Typical wavelengths
in the regime of relevant energies ε are in the cm range for both photons and
2DEG plasmons. Placing the sample in microwave cavities of different sizes
showed no effect on the spontaneous emission spectrum. Neither was there
an effect by measuring different types of devices with different dimensions,
which should change the coupling to plasmon.

From this, Fujisawa et al. concluded that it is the coupling to acoustic
phonons (optical phonons have too large energies in order to be relevant here)
which is the microscopic mechanism responsible for the emission spectrum.
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Fig. 1.12: Current at T = 23mK as a function of the energy difference ε in
the experiment by Fujisawa et al. [30]. The curves in A have an offset and
are for different values of the coupling Tc between the dots and the rate ΓR

for tunneling out into the drain region. The dotted curves are the negative
derivatives of the currents with respect to energy ε to enhance the structure
on the emission side of the current. B shows curves (i) and (ii) from A in a
double–logarithmic plot, where the dashed lines are Lorentzian fits.

In fact, phonon energies in the relevant ε regime correspond to wavelengths
that roughly fit with the typical dimensions (a few 100 nm) of the double
dot device used in the experiments.

In the following, we will try to understand the experimental findings in
the framework of a theoretical model for transport through double dots in
presence of inelastic degrees of freedom (phonons).
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Fig. 1.13: Current on the emission side ε > 0 in the experiment by Fujisawa
et al. [30]. The solid lines correspond to data from the sample Fig.(1.10) for
different coupling parameters. The dotted line represents data from a surface

gate sample where the distance between left and right barriers is larger, that
is 600 nm.

1.4 Model

We consider a double quantum dot composed of a small left and a small right
dot (L and R) which are connected through a tunnel barrier. The left dot
is connected to a reservoir of free two–dimensional electrons (source) and
the right dot is connected to another reservoir of electrons (drain). Both
reservoirs are assumed to be in thermal equilibrium with chemical potentials
µL (left reservoir) and µR (right reservoir). In the following, we always
consider the case µL > µR, i.e. we have tunneling of electrons from the left
to the right.
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Right
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Fig. 1.14: The model: double dot consisting of left and right dot, coupled by
a tunnel matrix element Tc. Left and right electron reservoirs act as source
and drain for electrons tunneling from left to right. The energies εL and εR

have to be understood as chemical potentials for the addition of one additional
electron to the left and the right dots, respectively. The system is in the strong
Coulomb blockade regime with only one additional electron allowed to enter
the double dot. Phonons couple to the electronic density in both dots.

1.4.1 Three–state basis

We assume that for the physical phenomena we are interested in, a basis of
only three dot states is sufficient [77]. That is, the Hilbert space of the dot
is spanned by the three states

|0〉 = |NL, NR〉
|L〉 = |NL + 1, NR〉
|R〉 = |NL, NR + 1〉 (1.14)
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which correspond to three different many–particle ground states with NL

electrons in the left and NR electrons in the right dot. We assume that
the corresponding ground state energies εL of |L〉 and εR of |R〉 are in the
window between source and drain energy, i.e. µL > εL, εR > µR. Physically,
this restriction means the following:

1. The source–drain voltage VSD := µL − µR is much smaller than the
energy Uc to put an additional electron onto the dot if the dot is in the
state |L〉 or |R〉. Then, the Coulomb charging energy of the double dot is
the largest energy scale in the problem and it is not possible to charge the
double dot with more than one additional electron.

2. The many–body excited states over the ground states eq. (1.14) can
be disregarded, i.e. only ground–state to ground–state transitions determine
the transport properties.

In [30], no enhanced tunnel current was observed for ε := εL − εR < 0 at
low temperatures so that excited many–body states play no role. In particu-
lar, Uc ∼ 1 meV was one order of magnitude larger than the external source
drain voltage VSD. This situation has to be contrasted with the regime
VSD & Uc, where the blockade becomes lifted. The crossover from small to
large source–drain voltages (with respect to Uc) has been studied by Raikh
and Asenov [78]. They considered tunneling through a system of two lo-
calized states, coupled to metallic reservoirs. The crossover to the regime
VSD & Uc showed up in the I–V characteristic as a step, the height of which
could be determined by considering the different time scales for charging and
de–charging of the system. We make the distinction between the case of
large bias–voltage VSD and the case of small bias voltage to point out that
our model does not cover the crossover from the Coulomb blockade to the
unblocked regime as investigated by Raikh and Asenov.

We now define dot–operators

nL := |L〉〈L|, nR := |R〉〈R|
p := |L〉〈R|, p† := |R〉〈L|
sL = |0〉〈L|, sR := |0〉〈R|. (1.15)
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These operators fulfill

n2
L = nL, nLp = p, nLp

† = 0

p†nR = 0, pp† = nL, p†p = nR

n2
R = nR, nRp = 0, nRp

† = p†

pnL = 0, pnR = p, p†nL = p† (1.16)

The total system Hamiltonian H consists of three parts: the double dot
Hamiltonian, the phonon bath, and the two electron reservoirs. Furthermore,
there is the interaction between the phonon system and the double dot. The
interaction between phonons and the reservoirs is not considered explicitely
here. The Hamiltonian of the dot is

Hd = εLnL + εRnR + Tc(p+ p†), (1.17)

where the tunneling between left and right dot is described by a single tunnel
matrix element Tc.

It is useful to split H into a sum in the following manner

H = H ′
0 +HT +HV +Hep +Hαβ

H ′
0 = εLnL + εRnR +Hp +Hres

HT = Tc(p+ p†)

Hep =
∑

Q

(

γQp+ γ∗−Qp
†)
(

a−Q + a†Q

)

Hαβ =
∑

Q

(αQnL + βQnR)
(

a−Q + a†Q

)

Hp =
∑

Q

ωQa
†
QaQ

HV =
∑

k

(

Vkc
†
ksL +Wkd

†
ksR + c.c.

)

Hres =
∑

k

εL
kc

†
kck +

∑

k

εR
kd

†
kdk. (1.18)

Here, Hp describes the lattice vibrations in harmonic approximation; the

creation operator for a phonon of mode Q is denoted as a†Q . We have
already split the electron–phonon interaction into the diagonal part Hαβ and
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the non-diagonal part Hep. The matrix elements αQ, βQ, γQ are defined by

αQ := λQ〈L|eiQr|L〉, βQ := λQ〈R|eiQr|R〉
γQ := λQ〈L|eiQr|R〉, (1.19)

where λQ is the matrix element for the interaction of 2DEG electrons and
phonons. The form of λQ depends on the specific coupling mechanism to the
phonons and will be discussed below.

The coupling to the electron reservoirs is given by the standard tunnel
HamiltonianHV , where Vk andWk couple to a continuum of channels k of the
left and right electron reservoir Hres. The latter are assumed to be in thermal
equilibrium as described by Fermi distribution functions. We note that the
splitting of the whole electron system into reservoir and dot regions bears
some fundamental problems that are inherent in all descriptions that use the
tunnel Hamiltonian formalism. This relatively old problem of how to describe
tunnel junctions in a quantum mechanical model has been pointed out first
by Prange [79–81]. We do not discuss this point here but only note that the
tunnel Hamiltonian formalism has turned out to be a successful tool for a
variety of problems in electronic transport in mesoscopic systems [5, 6, 50].

The spin of the electron plays no role here and is suppressed in all no-
tations. In the experiment [30], a magnetic field between 1.6 and 2.4 T was
applied perpendicular to the dots in order to maximize the single–particle
spacing. In particular, we therefore assume spin polarization of the electrons.

We note that in the case γQ = 0, our Hamiltonian Eq. (1.18) is equiv-
alent to a model by Glazman and Matveev [82], who considered inelastic
tunneling across thin amorphous films via pairs of impurities. They showed
that phonon terms ∼ γQ can be neglected. We checked in a seperate master
equation calculation that such terms indeed modify the tunnel current only
weakly, and therefore neglect them in the following. In particular, they do
not lead to the oscillatory phenomena observed in [30], which is due to the
non–perturbative shake–up process that we describe in the following.

1.4.2 Boson shake–up effect

Suppose an electron tunnels between two regions of space (L and R) and
interacts with a boson field. Suppose the interaction is of the form Hαβ,
eq.(1.18), i.e. a coupling that locally changes the energy of the electron,
depending if it is in L or in R. When the electron tunnels, its wave function
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will experience a phase shift eiφ due to this coupling. This phase shift is zero
if the coupling is identical in both regions, i.e. if αQ = βQ. If αQ 6= βQ,
however, the phase shift depends on the coordinates of the boson field, i.e.
φ is an operator depending on the boson field operators aQ and a†Q. This
operator acts on the boson field and ‘shakes it up’ when the electron tunnels.
From the point of view of the electron, its phase is renormalized through
the tunnel process. Since this phase is environment dependent, the effective
tunnel amplitude changes in a non–trivial way; in particular it becomes time–
dependent. From the point of view of the boson system, its initial (before the
tunneling) and final (after tunneling) state are no longer the same and there
is an ‘orthogonality catastrophe’ which changes the tunneling amplitude, cp.
the discussion in section 1.8.1. Strictly speaking, an explanation in terms of
electron states and states of the boson system is not correct because electrons
and bosons are coupled and one has to speak of the eigenstates of the coupled
system. In the following, we will formalize this by introducing a unitary
transformation of the Hamiltonian that naturally leads to the phase factors
mentioned above.

1.4.3 Canonical Transformation

One can introduce a unitary polaron transformation [83] of the Hamiltonian
that naturally leads to the phase factors mentioned above. The latter are
well–known from problems where bosonic degrees of freedom couple to a
single localized state [50, 84, 85].

We define for any operator O a unitary transformation by

O := eSOe−S, S := nLA+ nRB

A :=
∑

Q

(λQa
†
Q − λ−QaQ)

B :=
∑

Q

(µQa
†
Q − µ−QaQ)

λQ :=
1

ωQ

αQ, µQ :=
1

ωQ

βQ. (1.20)

Using the relation

O = O + [S,O] +
1

2!
[S, [S,O]] + ..., (1.21)
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one obtains

nL = nL, nR = nR

aQ = aQ +
∑

Q

(λQnL + µQnR)[a†Q − a−Q, aQ] =

= aQ − λQnL − µQnR, (1.22)

where we used [a†Q, aQ] = −1, [nL, S] = [nR, S] = 0, and the fact that in the
sum

∑

Q we can change from Q to −Q. The commutator

[A,B] =
∑

Q

[λQa
†
Q − λ−QaQ, µQa

†
Q − µ−QaQ] =

=
∑

Q

(λQµ−Q − λ−QµQ) = 0, (1.23)

and consequently [nLA, nRB] = 0. We now use the commutators

[nL, p] = p, [nR, p] = −p (1.24)

to calculate

p = enRBenLApe−nLAe−nRB

= enRB

(

p+ [nLA, p] +
1

2!
[nLA,Ap] + ...

)

e−nRB =

= enRB

(

p+ Ap +
1

2!
A2p+ ...

)

e−nRB

= enRBpeAe−nRB =

=

(

p+ [nRB, p] +
1

2!
[nRB,−Bp] + ...

)

eA

=

(

p−Bp +
1

2!
B2p+ ...

)

eA = pe−BeA = peA−B . (1.25)

It follows

p = pX, X =
∏

Q

DQ

(

αQ − βQ

ωQ

)

DQ(z) := eza†
Q
−z∗a

Q . (1.26)
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The operator

D(z) := exp(za† − z∗a ) (1.27)

is called unitary displacement operator in quantum optics [67]. The operation
of D(z) on the vacuum of a boson field mode with creation operator a† and
ground state |0〉 creates a coherent state |z〉 = D(z)|0〉 of the boson field.

The operators sL and sR, Eq.(1.15) are transformed in a similar way. One
has to use

[nL, sL] = −sL, [nR, sR] = −sR

[nR, sL] = [nL, sR] = 0. (1.28)

The result is

sL = sLe
−A, sR = sRe

−B. (1.29)

1.4.4 The transformed Hamiltonian

The transformed Hamiltonian H is obtained by transforming each term in
Eq.(1.18) according to Eq.(1.20). The main effect of the transformation is
that in H the term Hαβ does no longer appear:

H = H0 +HT +HV +Hep

H0 = εLnL + εRnR +Hp +Hres

HT = Tc(pX + p†X†)

εL = εL −
∑

Q

|αQ|2
ωQ

, εR = εR −
∑

Q

|βQ|2
ωQ

. (1.30)

The energies εL and εR are renormalized to smaller values. The main effect,
however, is the appearance of the factorsX andX † in the tunnel Hamiltonian
HT . As we will see below, these factors will drastically change the transport
properties of the double dot.

1.5 Master equation

No exact solution is possible for the expectation values of the dot vari-
ables. Our strategy will be to derive a master equation from the exact
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time–evolution of the system. We will assume that the coupling to the left
and right electron reservoirs is weak and a standard Born and Markov ap-
proximation with respect to this coupling is reasonable. On the other hand,
the renormalization of the intradot tunneling T by the phase factors X is
non–perturbative in the electron–phonon coupling and one has to go beyond
the standard Born and Markov approximation with respect to the electron–
phonon interaction .

The assumption of weak reservoir coupling means that we neglect effects
from higher order tunneling such as co–tunneling processes [86] throughout.
In particular, we are outside the regime of strong coupling to the leads where
signatures of the Kondo effect start to play a role [87–90]. We only men-
tion that the study of the Kondo physics in coupled dots [69, 91–94] and in
presence of additional inelastic processes such as microwaves [95–98] is an-
other, extremely interesting field of recent research activities in mesoscopic
transport.

1.5.1 Interaction picture

We define an interaction picture for arbitrary operators O and by the X
operators by

Õ := eiH0tOe−iH0t, Xt := eiH0tXe−iH0t. (1.31)

Furthermore, for the total density matrix χ(t) which obeys the Liouville
equation

χ(t) = e−iHtχt=0e
iHt, (1.32)

we define

χ̃(t) := eiH0tχ(t)e−iH0t, χ(t) := e−iHtχt=0e
iHt. (1.33)

The expectation value of any operator O is given by

〈O〉t := Tr (χ(t)O) = 〈eSχ(t)e−SeSOe−S〉 (1.34)

= 〈χ(t)O〉 = 〈eiH0tχ(t)e−iH0teiH0tOe−iH0t〉 = Tr
(

χ̃(t)Õ(t)
)

.

We therefore have

ñL(t) = nL, ñR(t) = nR

p̃(t) = peiεtXt, p̃†(t) = p†e−iεtX†
t

ε := εL − εR. (1.35)
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The equation of motion for χ̃ becomes

i
d

dt
χ̃(t) = [H̃T (t) + H̃V (t) + H̃ep(t), χ̃(t)]. (1.36)

This can be written as

d

dt
χ̃(t) = −i[H̃T (t), χ̃(t)] − i[H̃V (t) + H̃ep(t), χ̃(t)] =

= −i[H̃T (t), χ̃(t)] − i[H̃V (t) + H̃ep(t), χ0] + (1.37)

−
∫ t

0

dt′[H̃V (t) + H̃ep(t), [H̃T (t′) + H̃V (t′) + H̃ep(t
′), χ̃(t′)]].

As mentioned above, we completely concentrate on the boson shake up effect
which originates from the diagonal part Hαβ of the electron–phonon interac-
tion. The off–diagonal terms will neglected in the following.

1.5.2 Perturbation theory in the coupling to the electron reservoirs

We define the effective density operator of the system dot+phonons,

ρ̃(t) = Trresχ̃(t) (1.38)

as the trace over the electron reservoirs (res). The trace Trres over terms
linear in HV vanishes, and it remains

d

dt
ρ̃(t) = −i[H̃T (t), ρ̃(t)] − Trres

∫ t

0

dt′[H̃V (t), [H̃V (t′), χ̃(t′)]]. (1.39)

Since the last term in Eq.(1.39) is already second order in HV , we can ap-
proximate

χ̃(t′) ≈ R0ρ̃(t
′) (1.40)

under the integral, where R0 is the equilibrium density matrix for the two
electron reservoirs (left and right). Performing the commutators and using
the free time evolution of the electron reservoir operators

c̃k(t) = ck(t) = e−iεL
k

tck, dk(t) = e−iεR
k

tdk, (1.41)
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one finds

d

dt
ρ̃(t) = −i[H̃T (t), ρ̃(t)]

−
∑

k

∫ t

0

dt′gk(t− t′)
{

s̃L(t)s̃†L(t′)ρ̃(t′) − s̃L(t′)†ρ̃(t′)s̃L(t)
}

−
∑

k

∫ t

0

dt′ḡk(t
′ − t)

{

s̃†L(t)s̃L(t′)ρ̃(t′) − s̃L(t′)ρ̃(t′)s̃†L(t)
}

−
∑

k

∫ t

0

dt′gk(t
′ − t)

{

ρ̃(t′)s̃L(t′)s̃†L(t) − s̃†L(t)ρ̃(t′)s̃L(t′)
}

−
∑

k

∫ t

0

dt′ḡk(t− t′)
{

ρ̃(t′)s̃†L(t′)s̃L(t) − s̃L(t)ρ̃(t′)s̃†L(t′)
}

− (Vk →Wk andL→ R), f
L

k := 1 − fL
k

gk(τ) := V 2
k f

L
k e

iεL
k

τ , ḡk(τ) := V 2
k f̄

L
k e

iεL
k

τ . (1.42)

Here, we introduced the Fermi distributions

fL
k ≡ fL(εk) := Trres(R0c

†
kck)

fR
k := Trres(R0d

†
kdk). (1.43)

We now write
∑

k

V 2
k f

L
k e

iεL
k
(t−t′) =

∫ ∞

−∞
dεν(ε)fL(ε)eiε(t−t′) (1.44)

and assume that the tunneling density of states

ν(ε) :=
∑

k

V 2
k δ(ε− εk) ≈ ν(εL) (1.45)

can be considered as a constant around εL and its energy dependence can
be neglected. Furthermore, the chemical potential µL of the left electron
reservoir is assumed be so large that no electrons can tunnel back from the
left dot to the left reservoir. In the limit µL → +∞, the Fermi distribution
fL(ε) equals unity, and one obtains

∑

k

V 2
k f

L
k e

iεL
k
(t−t′) ≈ ΓLδ(t− t′)

ΓL := 2π
∑

k

V 2
k δ(εL − εL

k). (1.46)



30 1. Phonons in Double Quantum Dots

In the same way, we assume the chemical potential µR of the right electron
reservoir to be deep below the energy εR so that no electrons can tunnel from
the right reservoir to the right dot. In this limit µR → −∞ ,

∑

k

W 2
k(1 − fR

k )eiεR
k

(t−t′) ≈ ΓRδ(t− t′)

ΓR := 2π
∑

k

W 2
kδ(εR − εR

k ). (1.47)

With these approximations, the master equation Eq.(1.42) becomes

ρ̃(t) = ρ̄0 − i

∫ t

0

dt′[H̃T (t), ρ̃(t)] (1.48)

− ΓL

∫ t

0

dt′
{

s̃L(t′)s̃†L(t′)ρ̃(t′) − 2s̃L(t′)†ρ̃(t′)s̃L(t′)
}

− ΓL

∫ t

0

dt′
{

ρ̃(t′)s̃L(t′)s̃†L(t′)
}

− ΓR

∫ t

0

dt′
{

s̃†R(t′)s̃R(t′)ρ̃(t′)
}

− ΓR

∫ t

0

dt′
{

−2s̃R(t′)ρ̃(t′)s̃†R(t′) + ρ̃(t′)s̃†R(t′)s̃R(t′)
}

,

where we performed one integration from 0 to t.

1.5.3 Equations of motions

It is convenient to derive the equations of motions for the expectation values
of the dot variables directly from the master equation Eq.(1.48). One first
calculates the commutators

[ñL(t), H̃T (t′)] = −[ñR(t), H̃T (t′)] = Tc

(

p̃(t′) − p̃†(t′)
)

[

p̃(t), H̃T (t′)
]

= Tce
iε(t−t′)

{

nLXtX
†
t′ − nRX

†
t′Xt

}

[

p̃†(t), H̃T (t′)
]

= Tce
−iε(t−t′)

{

nRX
†
tXt′ − nLXt′X

†
t

}

. (1.49)

One has to use the completeness relation

1 = |0〉〈0| + nR + nL (1.50)
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in the three–dimensional Hilbertspace of the double dot to express s̃L(t′)s̃†L(t′) =
|0〉〈0| = 1 − nR − nL. Multiplying Eq.(1.48) with nL, nR, p, and p† and per-
forming the trace with the three dot states Eq.(1.14), one obtains

〈nL〉t − 〈nL〉0 = −iTc

∫ t

0

dt′
{

〈p〉t′ − 〈p†〉t′
}

+ 2ΓL

∫ t

0

dt′(1 − 〈nL〉t′ − 〈nR〉t′)

〈nR〉t − 〈nR〉0 = iTc

∫ t

0

dt′
{

〈p〉t′ − 〈p†〉t′
}

− 2ΓR

∫ t

0

dt′〈nR〉t′

〈p〉t − 〈p〉0t = −ΓR

∫ t

0

dt′eiε(t−t′)〈XtX
†
t′ p̃(t

′)〉t′ (1.51)

− iTc

∫ t

0

dt′eiε(t−t′)
{

〈nLXtX
†
t′〉t′ − 〈nRX

†
t′Xt 〉t′

}

〈p†〉t − 〈p†〉0t = −ΓR

∫ t

0

dt′e−iε(t−t′)〈p̃†(t′)Xt′X
†
t 〉t′

+ iTc

∫ t

0

dt′e−iε(t−t′)
{

〈nLXt′X
†
t 〉t′ − 〈nRX

†
tXt′〉t′

}

.

Here, the expectation value

〈A〉t′ := Trd,ph

(

ρ̃(t′)Ã(t′)
)

(1.52)

is defined as the trace over the dot and the phonon system. Furthermore, we
defined

〈p(†)〉0t := Trd,ph

(

ρ̄0(pe
iεtXt)

(†)) . (1.53)

In the following, we assume a factorization of the initial density matrix at
time t = 0 into phonon and dot variables according to

ρ̄0 = ρ0
phTrphρ0. (1.54)

Such a factorized form of the density operator is given, e.g., when at time
t = 0 the density matrix ρ0 has the form ρ0 ∝ exp(−β(H − HV ), i.e. the
system is isolated from the electron reservoirs for times t ≤ 0. In general,
such a factorization condition is a (plausible) assumption; in general, initial
density matrices for interacting systems have to be constructed from, e.g.,
thermodynamical principles.

The time evolution of the expectation values 〈p(†)〉0t describes the decay of
an initial polarization of the system and can be calculated exactly [99, 100].
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This decay, however, plays no role for the stationary current, and we assume
that the inital expectation values of p(†) vanish at time t = 0, whence they
vanish for all times t > 0.

1.5.4 Decoupling and Laplace transformation

As can be reckognized from Eq.(1.51), the system of equations for the dot
expectation values is not closed. There are terms like 〈nLXtX

†
t′〉t′ which

contain products of dot operators and phonon operators. At this point, one
can use a physical argument to decouple the equations: if one is not interested
in the backaction of the electron system onto the phonon system, the latter
can be assumed to be in thermal equilibrium all the time. Since the operators
X correspond to a continuum of phonon modes Q, it makes sence to treat
them as an equilibrium bath. We use a decoupling of the reduced density
matrix ρ̃(t′) according to

ρ̃(t′) ≈ ρ0
phTrphρ̃(t

′). (1.55)

This is an approximation by which the results following from it become no
longer exact. The comparison to the spin–boson problem (appendix A.2)
shows that the decoupling approximation corresponds to the so–called non–
interacting–blib–approximation [101,102], which is a standard approximation
in the dissipative spin–boson problem. Corrections to this approximations
in principle can be obtained by setting up equations of motions for terms
like 〈nLXtX

†
t′〉t′ which leads to higher order correlation functions. The latter

can then be decoupled at any higher level. Since we are interested in small
coupling parameters here, we do not further pursue this method [103] and
stay within the lowest level of the decoupling hierarchy.

Using Eq.(1.55), one immediately obtains

Tr(ρ̃(t′)nLXtX
†
t′) ≈ 〈nL〉t′〈XtX

†
t′〉0

(1.56)

and corresponding for the other products of operators.
For an equilibrium bath, the expectation value

〈XtX
†
t′〉0 =: C(t− t′)

C(t− t′) = C∗(t′ − t) (1.57)
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is a function of the time difference only. We therefore can define the Laplace
transformation for real z,

Cε(z) :=

∫ ∞

0

dte−zteiεtC(t)

nL(z) :=

∫ ∞

0

dte−zt〈nL〉t etc., z > 0 (1.58)

and transform the whole equations of motion into z-space,

nL(z) = −iTc

z
(p(z) − p∗(z)) + 2

ΓL

z
(1/z − nL(z) − nR(z))

nR(z) = i
Tc

z
(p(z) − p∗(z)) − 2

ΓR

z
nR(z) (1.59)

p(z) = −iTc

{

nL(z)Cε(z) − nR(z)C∗
−ε(z)

}

− ΓRp(z)Cε(z)

p∗(z) = iTc {nL(z)C∗
ε (z) − nR(z)C−ε(z)} − ΓRp

∗(z)C∗
ε (z).

These equations can now be solved algebraically.

1.5.5 The stationary tunnel current

The operator for the tunnel current, Î, can be defined in the following way:
we consider the change of the occupation of the left dot nL due to tunneling
from/to the right dot as a function of time. This change is given by

ṅL|LR = iT (p† − p)

+
∑

Q

(

−γQp + γ∗Qp
†)
(

a−Q + a†Q

)

. (1.60)

The last term is proportional to the off–diagonal electron–phonon matrix el-
ement and involves combinations of electron and phonon operators. It corre-
sponds to the tunneling of an electron with simultaneous emission/absorption
of a phonon. Since we assumed γQ = 0 here, this term does not contribute
here. We set the electron charge e = 1 for convenience and therefore have
for the current operator

Î := iTc(p− p†). (1.61)

The full time-dependence of the expectation value 〈I〉t can be obtained from
algebraically solving Eq.(1.59) and performing the Laplace back–transformation.
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This is a formidable task; fortunately the physically most relevant quantity
is the stationary current which is expected to flow in the stationary state
of the system for time t → ∞. One then obtains the expectation value
〈I〉t→∞ from the 1/z–coefficient of the I(z)–expansion into a Laurent series
for z → 0 [104]. The result is

〈I〉t→∞ = T 2
c

2<e(Cε) + 2ΓR|Cε|2
|1 + ΓRCε|2 + 2T 2Bε

Bε := <e

{

(1 + ΓRCε)

[

C−ε

2ΓR
+

C∗
ε

2ΓL

(

1 +
ΓL

ΓR

)]}

.

(1.62)

Here, we defined

Cε = lim
δ→0

∫ ∞

0

dte−δteiεtC(t). (1.63)

As a first check we verify that in the elastic limit, i.e. in the case when no
phonon coupling is present, one reproduces the results of Stoof and Nazarov
[77] . That is, in the elastic case, one has Cε = i/ε, and

〈I〉t→∞ = T 2 2ΓR

Γ2
R + ε2 + 2T 2(1 + ΓR/2ΓL)

(1.64)

which is a Lorentzian curve for the stationary tunnel current as a func-
tion of the energy difference ε. Note that we use a definition of ΓR/L =
(1/2)ΓR/L(Stoof/Nazarov).

The appearance of the intradot tunneling matrix element Tc in the denom-
inator of Eq.(1.64) indicates that this result is non–perturbative, i.e. valid
to all orders in Tc. The modification of this curve by the electron–phonon
interaction is completely described by the form of the function Cε which we
will discuss now.

1.6 Interference and electron–phonon interaction

We recall the form of the electron–phonon coupling in our model,

Hαβ =
∑

Q

(αQnL + βQnR)
(

a−Q + a†Q

)

, (1.65)
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that couples only to the occupation number operators nL and nR. For a
harmonic phonon system in thermal equilibrium at inverse temperature β =
1/kBT , one finds for the correlation function C(t− t′),

C(t− t′) ≡ 〈XtX
†
t′〉0 = e−Φ(t−t′)

Φ(t) :=

∫ ∞

0

dωρ(ω) {(1 − cosωt) coth(βω/2) + i sinωt}

ρ(ω) =
∑

Q

|αQ − βQ|2
ω2

δ(ω − ωQ).

(1.66)

The derivation of these relations is quite straightforward. One has to use the
definition Eq. (1.26),

X =
∏

Q

DQ

(

αQ − βQ

ωQ

)

, DQ(z) := eza†
Q
−z∗a

Q , (1.67)

and the relations for the unitary displacement operator for the harmonic
oscillator mode with creation operator a† and frequency ω,

D(α) := exp(αa† − α∗a )

D(α)† = D(−α), D(α)D(β) = D(α+ β)ei=m(αβ∗), (1.68)

as is explained, e.g., in [67]. Furthermore, one requires the thermal equilib-
rium expectation value of D(α)

〈D(α)〉0 :=
Tr(e−βωa†aD(α))

Tr(e−βωa†a)
= exp

{

−1

2
|α|2 coth(βω/2)

}

. (1.69)

1.6.1 Electron-Phonon coupling

For the following we always assume a coupling to (bulk) three dimensional
phonons. This assumption is a matter of convenience because our intention
here is to concentrate on the main physics of the interference effects for
phonon coupling in double quantum dots. In section 1.9.2 we comment on
other, probably more realistic choices that take into account the effect of
surface acoustic phonons.
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The electron–phonon interaction potential in real space in first quantiza-
tion is given by

Vep(x) =
∑

Q

λQe
iQx
(

a−Q + a†−Q

)

, λQ = λ∗−Q. (1.70)

In second quantization with respect to the dot system, this interaction be-
comes

Vep =

∫

d3xΨ†(x)Vep(x)Ψ(x), (1.71)

where Ψ(x) is the electron field operator. Then, the matrix elements αQ and
βQ become

αQ = λQ

∫

d3xeiQxρL(x) βQ = λQ

∫

d3xeiQxρR(x)

ρL(x) := 〈L|Ψ†(x)Ψ(x)|L〉 ρR(x) := 〈R|Ψ†(x)Ψ(x)|R〉, (1.72)

where we introduced the local electron densities ρL(x) and ρR(x) in the left
and the right dot, respectively. The exact form of both ρL(x) and ρR(x)
depends on the shape of the left and the right quantum dots and on the
number of electrons NL and NR in both dots. In general, it will be impossible
to calculate both densities exactly. It is, however, reasonable to assume that
in the stationary state for t → ∞ both densities are smooth functions of x

centered around the center of the left (ρL(x)) and the right (ρL(x)) dot, i.e.

ρL(x) ≈ ρe(x − xL), ρR(x) ≈ ρe(x − xR), (1.73)

where for simplicity we assumed that both left and right electron densities are
described by the same profile. Here, the function ρe(x) is relatively sharply
peaked around zero. The assumption of identical, but spacially shifted elec-
tron density profiles in both dots allows one to establish a relation between
the matrix elements αQ and βQ. That is, one has

αQ = λQe
iQrLPe(Q), βQ = λQe

iQrRPe(Q)

Pe(Q) :=

∫

d3xeiQxρe(x) (1.74)

whence

βQ = αQe
iQd, d = rR − rL, (1.75)
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Fig. 1.15: Phase relation between the electron phonon coupling matrix ele-
ments αQ (βQ) for coupling to left (right) dot for charge distributions centered
sharply around the dot centers (distance d), cp. Eq.(1.75). The coupling con-
stants enter the expression Eq.(1.66) for the function ρ(ω) which governs the
effective electron–phonon coupling.

where d is the vector pointing from the center of the left to the center of the
right dot.

One can check the validity of the above argumentation in the single parti-
cle case. In this case, the two states |L〉 and |R〉 correspond to single particle
wave functions that can, at least in principle, be easily calculated for a given
dot potential. Here, we write the wave functions as

〈x|R〉 = χ(z)φR(|r− rR|), 〈x|L〉 = χ(z)φL(|r− rL|), (1.76)

where x = (r, z), χ(z) = χ(−z) is a quantum well wave function and φR and
φL describe spherically symmetric wave functions for the additional electron
in the right and the left dot which are centered around rR and rL, respectively.
Furthermore, r is a vector in the 2DEG x–y plane. Using the notation
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Q = (q, qz) in Q-space, one has

αQ = λQ〈L|eiQx|L〉 = λQ〈χ|eiqzz|χ〉〈φL|eiqr|φL〉
= λQF (qz)e

iqrLPL(q),

F (qz) := 〈χ|eiqzz|χ〉, PL(q) :=

∫

dr2|φL(r)|2eiqr (1.77)

The real function F (qz) is a quantum well form factor that effectively cuts
off phonon contributions with large qz. Since PL(q) is the Fourier transform
of a rotational symmetric function, it depends only on the modulus q, and
PL(q) = P ∗

L(q) is real. Using the same notation for βQ, we have

αQ = eiqrLλQF (qz)PL(q)

βQ = eiqrRλQF (qz)PR(q). (1.78)

For identical wave functions φR = φL, we again reckognize that the coupling
constants αQ and βQ just differ by a phase,

βQ = αQe
iqd, d = rR − rL, (1.79)

where d is the vector pointing from the center of the left to the center of
the right dot. This agrees with Eq.(1.75) if the vector d is lying in the x–y
plane, i.e. the centers of the electron density profiles in both dots are in the
x–y plane.

1.6.2 The function ρ(ω)

In order to explicitely calculate ρ(ω) (we re-insert the ~ into Eq. (1.66))

ρ(ω) =
∑

Q

|αQ − βQ|2
~2ω2

δ(ω − ωQ), (1.80)

we assume an identical charge density profile in the dot with Fourier trans-
form Pe(Q), Eq.(1.74). We write Q = (q, qz) and assume the vector d to lie
in the x–y plane as well as Pe(Q) = Pe(q, qz), i.e. a x–y rotational symmetric
charge profile in the dot.

In the following, the phonons are assumed to be the three-dimensional
modes of the bulk crystal. Since the material where the experiments are per-
formed is Gallium–Arsenide which is piezoelectric, there are both deforma-
tion potential and piezoelectric modes in the low-energy dispersion (Debye-
spectrum) of the phonons [105]. The optical branches of the phonon spectrum
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can be savely neglected here. Their energies (∼ 36meV ) are orders of magni-
tudes larger than the energy transfers considered here, which are of the order
of a few tenths or hundredth micro eV.

Piezoelectric interaction

We first consider the piezoelectric acoustical interaction with an interaction
matrix element

|λQ|2 =
1

V

λ2

cQ
, λ2 =

~P

2ρM
, (1.81)

where c is the longitudinal speed of sound, ωQ = cQ ≡ c|Q| the phonon
dispersion, V the volume and ρM the mass density of the crystal, and P the
piezoelectric coupling. Here, we followed [106] and used a simpifying angular
average of the absolute square of the piezoelectric coupling function λQ with

P := (eh14)
2

(

12

35
+

1

x

16

35

)

. (1.82)

Here, for simplicity screening effects of the 2DEG have been absorbed into
the value of P and dynamical screening has been neglected. Furthermore, the
averages over the two transverse and the longitudinal mode are performed
seperately and their contributions are added then. The only remaining veloc-
ity of sound in this approximation is the longitudinal one. We point out that
this again is a simplifying approximation of the electron–phonon interaction.
For quantitative agreement with experiments, the full directional dependence
of the matrix elements has to be kept [107].

Within these approximations, one obtains

ρ(ω) =
λ2

~2ω3V

∑

Q

δ(ω − cQ)P 2
e (q, qz)|1 − eiqd|2 =

=
g

ω

∫ 1

0

dxP 2
e

(ω

c

√
1 − x2,

ω

c
x
)

(

1 − J0

(

d

c
ω
√

1 − x2

))

g :=
λ2

π2~2c3
. (1.83)

Here, J0 is the zeroth order Bessel function and g is a dimensionless electron
phonon coupling constant. If the charge density profile is sharply peaked, the
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form factor Pe(Q) tends towards unity. We use this condition to evaluate the
integral Eq.(1.83) analytically. In fact, in the single particle wave function
model above one could assume dot wave functions with a Gaussian shape
whence

PL(q) = PR(q) = e−(lq)2/2

F (qz) = e−(aqz)2/2 (1.84)

and

ρ(ω) =
g

ω

∫ 1

0

dxe−
ω2

c2
(l2(1−x2)+a2x2)

(

1 − J0

(

d

c
ω
√

1 − x2

))

(1.85)

The limit a = l = 0 (infinitely small wave function extension in all directions)
corresponds to Pe(Q) = 1 in Eq. (1.83) and one obtains

ρ(ω) ≈ g

ω

(

1 − ωd

ω
sin

(

ω

ωd

))

, ωd := c/d, Pe(Q) → 1. (1.86)

A finite extension of the wave functions leads to a cutoff of phonons with
frequencies larger than min(c/l, c/a) which sets the scale for the effective
Debye (cutoff) frequency ωc for the electron–phonon interaction. To take
into account this cutoff, we use for the following calculations an approximated
form of the function ρ(ω) with a smooth exponential cutoff ∝ exp(−ω/ωc),

ρ(ω) ≈ g

ω

(

1 − ωd

ω
sin

(

ω

ωd

))

e−ω/ωc.
(1.87)

We show a plot of ρ(ω) (without exponential cutoff), Eq.(1.86), in Fig. (1.16).
The most striking feature is the appearance of the oscillations in ω, which
occur on the scale ωd = c/d. In fact, these oscillations resemble the oscilla-
tions in the current profile on the emission side at low temperature in the
experiment [30]. Using parameters d = 200 · 10−9m and c = 5000m/s, we
obtain ~ωd = 16.5µeV , which is in fact the scale on which the oscillations
occur in [30]. In the following subsection, we will show by numerical eval-
uation of the stationary current I, that the oscillations of ρ(ω) will indeed
show up in the current as a function of the energy difference ε. Using typical
GaAs parameters, see Table (1.1), we obtain g ≈ 0.05.
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Parameter Symbol Value
Mass density ρ 5300 kg m−3

Longitudinal speed of sound cL 5200 m s−1

Transversal speed of sound cT 3000 m s−1

Deformation Potential Ξ 2.2 × 10−18J
Piezoelectric constant eh14 1.38 × 109eV m−1

Piezoelectric coupling P 5.4 × 10−20 J2 m−2

Tab. 1.1: Electron-phonon parameters in GaAs. Parameters are taken from
Ref. [106]

Deformation potential interaction

For the (unscreened) deformation potential , the matrix element is

|λQ|2 =
1

V

~Ξ2

2ρMc
Q, (1.88)

i.e. one has a linear dependence on the frequency ω = Q/c. The corre-
sponding function ρ(ω) is calculate as above, the analogous expression to the
approximation Eq. (1.86) without cutoff reads

ρ(ω) ≈ ω

ω2
ξ

(

1 − ωd

ω
sin

(

ω

ωd

))

1

ω2
ξ

:=
1

π2c3
Ξ2

2ρMc2~
. (1.89)

Again using standard GaAs parameters (Table (1.1)), one has 1/ω2
ξ ∼ 10−25s2.

In order to compare to the piezoelectric case, we write

ρ(ω)piezo ≈ 1

ωd
g
ωd

ω

(

1 − ωd

ω
sin

(

ω

ωd

))

ρ(ω)def ≈ 1

ωd

(

ωd

ωξ

)2
ω

ωd

(

1 − ωd

ω
sin

(

ω

ωd

))

. (1.90)

With ωd ∼ 2.5× 1010s−1, one typically has for the ratio (ωd/ωξ)
2 ∼ 6× 10−5.

This means that for frequencies ω which are on the scale of ωd (which in fact
is the relevant energy scale here), the contribution from the bulk deformation
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potential phonons is relatively small. With g = 0.05, the relative weight of
the latter with respect to the piezoelectric phonons is (ωd/ωξ)

2/g ∼ 10−3.
The sum of both contributions is shown in Fig. (1.16) for this ratio, where
small deviations from the pure piezoelectric case become visible above x =
ω/ωd ∼ 10.

0 5 10 15 20 25 30
0.0

0.2

0.4

x

 (1 / x)   (1-sin(x) / x)
 0.01 x  (1-sin(x) / x)
 (1/x + 0.001 x)  (1-sin(x) / x)

Fig. 1.16: Comparison of the two dimensionless functions ρ(ω), Eq. (1.90)
(without prefactors), for bulk piezoelectrical coupling (thick red solid line)
and for bulk deformation potential coupling (dashed). Note the factor 0.01 in
the latter case. The sum of both contribution with a relative weight of the
deformation potential phonons of 10−3 is shown as thin black solid line. The
variable x = ω/ωd.

1.6.3 Exactly solvable limit and physical meaning of the function Cε

It is not possible to obtain an analytical form for the Laplace transform

Cε := lim
δ→0

∫ ∞

0

dte−δteiεte−Φ(t) (1.91)
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of the correlation function C(t) ≡ exp{−Φ(t)}, Eq.(1.66), which is needed
to evaluate the stationary current Eq.(1.62). Before we turn to its numerical
evaluation, it is useful to consider the exactly solvable limit of pure piezo-
electric interaction and vanishing frequency ωd = c/d = 0 in Eq.(1.87). This
corresponds to the case where the distance between the two dots is much
larger than a typical phonon wave length. In particular, this means that no
interference effects are expected in this limit. In fact, the oscillatory term
then vanishes in Eq.(1.87) and

ρ(ω) =
g

ω
e−ω/ωc. (1.92)

At temperature T = 0, one can in fact evaluate exactly the function Φ(t)
appearing in the exponent in Eq. (1.66),

Φ(t) =

∫ ∞

0

dωρ(ω)(1 − e−iωt). (1.93)

That is, for a generic form of the function ρ(ω),

ρ(ω) =
g

ωc

(

ω

ωc

)s−2

exp(−ω/ωc), (1.94)

one finds, using standard integrals [108],

Φ(t) = gΓ(s− 1)

{

1 −
(

1

1 + iωct

)s−1
}

, s > 0, s 6= 1

Φ(t) = g log(1 + iωct), s = 1. (1.95)

The case s = 1 in fact can be obtained from the case for general s as a limit
s → 1 of the first equality in Eq. (1.95). The spectral form Eq. (1.94) is
known from the theory of quantum dissipation (Brownian motion of a free
particle with dissipation) or tunneling [102]. There, it corresponds to the
so–alled sub–ohmic (s < 1), ohmic (s = 1) and super–ohmic (s > 1) cases
which each define different long–time behaviour of, e.g., the time evolution
of the second moment of a wave packet.

The bulk, unscreened piezoelectric coupling surprisingly corresponds ex-
actly to the ohmic case s = 1 in this classification. This gives us the chance
to find an exact expression for Cε. Explicitely, one finds

Cε = −i (−(ε+ iδ))g−1 Γ(1 − g,−(ε+ iδ))e−ε (1.96)
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in units where ωc = 1. For ε� 1 and g < 1, one has the power-law behaviour

Cε ∼ −iΓ(1 − g)(−(ε+ iδ))g−1, (1.97)

with the dimensionless coupling constant g appearing as the power in the
exponent of the variable ε. This indicates that we have derived a non–
perturbative result.

One now can verify a relation between the real part of Cε and the Fourier
transform of C(t),

(1.98)

limδ→02ReCε = 2πP (ε)

P (ε) :=
1

2π

∫ ∞

−∞
dteiεtC(t), (1.99)

The real quantity P (ε) is proportional to the probability density for inelastic
tunneling from the left dot to the right dot with energy transfer ε (see [72]
and below). In the case of no phonon coupling,

P (ε) = δ(ε), no phonons, (1.100)

i.e. only elastic tunneling is possible. On the other hand, for the model
Eq.(1.96) above, we find

P (ε) =
1

Γ(g)
εg−1e−εθ(ε) (1.101)

at zero temperature, which is a Gamma distribution with parameter g. In
particular, the step function in Eq. (1.101) guarantees that only spontaneous
emission of phonons, accompagnied with an energy loss ε = εL − εR > 0 is
possible at zero temperature. We remark that the function Eq. (1.101) often
appears in the context of inelastic tunneling, when the degrees of freedom of a
bosonic environment are modeled by an oscillator distribution ρ(ω) according
to Eq.(1.92). The use of the function P (E), Eq. (1.98), in such models is
refered to as P (E)–theory.

We thus have learned that the real part of the function Cε has the direct
physical meaning of a probability for energy transfer during tunneling. Note,
however, that the current is determined by the complex function Cε which
contains all effects of energy renormalization due to the electron-phonon cou-
pling.
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1.6.4 Inelastic tunneling rate and inelastic current

A more general expression for the function P (ε) can be derived at zero tem-
perature T = 0, if one expands the function C(t) in the electron–phonon
coupling. This also clarifies why P (ε) is proportional to an inelastic tunnel-
ing rate.

We expand C(t) to second order in the coupling (first order in ρ(ω)),

C(t) = e−Φ(t) ≈ 1 − Φ(t)

= 1 −
∫ ∞

0

ρ(ω)
[

1 − e−iωt
]

. (1.102)

The resulting expression for P (ε) becomes

P (ε) =
1

2π

∫ ∞

−∞
dteiεtC(t) ≈ δ(ε)

{

1 −
∫ ∞

0

dωρ(ω)

}

+
1

2π

∫ ∞

−∞
dteiεt

∫ ∞

0

dωρ(ω)e−iωt

= δ(ε)

{

1 −
∫ ∞

0

dωρ(ω)

}

+ ρ(ε), (1.103)

where ρ(ε) has been defined above in Eq.(1.66),

ρ(ε) =
∑

Q

|αQ − βQ|2
ε2

δ(ε− ωQ) (1.104)

(note that we set ~ = 1 and ρ(ε < 0) = 0 because the phonon frequencies
ωQ are positive).

We can derive an expression for the inelastic part of the stationary cur-
rent, Eq. (1.62), in the following limit:

ε� ΓR,ΓL, 1/P (ε). (1.105)

In the expression Eq. (1.62), we then replace the denominator by 1 and
neglect 2ΓR|Cε|2 in the numerator. Since P (ε) can be replaced by ρ(ε) for
ε 6= 0, using Eq. (1.98) and Eq.(1.103) we find

Iin ≈ 2πT 2
c ρ(ε). (1.106)
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Fig. 1.17: Real part of Cε, Eq.(1.91), as a function of the energy difference
ε between left and right dot ground state energies. Energies ~ωd = 10µeV,
~δ = 1µeV, cutoff ~ωc = 1meV.

This result is consistent with a previous model by Glazman and Matveev
2 for inelastic tunneling through amorphous thin films via pairs of impurities.
There, perturbation theory in the electron–phonon deformation potential
coupling was used to obtain the nonlinear current (without oscillations) for
large area tunnel junctions after averaging over an ensemble of impurity pairs.
In particular, if the tunneling through the two impurities is dominated by
inelastic processes, the authors found Iin = 2eγ, where the inelastic rate γ

2 L. I. Glazman and K. A. Matveev, Sov. Phys. JETP 67, 1276 (88). Note that
there, the expression for the spontaneous emission rate γ already contains the differences
of phase factors (∼ |1− exp{iQd}|2 in our notation), which are averaged out in the cases
they consider.
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is defined as

γ(ε) := πT 2
c ρ(ε) = πT 2

c

∑

Q

|αQ − βQ|2
ε2

δ(ε− ωQ), ε > 0, (1.107)

cp. Eq.(1.103). We reckognize [109] that this rate is just the function ρ(ε)
multiplied with πT 2

c .

1.7 Results

1.7.1 Numerical evaluation

Explicit results for Cε and the stationary current Eq.(1.62) have been ob-
tained by numerical evaluation of Eq.(1.63), Eq.(1.66), with ρ(ω) given by
Eq.(1.87). The integrand is split into zero–temperature and a finite tem-
perature contributions as described in appendix A.1. The resulting double
integral can be handled with standard numerical routines.

We kept the parameter δ, Eq.(1.63), at a small, but finite value to guar-
antee rapid convergence. In the strict limit δ → 0, there is a delta–peak like
contribution to Cε at ε = 0. This results from the fact the effective density of
states ρ(ω) vanishes for ω = 0 and the tunneling with energy transfer ω → 0
becomes elastic. This is the fact even in presence of the piezoelectric phonon
coupling Eq.(1.81) that diverges for ω → 0. The reason is that for zero en-
ergy transfer the difference αQ−βQ vanishes and there is no boson shake–up
effect. A small, but finite value of delta can be regarded as simulating the
effect of the remaining off–diagonal electron–phonon interaction Hep.

In Fig.(1.17) we show the real part of Cε at a temperature of 10mK for
different dimensionless electron–phonon coupling parameters g, Eq.(1.83).
The curve for g = 0 is a sharply peaked Lorentzian whose width is determined
by δ. On the absorption side ε < 0, there is practically no deviation for g > 0
compared with the g = 0–case. On the emission side ε > 0, the values are
larger compared with g = 0 and increase with increasing g. Oscillations
appear that become stronger for larger g. The dotted curve corresponds to
the exactly solvable case Eq.(1.96), ωd = 0, which shows no oscillations but
whose general shape coincides with the one for ωd > 0.
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Fig. 1.18: Stationary tunnel current, Eq.(1.62), as a function of the energy
difference ε between left and right dot ground state energies. Dimensionless
electron–phonon coupling parameter: g = 0.05. Inset: effective density of
states ρ(ω) of phonon modes, Eq.(1.86), for g = 1.

In Fig. 1.18 we show the stationary current Eq.(1.62) at different tem-
peratures for parameters close to the ones of the experiment [30]. The in-
set shows the oscillatory structure of the effective density of states ρ(ω),
Eq.(1.86), which is reflected in the oscillatory structure of the real part of
Cε. The cutoff energy in Eq.(1.86) and δ are chosen as ~ωc = 1meV and
1µeV, respectively. At low temperatures, there is a broad oscillatory shoul-
der on the emission side ε > 0 which reflects the structure of the real part
of Cε. At higher temperatures, on the absorption side the current increases
to larger values faster than on the emission side where the oscillations start
to be smeared out. The scaling of the current spectrum with energy and the
relation between emission and absorption are discussed in section 1.8.2. Here
we note that for ε < 0 and larger temperature, a new shoulder–like structure
appears on the absorption side. A similar feature was also observed in the
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Fig. 1.19: Stationary tunnel current, Eq.(1.62), as a function of the energy
difference ε between left and right dot ground state energies.

experiment [30].

1.7.2 Comparison with the experiment

Our theoretical results suggest that there is reason to assume that the mi-
croscopic mechanism for the spontaneous emission process in the experiment
by Fujisawa et al. in fact is the coupling to acoustic phonons. Phonons in
fact fit into the energy window 10 ∼ 100 µeV on the emission side tested in
that experiment. One could argue that the generation of electron–hole pairs
in the left and right reservoirs during the tunneling of electrons could be a
competing mechanism. For this kind of processes we do not see, however, a
microscopic explanation of the interference phenomenon on the emission side,
i.e. the oscillations of the current I(ε) as a function of ε. The coupling to
phonons within the dot naturally leads to these oscillations due to the inter-
ference of matrix elements, i.e. the Dicke like effect as explained above. Still,
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Fig. 1.20: Scheme of surface wave propagation. The vector vq(z), eq.(1.108)
is proportional to the displacement field induced by a wave running on the
surface.

we have to point out that our numerical data indicate that for bulk piezo-
electric phonons in GaAs, the resulting dimensionless coupling constant g
appears to be too small to give quantitative agreement with the experimen-
tal magnitude of the inelastic current. In the experiment, the latter roughly
reaches one fourth of the top value of the elastic current for Tc ≈ ΓR ≈ ΓL,
curve (ii) in Fig.(1.12). On the other hand, our results indicate an inelastic
current at least a factor two smaller than the experimental one. Our conclu-
sion is that the assumption of bulk acoustic phonons is not realistic enough
to give complete quantitative agreement. In fact, as the electron gas is sit-
uated only 100 nm below the sample surface, we propose surface acoustic
phonons to give an additional (even larger then the bulk) contribution to the
inelastic current. Surface acoustic phonons are therefore expected to have a
large influence on the inelastic electron–phonon scattering properties. In the
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simplest model of an elastic surface wave [110], a displacement field

uq(r, t) = Cqe
i(qr−ωqt)vq(z) + c.c. (1.108)

for a mode with two-dimensional wave vector q is introduced, see Fig.(1.20).
Cq is a normalization constant.

The determination of the form of the displacement field vector vq(z)
and in particular its coupling to the electronic degrees of freedom for small
phonon wave lengths is a non–trivial problem and subject to present research
[107, 111, 112]. Preliminary results [107, 112] show that the effect of surface
acoustic waves with piezoelectric coupling can be comparable or even larger
compared to the bulk phonon case, depending on the relative orientation of
the double dot axis and the crystal axis. Still, the oscillations due to the
interference effect for the matrix elements strongly appear in the function
ρ(ω).

1.8 Discussion

1.8.1 X–ray singularity problem and orthogonality catastrophe

The appearance of a power-law singularity like the one in the inelastic tun-
neling probability P (ε), Eq. (1.101), is well-known from the so-called X-ray
singularity problem. The latter belongs, together with the Kondo effect and
the non Fermi–liquid effects in one dimensional interacting electron systems
(Tomonaga–Luttinger liquid ) [33,38,49,83,113], to a class of problems in the-
oretical solid state physics that are essentially non–perturbative [114]. That
is, simple perturbation theory in interaction parameters leads to logarithmic
singularities which transform into power laws for Greens functions or other
correlation functions, when some higher kind of perturbation theory, renor-
malization group methods, or approximation by exactly solvable models is
applied. In the following, we summarize the X–ray singularity physics in
metals following Mahan [83] and thereafter discuss its relation to inelastic
tunneling in double quantum dots. Further references to the X–ray problem
can be found, e.g., in [83, 114].

X–ray transitions in metals are due to excitations of electrons from the
metal ion core levels (e.g., the p–shells of sodium, magnesium, potassium) to
the conduction band (absorption of photons), or the corresponding emission
process with a transition of an electron from the conduction band to an empty
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Fig. 1.21: Schematics for X–ray spectra in metals, after Mahan [83].

ion core level, i.e. a recombination with an core hole. Energy conservation in
a simple one–electron picture requires that for absorption there is a threshold
energy (edge) ωT = EF + |Ec| for such processes, where EF is the Fermi
energy and Ec the core level energy, counted from the conduction band edge
(Fig.(1.21)).

Core hole spectral function

The core hole interacts with the conduction band electron gas, which is de-
scribed in an effective Wannier exciton picture by a Hamiltonian [83]

H = Ecd
†d+

∑

kσ

εkc
†
kσckσ +

1

Ld

∑

kk′σ

Vkk′c†kσck′σd
†d. (1.109)

Here, d† denotes the creation operator of the core hole and c†k the creation
operator of a conduction band electron with Bloch wave vector k and spin
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σ. This Hamiltonian leads to the prediction of an algebraic singularity in the
core hole spectral function

Ah(ω) = 2<e
∫ ∞

0

dteiωt〈d(t)d†〉 =

= θ(Ω)
2π

Γ(g)

e−Ω

Ω1−g
, Ω = (ω − ω̄T )/ξ0, (1.110)

where ω̄T is the (renormalized) photoemission threshold energy, and ξ0 is a
cutoff of the order of the Fermi energy. Here, the dimensionless parameter
g for a three dimensional situation and for an interaction potential with
Vkk′ = V (k − k′) is defined as [83]

g =
m2

2π2

∑

|q|<2kF

V (q)2

q
, (1.111)

where m is the conduction band electron mass.
The core hole spectral function Ah(ω) is thus strongly modified by the

interaction with the electron gas: the sharp delta peak for the case of no
interactions becomes a power–law curve, see Fig. (1.22). The correspond-
ing absorption step is obtained by integration of Ah(ω) [83], it vanishes for
non–zero g when approaching from above Ω → 0+. This vanishing of the
absorption is called orthogonality catastrophe: the matrix elements for X–
ray induced transitions in metals must depend on the overlap of two wave
functions, i.e. the N–particle wave functions |i〉 and |f〉 before and after the
appearance of the core hole, respectively. Here, N is the number of electrons
in the conduction band. A partial wave scattering analysis shows that |f〉
(in the simplest case of s–wave scattering) can be considered as a Slater de-
terminant composed of spherical waves ∝ sin(kr+ δ)/kr. The overlap of the
two N–particle wave functions turns out to be

〈f |i〉 = N− 1

2
α, α := 2

δ2

π2
. (1.112)

For large N , this overlap becomes very small though still finite for macro-
scopic numbers like N ≈ 1023 and α ≈ 0.1 [83]. The ‘catastrophe’ of this
effect consists in the fact that although all overlaps of initial and final single
particle scattering waves are finite, the resulting many–body wave function
overlap becomes arbitrarily small for large N .
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Fig. 1.22: X–ray spectra in metals: modification of core spectral function
due to interactions, after Mahan [83].

The fully dynamical theory takes into account the dynamical process
of the excitations in the Fermion system that are induced by the sudden
appearance of the core hole after absorption of an X–ray photon. In fact,
these excitations are particle–hole pairs in the conduction band which can
be regarded as bosons. For a spherically symetric case, the X–ray problem
can be solved exactly by a mapping to the Tomonaga model of interacting
bosons in one dimension [83, 115].

Analogy with inelastic tunneling

This leads us to the relation of the X–ray photoemission problem to inelas-
tic tunneling through double dots, where the analogy to the former is as
follows: the core–hole of the metal corresponds to the (empty) dot states,
and the bosonic excitations within the conduction band electron gas to the
piezoelectric phonons.
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We can clarify this analogy to the photoemission case by the following
identification: consider the double dot, isolated from the leads, with only one
electron initially in the left state |L〉. We recall that the operator p† = |R〉〈L|
acts as a creation operator for an electron in the right dot. Trivially, because
(as we always assume) there is only one electron in the double dot, p† can
be regarded as a creation operator for a hole in the left dot as well. We than
may define the (retarded) hole Greens function

Gp(t) = −iθ(t)〈p(t)p†〉, (1.113)

where the expectation value is with respect to the phonon equilibrium and
the state with one electron in the left dot. The time evolution is with the
Hamiltonian

H = HLR +Hp +Hαβ

HLR = εLnL + εRnR

Hαβ =
∑

Q

(αQnL + βQnR)
(

a−Q + a†Q

)

Hp =
∑

Q

ωQa
†
QaQ. (1.114)

We assume that at time t = 0 the electron has tunneled from left to right, and
we like to know the subsequent time–evolution of the hole in the left dot in
presence of phonons. Note that the hole remains an empty state (no electron)
throughout because we have not included the possibility for tunneling back
into the Hamiltonian Eq.(1.114), see below. The time dependence of Gp(t)
is obtained by a canonical transformation of H → H̄ and p → p̄ = pX as
worked out above. The electronic and phononic degrees of freedom decouple
and

Gp(t) = −iθ(t)〈pp†〉eiεt〈XtX
†〉0

= −iθ(t)eiεtC(t), (1.115)

where we used 〈pp†〉 = 〈nL〉 = 1 and the definition of the correlation function
C(t) = 〈XtX

†〉0 with the expectation value 〈..〉0 in the phonon equilibrium.

From the retarded Greens function Gp(t), the correlations in time can be
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translated into a frequency spectrum via the hole spectral function [83]

Ap(ω) = −2=mGp(ω) = 2i=m
∫ ∞

0

dteiωteiεtC(t)

=

∫ ∞

0

dt
[

ei(ω+ε)tC(t) + e−i(ω+ε)tC(−t)
]

=

∫ ∞

−∞
dtei(ω+ε)tC(t) = 2πP (ε+ ω), (1.116)

where we used the detailed balance relation C(t) = C∗(−t), Eq.(1.57), and
the definition of the inelastic tunneling probability, Eq. (1.98), in the last
line.

By comparing Eq.(1.101) and Eq.(1.116) to the spectral function Ah(ω)
of the X–ray singularity problem, Eq.(1.110), we reckognize that the spectral
functions have identical form if one identifies the cut–offs ξ0 = ωc (ωc was set
unity in Eq.(1.101)), and ω̄T with −ε. The only difference is the definition
of the dimensionless coupling constant g.

Infrared divergence and power law

As pointed out by Mahan [83], the power law behavior of Eq.(1.116) and
Eq.(1.101) is due to the logarithmic singular behavior of the function Φ(t)
in C(t) = exp(−Φ(t)), Eq.(1.66), which in turn results from an infrared
divergence of the coupling function ρ(ω) for small ω. This infrared divergence
physically correspond to the generation of an infinite number of electron–
hole pair excitations in the metal electron gas by the interaction with the
core hole in the X–ray problem. In semiconductors, as shown above the bulk
piezoelectric phonon coupling leads to the same kind of infrared divergence.

The analogy between the X–ray photoemission problem and the phonon–
emission from quantum dots, however, is not complete for the following rea-
sons:

1. In Eq.(1.116), the inelastic tunneling process between the dots is con-
sidered only as a caricature: it is contained only in the initial condition for
the retarded Greens function Gp(t), which has to be understood as the time–
evolution of the remaining hole after the electron has tunneled to the other
dot.

2. The influence of the leads in completely disregared. This is no serious
restriction since our comparison was between X–ray photoemission and the
inelastic intra–dot dynamics.
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3. The form of the algebraic singularities Eq.(1.116) and Eq.(1.110) holds
only for the ‘ohmic’ case s = 1, i.e. an effective boson density of states that
has a 1/ω pole for ω → 0.

This case is realized for the electron–hole pair excitations in three–di-
mensional metals in the X–ray photoemission problem, and for bulk (three–
dimensional) piezoelectric phonons in the case when the oscillatory term in
ρ(ω) = g/ω(1 − (ωd/ω) sin(ωd/ω)) vanishes, i.e. for ωd ≡ c/d = 0 which
means infinite distance between the dot centers. For any finite ωd, ρ(ω)
remains finite for small ω. The 1/ω singularity in ρ(ω), on the other hand,
is necessary for the appearance of an algebraic singularity, because only then
the function Φ(t) is logarithmic in time and C(t) becomes a pure power law,
cp. Eq.(1.95). Therefore, we do not have the complete analogy to the original
X–ray singularity problem.

The reason why we nevertheless discussed it at some length here is that we
are in any case not so much interested in the region of the ‘absorption edge’
ε = 0 of the inelastic phonon spectrum, but in larger values of ε > 0. There,
the results for the correlation function Cε, obtained with the X–ray singular-
ity ohmic form ρ(ω) = g/ω, can be regarded as a good approximation to the
full problem. Furthermore, the derivation of the correlation function C(t)
from the Xt operators is completely general, only the final result depending
on the effective phonon density of states.

Shaking up phonons

Finally, we again follow Mahan [116] and present an alternative physical
picture for the inelastic tunneling described above. This time, we consider
the tunneling process from the point of view of the phonon and not from the
electron (hole) system [117]: The electrons and phonons are coupled by the
Hamiltonian

Hαβ =
∑

Q

(αQnL + βQnR)
(

a−Q + a†Q

)

. (1.117)

It is therefore more appropriate to speak of a ‘polaron’, i.e. a quasiparticle
composed of an electron that is surrounded of a cloud of phonons. If suddenly
the electrons tunnels from the left to the right, from the point of view of the
phonons it appears as if suddenly a potential

δHαβ =
∑

Q

(αQ − βQ)
(

a−Q + a†Q

)

(1.118)
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has been switched on which is the difference of the coupling energy before
tunneling (NL = 1, Nr = 0) and after tunneling (NL = 0, Nr = 1). This

sudden potential, which is linear in the phonon displacement
(

a−Q + a†Q

)

,

‘shakes up’ the phonon systems in form of a dynamical displacement (fluctua-
tion) of the phonons. Exactly this displacement is expressed by the temporal
correlation function C(t) = 〈XtX

†〉 of the X–operators

X =
∏

Q

DQ

(

αQ − βQ

ωQ

)

DQ(z) := eza†
Q
−z∗a

Q (1.119)

which themselves are expressed by the so-called unitary displacement opera-
tors D(z) := exp(za† − z∗a ). Note that the assumption of thermal equilib-
rium of the phonons is no contradiction to this dynamical ‘shake–up’ process:
in thermal equilibrium, phonons are always fluctuating around, and the shake
up due to the sudden electron tunneling just leads to the creation and fluc-
tuation of additional phonons, like a harmonic oscillator that is suddenly
kicked within a heat–bath.

1.8.2 Scaling with temperature and energy

Fujisawa et al. [30] used the Einstein relations between emission and ab-
sorption rates to demonstrate scaling of their data as a function of the ratio
between temperature and energy kBT/|ε|.

We use our theoretical results to perform a scaling analysis by defining
the spontaneous emission rate (we set the electron charge e = 1)

A(ε > 0) = I(ε > 0, T0) − Iel(ε > 0). (1.120)

Here, Iel(ε) is the elastic part of the current, i.e. the current for vanish-
ing electron-phonon coupling g = 0 . One furthermore defines the relative
emission N and absorption N+,

N(ε, T ) := [I(ε, T ) − Iel(ε)] /A(ε), ε > 0 (1.121)

N+(ε, T ) := [I(ε, T ) − I(ε, T0)] /A(|ε|), ε < 0.

Here, T0 is the reference temperature which we chose as T0 = 10mK because
with our parameters the currents practically do not change any longer for
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Fig. 1.23: Absorption (lower branch) and emission rates (upper branch),
Eq.(1.121), from the data of Fig. (1.18).

lower temperatures. Also note that we use the full current I(ε, T0) and not
Iel(ε) as reference function on the absorption site ε < 0.

Figure (1.23) shows that the data can well be scaled to the bose distri-
bution function n(x) = 1/(ex − 1), i.e. N(ε, T ) = n(|ε|/kBT ) for absorption
ε < 0 and to N+(ε, T ) = 1 + n(ε/kBT ) for emission ε > 0 over an energy
window 220µeV > |ε| > 20µeV . Here, we point out that the analysis in
terms of Einstein coefficients works remarkably well, as was the case in the
experiment [30], cp. Fig.(1.24).

1.8.3 Analogy between subradiance of a two–ion molecule and phonon
emission from double dots

Let us come back to our introductory presentation of the spontaneous decay
by emissions of photons from a laser–trapped two–ion system [68] in section
1.3. There, the appearance of two decay channels, that is the super– and
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Fig. 1.24: Left: Absorption (lower branch) and emission rates (upper branch)
as in Fig. (1.23) in linear scale. Right: Experimental results by Fujisawa et

al. [30]. We and Wa are the emission and the absorption rate, normalized by
the spontaneous emission rate A. These quantities correspond to N(ε, T ) and
N+(ε, T ) in our Eq.(1.121).

subradiant decay channels ± in the emission rate, was characteristic for the
Dicke effect [52] which itself for only N = 2 ions is a precursor of the more
general case of N radiators (Dicke superradiance).

The subradiant channel (−) in the trapped–ion system is due to the
decay of the singlet state that corresponds to the difference d̂1 exp iQr1 −
d̂2 exp iQr2 of the dipole moments. To come back to the double dot system,
the interaction with a phonon of mode Q in the double dot is ∝ nL exp iQr1+
nR exp iQr2. Thus, it has the same ‘interference form’ as in the two-ion case,
Eq.(1.1). The tunnel current through the double dot is modified by the phase
difference of the electron before and after tunneling whence ρ(ω), Eq.(1.86),
corresponds to the subradiant rate Γ−.

Although the microscopic mechanism is not the same in both cases (for
light the rates Γ0 are ∝ ω3, for piezoelectric phonons ∝ 1/ω), the interference
term sin(Qd)/Qd in both cases is due to the ‘interference of matrix elements’.
The effect in both cases therefore can be regarded as a kind of double slit
interference effect within two kinds of microscopic system, see Fig. (1.25).

In the atom–trap experiment, the Dicke effect, i.e. the existence of two
different radiation channels Γ±, has been verified by changing the ion dis-
tance. On the other hand, the experimental data of the double quantum
dot [30] seem to indicate (see Fig.(1.13)) that for larger distance d of the
dots, the oscillations ∝ sin(ε/~ωd) as a function of ε become faster which is
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Fig. 1.25: Analogy between subradiance of a two–ion molecule and phonon
emission from double dots: both effects are related to interference and can be
regarded as a kind of ‘double slit–experiment’ in a microscopic system.

consistent with ωd = cs/d in Eq.(1.86).

1.8.4 Relation to dephasing in quantum dots

The form of the electron–phonon coupling we used in our model,

Hαβ =
∑

Q

(αQnL + βQnR)
(

a−Q + a†Q

)

, (1.122)

implies a special coupling of the bosonic environment to the charge: the
energy levels εL and εR in the left and the right dot can be interpreted to be-
come fluctuating quantities with the fluctuations depending on the bosonic
(phonon) environment. This form of coupling to the electron number op-
erators nL and nR is closely related to dephasing. The reason is, roughly
speaking, that the number operator is canonically conjugate to the phase



62 1. Phonons in Double Quantum Dots

(note, however, that a proper definition of a ‘phase operator’ is a non–trivial
problem [118]).

The form Eq.(1.122) of coupling to an environment has been used recently
by Levinson [119] in a discussion of dephasing in (single) quantum dots with
a single energy level ε0 coupled capacitively to a nanostructure. Interfer-
ence effects like the Aharonov–Bohm effect in ring–structures [120, 121] are
sensitive to the effect of phase–destroying processes [43, 122]. An effective
description of the resulting loss of interference is obtained by assuming that
on one of the ring arms the electron interacts dissipatively with some inelas-
tic degrees of freedom that can be modeled by, e.g., a Caldeira–Leggett type
of coupling.

For resonant transmission t(ε) through a dot level ε0, the Breit–Wigner
form is smeared out according to

t(ε) ∝
∫ ∞

0

dt exp [−Γt− Φ(t) + i(ε− ε0)t]

Φ(t) =
1

2

∫ t

0

∫ t′

0

dt′′〈δε0(t
′)δε0(t

′′)〉 (1.123)

by the appearance of a term Φ(t) in the exponential that is governed by the
fluctuations of the energy levels [119]. Here, Γ is the elastic tunnel rate.

The determination of the microscopic origin of the function Φ(t) is the
main task to understand the origin of dephasing. Levinson could express
this quantity by the scattering properties of the ‘environment’ that in the
case he considered was a multi-terminal ballistic nanostructure. The dephas-
ing turned out to be caused by non–equilibrium fluctuations of the electron
density in the nanostructure.

The appearance of the exponential e−Φ(t) in Eq.(1.123) is in complete
analogy with the function C(t) = e−Φ(t) whose Fourier transform enters our
expression for the stationary current through the double quantum dot, Eq.
(1.62). In our case, however, the environment is in thermal equilibrium
(phonon bath), although our theoretical description in terms of the function
C(t) allows a generalization to arbitrary environments.

1.8.5 High–frequency detector

The tunability and sensitivity of the double dot system to its environment
makes it very attractive as a detector for energies in the micro eV regime.
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Aguado and Kouwenhoven in fact have proposed a circuit where double quan-
tum dots are used as detectors for high–frequency quantum noise in meso-
scopic conductors such as quantum point contacts [123]. In their scheme, the
double dot is capacitively coupled to a second mesoscopic device that can be,
e.g., a quantum point contact. Fluctuations generated by the current noise
spectrum SI(ω) of a nearby mesoscopic device can be shown to produce an
inelastic current

Iin(ε) ∝ SI(ε/~)/ε2, (1.124)

i.e. the inelastic current in such a set–up would be a direct measure of the
noise spectrum.

1.8.6 Dephasing of a Qubit

The double dot and its coupling to phonon degrees of freedom in fact serves
as a simple model for the dephasing mechanism in quantum bits (qubits). Ba-
sically, any two-level system can serve as a physical realization of the qubit,
i.e. a system that allows a coherent superposition of the two basis states in
the Hilbert space H = C2. Qubits are considered as the elementary parts
of quantum computers [124], the latter generalizing the (classical) mathe-
matical concept of a computer to the quantum case. Since any quantum
computational step relies on unitary operations, phase destroying processes
are undesired. Still, every physical system is connected to the ‘outer world’
whose degrees of freedom can not be disregarded but in general are a source of
dissipation. On the microscopic level, the investigation of such processes has
a long tradition, of which the spin-boson problem is perhaps the most promi-
nent model system where dissipation has been studied well in the past [102].

Single qubit

For the case of a single qubit, dephasing can be studied in a simple, exactly
soluble model which still demonstrates the basic principle very nicely. The
discussion below follows previous work [99,100] on the decay of an initial po-
larization within a qubit. The model considered there is a special case of the
previously discussed double dot problem in the case of vanishing tunneling
Tc between two dots, which in addition are only coupled to phonon degrees
of freedom and not to external electron reservoirs. Still, this model contains
enough physics to study the decay of off-diagonal matrix elements of the
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reduced density operator of the dot. This decay, which in nuclear magnetic
resonance or quantum optics is associated with the relaxation time T2, shows
in fact some non-trivial temporal behavior depending on the precise form of
the coupling constants of the phonon degrees of freedom.

We begin with the Hamiltonian

H = H0 + V, H0 = εJz +
∑

Q

ωQa
†
QaQ,

V = Jz

∑

Q

(αQ − βQ)
(

a−Q + a†Q

)

(1.125)

and use the interaction picture for the density operator ρ(t) of the system
(dot+phonons),

ρ̃(t) := eiH0te−iHtρ(t = 0)eiHte−iH0t

e−iHt = e−iH0tS(t), S(t) = T exp

[

−i
∫ t

0

dt′Ṽ (t′)

]

Ṽ (t) = eiH0tV e−iH0t, (1.126)

so that

ρ̃(t) := S(t)ρ(t = 0)S†(t). (1.127)

The operator S(t) can be calculated explicitely,

S(t) = exp

[

Jz

∑

Q

(

a†QzQ(t) − aQz
∗
Q(t)

)

]

= ΠQDQ (JzzQ(t))

zQ(t) := (αQ − βQ)
1 − eiωQt

ωQ

, (1.128)

where again we introduced the unitary displacement operatorDQ(z) = exp(za+
Q−

z∗aQ).
Using J̃z(t) = Jz and J̃±(t) = e±iεtJ±, we find

〈Jz〉t := Tr (ρ(t)Jz) = Tr
(

ρ̃(t)J̃z

)

= Tr (ρ(t = 0)Jz) = 〈Jz〉t=0, (1.129)
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since Jz commutes with the operators S(t). This means that the population
of the dot levels remains unchanged by the interaction V . On the other hand,

〈J+〉t := Tr [ρ(t)J+] = Tr
[

ρ̃(t)J̃+

]

= Tr
[

ρ(t = 0)S†(t)J+S(t)
]

eiεt

= Tr [ρ(t = 0)J+ΠQDQ(zQ(t))] eiεt. (1.130)

For factorizing initial conditions ρ(t = 0) = ρdot(t = 0)ρph(t = 0) and a
phonon system in thermal equilibrium at temperature 1/β, we can again use
the phonon expectation value

〈ΠQDQ(zQ)〉ph = ΠQ exp

{

−1

2
|zQ|2 coth(βωQ/2)

}

(1.131)

to obtain

〈J+〉t = 〈J+〉t=0e
−Φ1(t)+iεt

Φ1(t) :=

∫ ∞

0

dωρ(ω) {(1 − cosωt) coth(βω/2)}

ρ(ω) =
∑

Q

|αQ − βQ|2
ω2

δ(ω − ωQ). (1.132)

We reckognize that the function Φ1(t) is exactly the real part of Φ(t), Eq.(1.66)
in section 1.6.4, where we calculated the phase-phase correlation function
C(t) for electrons tunneling from the left to the right dot. There, the initial
polarization of the dot was assumed to be zero, i.e. 〈J±〉t=0 = 0, and the
decay described by the factor exp(−Φ(t)) was the decay of a polarization
that builds up in the course of electron tunneling between the dots. In our
qubit model here, we have a somewhat complementary situation because we
assumed no tunneling between the dots but an initial nonvanishing polariza-
tion 〈J±〉t=0 6= 0.

We note that this initial condition corresponds to an initial non-equilibrium
state ρt=0 that does not commute with the total Hamiltonian H of the
coupled system (dot+phonons). If we had assumed an equilibrium state
ρt=0 ∝ exp(−βH) as initial condition, there would be no dephasing at all:
using the canonical transformation technique used in our former calculation,
we would find that exp(−βH) factorizes into an equilibrium dot and phonon
part whence 〈J±〉t=0 = 0 from the beginning. In other words, in order to
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correctly describe the non-equilibrium initial condition (non-vanishing po-
larization), we had to use the interaction picture method explained here and
not the canonical transformation.

Quantum registers

The extension of the above dephasing model from the case of one two-level
system (single qubit) to a quantum register, i.e. a finite number of two-level
systems, is quite obvious: The simplest way is to assume identical two–level
systems and a coupling to the environment that does not depend on the
index i labeling the individual qubits. The operators Jz, J± then operate in
the space of Dicke states |JM〉 of total pseudo spin J and spin projection
M as in the superradiance problem, see chapter 2. Palma, Suominen and
Ekert [100] discussed the general case for dissipation in quantum registers
of N = 2 and N > 2 qubits. For the case N = 2, the collective decay
rate again contains an interference term ∝ [1 ± cos(kR)], where k is the
wave vector of a bosonic excitation of the environment and R is the distance
between the qubits. For larger N , the collective entanglement between the
qubits and the environment (as defined by a Dicke–like Hamiltonian) leads to
the possibility of super–decoherence and sub–decoherence. This is in analogy
with the splitting of an inelastic spontaneous decay channel into a sub– and
a superradiant channel, cp. section 1.2.3.

1.9 Other Phonon geometries

1.9.1 Quantization of the phonon spectrum

indexphonon spectrum In the following, we shortly discuss the influence of re-
stricted phonon geometries on the inelastic current through double quantum
dots. In confined geometries, the phonon system experiences a quantization
similar to electrons in two– or one–dimensional structures. The spontaneous
emission properties of such phonon cavities therefore are qualitatively differ-
ent from the case of phonon emission from bulk material, similar to photon
cavities that change the spontaneous emission of light from atoms.

The quantization of the phonon spectrum is expected to show up in the
inelastic current through double quantum dots. The possibility to detect
phonon quantization by transport spectroscopy is an attractive way to inves-
tigate how inelastic processes can be controlled and manipulated by geometry
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(confinement).
For the inelastic current Iin, we use the (perturbative in Tc) form, ex-

pressing the it by the inelastic rate γ(ε) (we again set ~ = e = 1),

Iin(ε) ≈ 2πT 2
c ρ(ε) = 2γ(ε)

γ(ε) := πT 2
c

∑

Q

|λQ|2
∣

∣1 − eidq
∣

∣

2

ε2
δ(ε− ωQ), (1.133)

where we used βQ = αQe
iqd, and d = rR − rL is the vector pointing from

the center of the left to the center of the right dot, both of which are lying
in the x–y plane. The three-dimensional phonon momentum is Q = (q, qz)
with the component in the x–y plane q, the component qz in z- direction.
Here, λQ is the electron-phonon interaction matrix element.
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Fig. 1.26: Left: Scheme of phonon cavity with double dot inside. Right:
Orientation of double dot inside the cavity. Both figures courtesy of S. Debald
[125].

We consider a confinement of phonon modes into the x– directions within



68 1. Phonons in Double Quantum Dots

the x–y-plane, i.e. the phonons correspond to standing waves in x–direction
and running waves in y–z direction. This kind of confinement ideally would
be achieved for a ‘plate’ of finite thickness x = x0 with infinite extension into
the y and the z direction, see Fig. (1.26). Even for such simplified geometries,
the determination of phonon modes and electron-phonon interaction coupling
constants is a highly nontrivial task [125–128].

Three types of confined phonon modes can be distinguished. They ap-
pear in the classification of the vibrational eigenmodes in the plate with
proper boundary conditions at each of the sides [129] and are called shear
waves, dilatational waves, and flexural waves depending on their spatial sym-
metry. Since the confinement cuts off small phonon momenta which deter-
mine piezoelectric electron–phonon coupling, it is argued [127] that deforma-
tion potential coupling is dominant over piezoelectric coupling in confined
electron–phonon geometries. For deformation potential scattering, there is
no coupling to shear waves and one is left with a Hamiltonian

Hdef =
∑

�
‖,n

λn(q‖)e
i �

‖ � ‖

{

cos qx,nx
sin qx,nx

}

[

an(q‖) + a†n(−q‖)
]

for

{

dilatational
flexural

}

waves. (1.134)

The angular dependence of the matrix elements entering into the expres-
sion for γ(ε), Eq.(1.133), are

|αn(q‖) − βn(q‖)|2 = |λn(q‖)|2
{

cos2( qx,nd
2

sin Θ)|1 − ei �
‖

�
|2

sin2( qx,nd
2

sin Θ)|1 + ei �
‖

�
|2.

(1.135)

1.9.2 Inelastic scattering rate in restricted geometries

From the general form of these expression, one can already draw a number of
conclusions concerning the inelastic current spectrum Iin(ε) through double
quantum dots. First of all, the appearance or non–appearance of the Dicke
effect, i.e. oscillations of γ(ε), Eq.(1.133), depends on the scalar product q‖d
and therefore on the orientation of the double dot axis with respect to the
confinement direction, see Fig.(1.26).

One can distinguish the following cases:
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Fig. 1.27: Numerical results by Bannov et al. [127] for the phonon dispersion
~ωn(q‖) for several dilatational modes n in a free–standing plate.

• For Θ = π/2, the scalar product q‖d vanishes and |1 − ei �
‖

�
|2 = 0

(dilatational waves), while |1 + ei �
‖

�
|2 = 4 (flexural waves). In both

cases, there is are no oscillations due to interference of matrix elements.
The coupling to dilatational waves vanishes. The double-slit like inter-
ference pattern in the inelastic current occurs only if there are acous-
tic waves (phonons) that have a running (not standing) component in
transport direction.

• For Θ = 0, the coupling to the (antisymmetric) flexural waves vanishes.
Numerical calculations by Bannov et al. show a quantization of the
phonon spectrum in a free-standing plate geometry, see Fig. (1.27).

The quantization of the phonon spectrum should show up in the form of a
staircase [125,128] in the inelastic current Iin(ε) as a function of the left and
right dot energy difference ε, Eq. (1.133). Thus, it is in principle possible to
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access the phonon spectra of a confined phonon system (phonon cavity) by
inelastic current spectroscopy in coupled quantum dots.

Finally, we mention that recently interest has grown in so–called phononic
crystals [130], where a periodic modulation of the elastic medium leads to
a number of novel effects, in analogy with photonic crystals (which are as-
sociated with the modulation of the dielectric constant). Inelastic current
spectroscopy with double dots would be an interesting tool to investigate the
elastic properties of such systems.



2. OSCILLATORY DICKE
SUPERRADIANCE

Abstract

We investigate a superradiating system coupled to external reservoirs. Under

conditions where electrons tunneling at a rate T act like an electron pump, we

predict a novel phenomenon in the form of oscillations with a frequency ω '
√

2ΓT

that appear in the (photon) emission intensity, where Γ is the spontaneous decay

rate of a single two–level system. The effect, together with a strong enhancement

of the superradiant peak, should be observable in semiconductor quantum wells in

strong magnetic fields, or in quantum dot arrays.

2.1 Introduction

Spontaneous emission as one of the most basic concepts of quantum physics
is mostly discussed in the context of an atom coupled to a radiation field: it
is one of the paradigms of quantum optics. Another paradigm is stimulated
emission, which leads for the case of a large number of atoms to the concept
of a laser. The corresponding concept in the case of spontaneous emission of
an ensemble with a large number of atoms is the superradiator.

Superradiance occurs in the spontaneous coherent decay of an initially ex-
cited ensemble of N two–level systems which are interacting with a common
photon field. The corresponding emission rate of photons is proportional to
N2 which is abnormally large when compared to the incoherent decay of N
independent systems [52, 73, 131, 132]. Furthermore, the emission is not ex-
ponentially in time but has the form of a very sudden peak on a short time
scale ∼ 1/N . This problem has been first discussed by Dicke in 1954 [52]
who introduced the term ‘superradiant’:

“For the want of a better term, a gas which is radiating strongly because of
coherence will be called ‘superradiant’ ” [52].
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Surprisingly, it took nearly 20 years for the first experimental verification
to be carried out by Skribanowitz et al. [133], which was shortly after a
renewed interest in the effect had begun in the early 70ies of the last century
[134]. The observation in [133] of the predicted superradiant emission peak
was in an optically pumped hydrogen fluoride gas where the intensity of
the emitted light was proportional to the square of the number of atoms
(molecules) of the emitting gas. In the visible light range, the first observation
of superfluorescence 1 was made later by Cahuzac, Sontag and Toschek in
atomic Europium [135]. A lot of theoretical and experimental investigations
of the effect followed until today. Still, it has never become as popular as the
laser, not to speak of its use in the form of a device [136].

Nevertheless, many investigations of superradiance [73,131,137,138] con-
centrated on modifications through geometry effects and dephasing processes
such as dipole–dipole interactions which had been neglected in the original
Dicke paper. Since superradiance intrinsically is a many–body problem, this
also gave and gives the possibility to study the concept of coherence and
dephasing in a many–body context [139, 140].

The physics of superradiance is in our opinion one of the most interesting
in the field of quantum physics, because it comprises a number of fundamen-
tal concepts such as coherence, symmetry, interaction between particles, the
non–equilibrium physics of transient processes, and the notion of a quasiclas-
sical limit [73, 131]:

1. coherence: the radiation is due to a collective decay of (ideally) a
many–body wave function that is formed as a coherent superposition of the
wave functions of the single radiators.

2. this coherence can get lost through interaction processes (van der Waals
dephasing). At the same time, it is just the interaction via the common
electromagnetic field that leads to the effect.

3. in the time domain, the whole process is a transient, i.e. non–
equilibrium process. In the frequency domain, it appears as a sharpening
or narrowing of spectral line shapes, see chapter 5

1 Some authors distinguish between the terms superradiance and superfluorescence. In
this terminology, superradiance is refered to as the decay of an initially fully excited corre-
lated state, whereas superfluorescence refers to an initially uncorrelated state. A coherent
initial state can be generated, e.g., by coherent pulse pumping. In this thesis, however,
we prefer the use of the term superradiance throughout in the broader sence to denote a
collective decay due to spontaneous emission, cp. the discussion in the introduction of the
textbook by Benedict et al. [73].
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Fig. 2.1: Oscilloscope trace of the first observation of a superradiant pulse
(Dicke–peak) in HF gas by Skribanowitz et al. [133]. Below: theoretical fit
with dephasing time T ∗

2 and characteristic superradiant time scale T ′
R [73].

4. there is a quasiclassical limit: after an initial phase that is governed by
quantum fluctuations, the systems evolves according to classical equations
[73, 141].

This wealth of physical concepts related to superradiance may in part
have contributed to the quite recent revival of a considerable interest in the
effect. First of all, coherent effects in semiconductors optics [51, 142] have
become accessible experimentally, e.g., by ultrafast spectroscopy. There,
the superradiance effect has been found in radiatively coupled quantum–well
excitons [143–147].

Second, in the field of electronic transport, the effect has been redis-
covered by Shahbazyan and Raikh in the resonant tunneling through two
impurities [148] and by Shahbazyan and Ulloa in the resonant scattering in
a strong magnetic field [149]. Very recent studies address mesoscopic coop-
erative emission from disordered systems [150].
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Fig. 2.2: Dicke peak: Emission of a superradiating ensemble of two–level
systems (left) as a function of time, cp. Eq.(2.16).

Furthermore, the quasiclassical limit of superradiance describes, in the
simplest case, the radiative decay in analogy to a non–linear pendulum that
falls down from an initially ‘inverted’ position, see Fig. (2.3). The study
of this limit has attracted some interest recently [151–153] in the context
of macroscopic superposition of quantum states, i.e. so–called Schrödinger
cat–states [67]. In more complicated cases, the classical equations (which are
in fact the equations of motions of Heisenberg operators in a certain approx-
imation) become coupled, nonlinear equations which in principle always can
show a chaotic behavior [154].

Superradiance is an effect that involves transitions between many–particle
wave functions |JM〉. Here, the correspondence with the two–level system,
i.e. the physics of an (abstract) spin 1/2 particle, gives rise to a ‘pseudo’
spin 1/2 picture, where the combination of many such spins leads to the
quantum numbers J (the total pseudo spin) and M (total spin projection).
In the simplest case, ‘spin–up’ means an electron in the upper level and
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‘spin–down’ an electron in the lower level of a two–level transition in, e.g.,
radiating atoms.

�§2>=BC�§2>=BC

MM= = = = JJ

MM= = 00= = 00

MM=  =  =  =  - J- J

Fig. 2.3: Decay of a large pseudo spin due to spontaneous emission.

As a transient process, superradiance (in its pure form of a single light
pulse due to coherent emission, cp. Fig.(2.2)) occurs only if the observa-
tion time scale t is shorter than a dephasing time scale T2 of processes that
destroy phase coherence, and longer than the time τ which photons need
to escape from the optical active region where the effect occurs, such that
recombination processes are unimportant [131]. The condition

τ � t� T2,Γ
−1, (2.1)

determines the superradiant regime, together with the last inequality which
involves Γ−1, the time scale for the decay of an individual atom.

The restriction Eq. (2.1) of the time–scale for the superradiant process
can be seen in analogy to the restriction

l � L� Lφ (2.2)
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defining the length scale L of a mesoscopic system where physics occurs be-
tween a microscopic (e.g. atomar) length scale l and a dephasing length
Lφ [8]. A superradiant system thus can be regarded as mesoscopic in time–
scale. This comparison, together with the fact that the superradiant problem
intrinsically is a many–body problem, indicates the possibility to study the
concept of coherence and dephasing processes in a many–body context.

In fact, in his original paper, Dicke neglected such processes; in particular
the total pseudo spin J = N/2 is constant for the emission cascade from the
totally up–inverted to the totally down–inverted ensemble of N radiators.
A lot of works have appeared since which concentrated on the effect of the
dipole-dipole interactions between neighboring atoms [73,131,141]. Such pro-
cesses no longer leave J constant and are regarded as dephasing mechanism,
leading to states with smaller J [73]. Precise predictions [139,140] have been
made for, e.g., the resulting modifications of the emission peak. Another
feature of the original Dicke model is that the number of electrons remains
constant in the course of the transitions from ‘upper’ to ‘lower’ atomic lev-
els. On the other hand, this restriction is not necessary for superradiance
to occur; we will even show below that giving up the restriction of a con-
stant electron number will lead to a novel phenomenon that we call ‘driven’
superradiance oscillations.

In this chapter, we investigate an extension of the original Dicke problem
by allowing electrons to tunnel to and from reservoirs in an optical active,
superradiating region. We exploit an analogy with a similar situation in a
mesoscopic system by considering the two–level ensemble in the radiation
field as a quantum dot, coupled to external leads. In contrast to the orig-
inal Dicke problem, the total pseudo spin J is no longer conserved due to
the tunneling processes. We specify to a configuration where the tunneling of
electrons acts like optically pumping the system. The particular coupling be-
tween the total pseudo spin J and its projection M through Clebsch–Gordan
coefficients leads to a time evolution which is governed by an oscillating de-
crease and increase of J and M and subsequent oscillations of the emitted
intensity with a frequency

ω ≈
√

2ΓT . (2.3)

Here, the spontaneous decay time of a single level Γ−1 acts like an internal
effective inertia (‘mass’) of the system that is driven by an external ‘force’
with ‘force constant’ proportional to the tunnel rate T . Numerical evaluation
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of the master equation confirms the qualitative picture that can be justified
in a semiclassical approximation. We furthermore present a concrete ex-
perimental realization for the observation of the effect. The main idea is to
realize the superradiant ‘active region’ in a semiconductor and to couple it to
external electron reservoirs through tunnel barriers, thus allowing for a vary-
ing electron number. We predict that for reservoir conditions which work
like an electron pump, an initial coherent superradiant peak can be strongly
enhanced if the tunnel rate T is high enough. The photon emission from the
recombination between electrons and holes is predicted to show oscillations
Eq. (2.3) if a tunnel current of electrons and holes ‘pumps’ the system. The
oscillations should also show up in the tunnel current itself.

Furthermore, we predict a novel phenomenon in the form of strong oscil-
lations of the emitted light with a frequency ω that in good approximation
is given by Eq. (2.3) for large T > 2Γ, where Γ is the spontaneous decay rate
of a single two-level system. For smaller tunnel rates T , there is a smooth
crossover to the conventional Dicke peak [52] in the limit T → 0. In contrast
to oscillatory superradiance in atomic systems (section 2.6.3, [131]), these
oscillations are not due to reabsorption of photons, but due to tunneling
of electrons into an active region which is described by many–body wave
functions.

2.2 Model

2.2.1 Pseudo spin picture

We consider our model as an extension of the original Dicke model in pres-
ence of electron reservoirs. The Dicke Hamiltonian originally describes an
ensemble of Ns two–level atoms coupled to a radiation field that allows for
transitions ‘up–down’ and ‘down–up’ within each atom. In our model, a
bosonic field with creation operator a†Q for a mode Q gives rise to transi-
tions between the inner degrees of freedom σ of one–particle electronic states
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labeled (j, σ).

HD = H0 +Hep +Hp

H0 =
∑

j,σ

εj,σc
†
j,σcj,σ

Hep =
∑

Q

gQ

(

a†Q + aQ

)

∑

j

(

c†j,↑cj,↓ + c†j,↓cj,↑

)

Hp =
∑

Q

ΩQa
†
QaQ. (2.4)

Note that in a transition, only σ is changed, but not j. The index σ can,
e.g., be the real electron spin for Zeeman–split levels j in a magnetic field,
or a pseudo–spin denoting ‘up’ and ‘down’ position within a specific level j.
In the experimental configuration described below, σ is related to electrons
occupying the conduction band or holes occupying the valence band of a
semiconductor quantum well. In the following, we will always use the term
‘spin’. Furthermore, we do not explicitely refer to the geometry of the system,
assuming only that we are in the ‘small sample superradiance regime’ [141]
where propagation and diffractions effects of the electromagnetic field do play
no role. We neither refer to the explicit form of the states (j, σ) that could
describe levels in artificial quantum dots as well as, e.g, in quantum wells. It
will turn out that it is rather a few quantum numbers, namely the number
of occupied levels N , the total spin J and the total spin projection M which
determines the basic physics in our semiclassical approach. In the same sense,
it is not necessary to assume from the beginning that the boson modes in
Hp are photons. Consequently, the Hamiltonian Eq. (2.4) represents a whole
class of physical systems rather than one specific experimental situation.
The important aspect is that the different levels are coupled by the common
bosonic field. It is this aspect which makes the problem essentially a many–
particle problem.

One key assumption (which we retain here) of the original Dicke model
is the independence of the coupling matrix element gQ from the electronic
quantum numbers (j, σ). If the coupling is to a photon field vector potential
in the form

Hep = (−e/m∗)

∫

ddxΨ†(x)A(x)pΨ(x), (2.5)
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this assumption is justified if the matrix element

〈jσ|p|j ′σ′〉 = im∗(εjσ − εj′σ′)〈jσ|x|j ′σ′〉
σ 6= σ′ (2.6)

can be considered as a constant, and the spatial geometry allows to neglect
the x–dependence of the photon field, i.e. to consider the latter in the long
wavelength limit. In the standard literature, this most simplest situation of
superradiance corresponds to the ‘small sample superradiance case’ where in
particular reabsorption of photons and/or sample specific effects are com-
pletely neglected.

2.2.2 Extension of the Dicke model

The situation described so far by the Hamiltonian Eq.(2.4) corresponds to
a closed system with respect to the electron number that remains constant
throughout the time–evolution.

We now include processes by which the number of electron within the
optical active region may change. The simplest way to do so is to include a
termHT that allows the number of electrons N to vary, that is by tunneling to
and from electron reservoirs α. For simplicity, we denote the possible values
for α as ‘left(L)’and ‘right(R)’; a generalization to ‘multiterminal’ situations
with more than two different α’s is straightforward. We thus have

Hα =
∑

k

εk,αc
†
k,αck,α, α = L/R

HT =
∑

k,j,σ,α=L/R

(

tαk,j,σc
†
k,αcj,σ + c.c.

)

(2.7)

The analogy to the double quantum dot problem is obvious; indeed this
analogy will be important in the theoretical description in terms of a master
equation below. Within this description, our ‘dot’ will be a priori regarded
as a many–body system even in absence of electron–electron interactions.

In the following, we first discuss the modifications of the Dicke super-
radiance through the effects which result from the tunneling processes only
and neglect any other interaction processes like Coulomb or Hubbard corre-
lations. The total Hamiltonian therefore becomes

H = HD +HL +HR +HT . (2.8)
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Fig. 2.4: Extended Dicke model. Right: electrons can tunnel out of and
into an optical active region. Left: the tunneling leads to a change of the
total (pseudo) spin J and its z–component M . These are the two variables
that enter into the effective density matrix ρ(JM)t describing the state of the
optical active region at time t.

In the nect section, we shortly review the concept of the Dicke states and the
time evolution of the superradiant process, before discussing its modifications
through the tunneling processes Eq. (2.7).

2.3 Superradiance in the original Dicke model

2.3.1 Dicke states

Superradiance in its original form as proposed by Dicke is due to the fact
that the coupling of the radiation field in Eq. (2.4) is not to the individual
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atoms j but to the sum of the (pseudo) spin operators

J+ :=
∑

j

c†j,↑cj,↓, J− :=
∑

j

c†j,↓cj,↑. (2.9)

Together with the z–component

Jz :=
1

2

∑

j

(

c†j,↑cj,↑ − c†j,↓cj,↓

)

, (2.10)

these operators form an angular momentum algebra with eigenstates (‘Dicke
states’) |JM ;λ〉 defined via

J2|JM ;λ〉 = J(J + 1)|JM ;λ〉
Jz|JM ;λ〉 = M |JM ;λ〉, (2.11)

where J is the total spin. Here, λ denotes all additional quantum numbers
apart from J and M that are necessary to characterize the eigenstates of
H0+HI . The classification of the eigenstates of H0, Eq. (2.4), in terms of the
permutation group PN of N numbers has been given by Arecchi, Courtens,
Gilmore, and Thomas [155]. It is a formidable task to write down these
eigenstates explicitely, say in the basis of product states of the individual
levels. Fortunately, it is possible to get a clear understanding of the physics
without this explicit form.

Radiative transitions are not within individual atoms j but between eigen-
states Eq. (2.11) that belong to the total entity of levels. These transitions
obey the selection rule M →M ± 1, that is, the only non–vanishing matrix
elements of the operator J+ + J− are

〈JM |J+ + J−|JM ± 1〉 =
√

J(J + 1) −M(M ± 1). (2.12)

Dicke considered a situation where each of the N two–level systems (atoms)
is initially occupied by one electron in the upper level. Spontaneous emission
of one photon from this totally inverted, initial state |JJ〉 with J = N/2 leads
to a state |JJ − 1〉. In the course of the emission, the quantum number M
decreases by one step by step (see Fig. (2.5)); the spontaneous emission
intensity from a state |JM〉 is

IJM = ~ω0ΓνJM , νJM := (J +M)(J −M + 1), (2.13)
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Fig. 2.5: Down–cascades for the spontaneous decay of a system of two (above)
and N atoms. The Dicke states |JM ; {λ}〉 in the N–atom system are the gen-
eralization of the triplet state in the two–atom system (there is no transition
involving the singlet state in this case).

where Γ is a microscopic parameter given by the spontaneous emission rate
of one single atom from its excited state. Since −J ≤ M ≤ J , the expression
Eq. (2.13) reveals that in the course of the spontaneous decay starting from
the initial state, the intensity νJM reaches a maximum at M = 0. The value
of this so–called ‘Dicke peak’ is proportional to N 2, i.e. abnormously large
in comparison with the intensity Nν0 of the radiation of N independently
decaying atoms. The superradiant state |JM = 0〉 is generated by subsequent
application of the ladder operator J− in the course of the spontaneous decay.
In the basis of the individual atoms j = 1, ..., N , this state is a complicated
coherent superposition of a large number of product states.
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2.3.2 Time evolution in the original Dicke problem

The time dependence of the emission peak can be obtained from a simple
quasi–classical argument, that regards the quantum number M as a time–
dependent, classical quantity. For an ensemble of identical atoms, one has

H0 = ω0Jz, (2.14)

i.e. εj↑ = −εj↓ = ω0/2 in Eq. (2.4). Equating the average energy loss,
−ω0(d/dt)M(t), with the radiated intensity, Eq. (2.13), one obtains an equa-
tion of motion for M(t),

− d

dt
M(t) = Γ (J +M(t)) (J −M(t) + 1) (2.15)

The solution of this equation gives the hyperbolic secant solution to the
superradiance problem, that is a time–dependent intensity (see Fig.(2.2))

ν(t) = ν0
N2

2 cosh2 (NΓ[t− td]/2)
, (2.16)

where the delay time td depends on the initial condition at time t = 0. As has
been discussed by Gross and Haroche [141], the quasi–classical description
of the decay process becomes good if the system is prepared initially in
a state |JM0〉 with a large number s0, 1 � s0 � N , of photons already
emitted. If one starts from the totally inverted state |JJ〉, the initial time
evolution is dominated by strong quantum fluctuations (the phases of the
single atoms are completely uncorrelated). In the following, we will continue
the qualitative description in the quasi–classical picture before numerically
solving the master equations that contain the full quantum dynamics.

2.4 Tunneling and Clebsch–Gordan coefficients

2.4.1 Total pseudo spin

The original Dicke problem assumed a fixed total number of electrons: one
electron per atom or, in the spin language, exactly one spin (up or down)
σ on each site j. We now discuss what happens if this restriction is lifted,
i.e. if electrons can enter or leave the superradiant region. Since the elec-
tron number is no longer conserved, there is no longer an exact ‘half–filling’:
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sites with double occupancy (spin up and spin down) and empty sites be-
come possible. One immediate consequence is that a tunneling electron will
change the quantum numbers J and M . The pseudo–spin projection M will
increase by 1/2 when an electron enters and occupies an upper level; it will
decrease by 1/2 when the electron occupies a lower level. This process leads
to a corresponding change of the total spin J , J → J ± 1/2 as dictated
by the Clebsch–Gordan coefficients (see below). The total spin J is thus
no longer conserved in the course of the dynamical evolution. In fact, in
the original Dicke model there are no transitions between integer and half–
integer quantum numbers J ; for an even number of atoms the possible J are
integer (e.g. 5, 4, 3, ...), for an odd number of atoms they are half–integer
(e.g. 5.5, 4.5, 3.5, ...). Note that apart from λ, Eq. (2.11), additional quan-
tum numbers are required to fully characterize all states |JM ;λ〉 in the total
Hilbert space. In a fully microscopic calculation, these should include, e.g.,
the number of empty sites and the number of double occupied sites.

2.4.2 Clebsch Gordan coefficients

Apart from the emission rate νJM , it is the tunneling rate that governs the
time evolution in presence of reservoirs. In the pseudo–spin language, a
tunneling electron means adding (or removing) a spin (j = 1/2, m = ±1/2)
to a Dicke state |JM〉, cp. Fig. (2.4). The tunnel rate is determined by
the overlap matrix element of the new state |JMjm〉 with the Dicke states
|J ′M ′〉, i.e. the Clebsch–Gordan coefficients [156]

〈J ′M ′|JMjm = ±1/2〉 =

√

J ±M + 1

2J + 1
δM ′,M+m, J ′ = J + 1/2

〈J ′M ′|JMjm = ±1/2〉 = ∓
√

J ∓M

2J + 1
δM ′,M+m, J ′ = J − 1/2. (2.17)

The matrix element for tunneling also depends on the coefficients tαk,j,σ,
Eq. (2.7), and (more important) on the specific form of the many body wave
functions of the optical active region. In the derivation of the tunneling rates
below we will make the approximation that these effects can be absorbed into
a simple renormalization of the tunneling amplitude, and that the tunneling
is governed by the quantum numbers J and M via the Clebsch-Gordan co-
efficients Eq. (2.17). This approach, together with the subsequent derivation
of the ‘tunneling’ part of the master equation, is very similar to a recent cal-
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culation of the tunnel current through an interacting few–electron quantum
dot by Weinmann et al. [157, 158].

2.4.3 Time evolution: phenomenological model

Equations of motion for J and M

Let us consider the specific case where spin–up electrons enter the optical
active region, i.e. electrons occupy upper levels on entering, and spin–down
electrons leave it, i.e. electrons in lower levels tunnel to the outside. Consider
the ‘tunnel in’ case first: if the optical active region is in the initial phase of
superradiance, adding an up spin to the state |JM = J〉 leads to the state
|J+1/2,M+1/2〉 with amplitude 1, the amplitude to obtain |J−1/2,M+1/2〉
is zero. In the superradiant phase , M = 0, states with J + 1/2 and J − 1/2
are obtained with nearly equal absolute amplitudes

√

(J + 1)/(2J + 1) and

−
√

J/(2J + 1), respectively. In the ‘final phase’ of superradiance, i.e. M =
−J , adding an up spin leads to J + 1/2 with nearly zero amplitude (we
consider large J � 1), but to J − 1/2 with amplitude ≈ 1. For tunneling
of an up spin into the , M is increased by 1/2 as is the case for tunneling
of a down spin out of the optical active region: M increases by 1 with the
tunnel rate T . At the same time, the change of J is +1/2 for M = J , nearly
zero for M = 0, and −1/2 for M = −J . The more accurate estimate below
gives d/dtJ(t) = TM(t)/J(t), i.e. the change of J is indeed proportional to
M itself. This leads us to the coupled equations

Ṁ(t) = −ΓνJ(t)M(t) + T

J̇(t) = T ·M(t)/J(t)

νJM := (J +M) (J −M + 1)

(2.18)

which are governed by the two parameters Γ and T , the emission rate and
the tunnel rate.

What is particular with these equations is the fact that they possess
oscillatory solutions: this can be seen best by deriving from Eq. (2.18) a
second order differential equation,

d2

dt2
M(t) − 2ΓM(t)

d

dt
M(t) + 2ΓTM(t) = 0, (2.19)
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where we approximated in the emission rate J −M +1 ≈ J −M . Eq. (2.19)
describes a harmonic oscillator with amplitude dependent damping and fre-
quency

ω =
√

2ΓT . (2.20)

Driven oscillator picture

The harmonic oscillator picture and the form Eq. (2.20) of the frequency
becomes more evident by considering the time scales of the problem: the
decay time Γ−1 of a single two level system gives rise to the time-scale of the
’undriven’ (T = 0) system. That is, large decay times correspond to a slow
motion of the latter or a large ‘mass’ m (inertia) whence Γ−1 ∼ m. On the
other hand, the system is driven by a ‘force’ (tunneling electrons) with force
constant k proportional to the tunneling rate T , thus giving rise to oscillations
with a frequency ∼

√

k/m ∼
√

ΓT . In the mechanical analogon, an external
force F (q) couples the phase space coordinates p and q via Newton’s equation
ṗ = F (q). Here, it is the tunneling of single electrons that induces a coupling
between the total spin J and the total spin projection M via the Clebsch–
Gordan coefficients.

Integrating the equation for J(t), one reckognizes that the oscillations
also show up in the intensity νJM itself which is confirmed below by the ex-
act numerical solution of the master equation. The addition of the source
term T which describes the change of the total spin projection by the tun-
neling electrons (spin up tunnels in, spin down tunnels out) thus leads to a
drastically modification of the simple pulse–shaped ‘Dicke peak’ of superra-
diation. We point out that the oscillatory behavior as predicted by Eq. (2.18)
- Eq. (2.20) is totally different from the ‘oscillatory superradiance’ which is
known from the original Dicke problem and has its origin in a reabsorption of
a photon that had been emitted before (for a discussion of this phenomenon,
see e.g. [131]).

2.5 Master equation

We now proceed from the qualitative discussion of the preceding chapter to
a more detailed analysis. The coupling to the reservoirs brings about the
combination of two physical problems: the dynamics of a two–level ensemble
coupled to a boson field, i.e. a many spin–boson problem on the one hand,
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and the electronic transport through a region of electrons interacting with
each other and with bosons. Both individual problems are not exactly solv-
able. The master equation method is usually applied in both cases in order
to calculate approximately expectation values like the intensity of emitted
light, or the electric current. In the following, our strategy therefore is to set
up the master equation for our problem. We will furthermore consider only
diagonal elements of the density operator; this level of theoretical descrip-
tion is still sufficient to obtain the time–dependent intensity of the emitted
radiation, in particular the characteristic Dicke–peak and its modifications.
Furthermore, the basic physics of the electron transport through the ‘dot’
optical active region is still accessible within this picture, e.g. if one were
interested in describing Coulomb blockade effects.

The master equation

d

dt
ρ = Le−p[ρ] + Le−l[ρ] (2.21)

is an operator equation for the density matrix ρ of the system, reduced to a
small number of degrees of freedom, i.e. in our case the electronic degrees
of freedom of the optical active region. The splitting of the operator L in
Eq. (2.21) requires that one works in lowest order of the perturbation theory
with no interference between the electron–boson coupling Hep, Eq. (2.4), and
the coupling to the leads HT , Eq. (2.8). We furthermore work in the basis
of the Dicke states Eq. (2.11), but disregard the index λ that represents all
quantum numbers apart from J , M , and the electron number N . In par-
ticular, we will neglect electron–electron interactions and describe the whole
dynamics in terms of the probabilities ρ(JMN), i.e. the diagonal elements
of the density operator at a given electron number N . The expression for
Le−p then coincides with the one for the original Dicke problem and has been
derived by many authors, see e.g. [74]. On the other hand, the expression
for Le−l is known from the master equation for tunneling through quantum
dots [63,157] and is determined by microscopic rates ΓJMN→J ′M ′N ′ by which
the state of the optical active region changes through tunneling events (these
rates will be derived below). Thus, the master equation describing the com-
bined effects of the coupling to the boson field and the electron leads is given
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by

d

dt
ρ(JMN) = −Γ (νJMρ(JMN) − νJM+1ρ(JM + 1N))

+
∑

J ′M ′N ′

(ΓJ ′M ′N ′→JMNρ(J
′M ′N ′) − ΓJMN→J ′M ′N ′ρ(JMN)) .(2.22)

2.5.1 Transition Rates

The transition rates ΓJMN→J ′M ′N ′ have the explicit expressions for tunneling
from/to reservoir α

Γα
JMN→J ′M ′N ′ = T α |

∑

jσ

〈J ′M ′N ′|c†jσ|JMN〉|2 fα(EJ ′M ′N ′ − EJMN) (2.23)

+ T α|
∑

jσ

〈J ′M ′N ′|cjσ|JMN〉|2 [1 − fα(EJMN − EJ ′M ′N ′)] ,

where

T α := 2π
∑

k

tαkjσ(t
α
kj′σ′)∗δ(E − εα

k ) (2.24)

is the tunnel rate for lead α. The latter in fact is a tensor in both the site and
the spin indices (j, σ) and depends on the energy difference E of initial and
final state of the optical region after a tunnel event. We neglect the energy
and site dependence, furthermore the spin dependence is absorped into the
index α through the boundary conditions : we enforce a condition that makes
the tunneling work as a ‘spin–up’ pump where only ‘spin–up’ electrons can
tunnel in (from the left) and ‘spin–out’ electrons out (to the right) of the
optical active region. For the case of two reservoirs ‘left’ and ‘right’, the
situation is very similar to the double dot problem, with ‘up’ corresponding
to the left dot and ‘down’ to the right dot. Effectively, one ends up with only
two parameters TR and TL then.

The leads are assumed to be in an equilibrium described by the Fermi
distribution fα. The energy argument of the latter equals the energy transfer
to or from the optical active region with many–particle state energies EJMN .
The state c†jσ|JMN〉 is a N + 1 electron state which is generated by plac-
ing one electron into an upper level and therewith adding a (pseudo–)spin
1/2 to a many–particle state with total spin J and projection M . As men-
tioned above, the main approximation in calculating the matrix elements in
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Eq. (2.24) consists in neglecting the specific form of the many–particle wave
function, i.e. approximating the matrix element by the Clebsch–Gordan co-
efficient sum

∑

jσ

〈J ′M ′N ′|c†jσ|JMN〉|2 ≈ δN+1,N ′γJM→J ′M ′ (2.25)

γJM→J ′M ′ := |
∑

σ=±1/2

〈J ′M ′|JM, j = 1/2m = σ〉|2,

where the proportionality factor is absorbed into the constant T α, Eq. (2.24).
The calculation of the quantity γ, Eq. (2.25), is straightforward and yields

γJM→J ′M ′ :=
1

2J + 1

(

δJ ′,J+1/2

×
[

δM ′,M+1/2(J +M + 1)

+ δM ′,M−1/2(J −M + 1)
]

+ δJ ′,J−1/2

[

δM ′,M+1/2(J −M)

+ δM ′,M−1/2(J +M)
])

. (2.26)

To enforce the ‘spin–up–pump’ boundary condition, the chemical potential
left is assumed to be situated above all possible energy differences of many–
body states with M differing by plus 1/2. In addition, tunneling from left to
the ‘down’ levels is excluded by assuming the corresponding matrix elements
to be negligibly small. On the other hand, the chemical potential right is
chosen such that ‘down’ electrons can tunnel out to the right, but not tunnel
in. The tunnel matrix elements are T α, α = I (in), O (out), allow for
tunneling to/from the right/left only, respectively. In equations, this means

∑

α=R/L

tαfα(EJ±1/2,M+1/2,N+1 − EJMN) = T I > 0

∑

α=R/L

tαf̄α(EJMN − EJ±1/2,M+1/2,N−1) = TO > 0

∑

α=R/L

tαfα(EJ±1/2,M−1/2,N+1 − EJMN) = 0

∑

α=R/L

tαf̄α(EJMN − EJ±1/2,M−1/2,N ) = 0, (2.27)

where we abbreviated f̄ := 1 − f .
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We show below that a possible experimental setup with the corresponding
boundary conditions in principle can be realized in an electron–hole semicon-
ductor quantum well, or an array of coupled double quantum dots.

2.6 Results

2.6.1 Numerical evaluation of the master equation

The time dependence of the expectation value of the emission rate, Eq. (2.13),
was obtained from the time evolution of ρ(JM)t by numerical solution of
Eq. (2.21). The result is shown in Fig. (2.6) for an initially excited state
with J = 6, M = 5. The initial emission maximum is the original ‘Dicke
peak’, followed by oscillations that die out at an intensity proportional to
the tunnel rate T that was chosen symmetric, T = T I = TO. The frequency
of the oscillations increases with

√
T and follows in good approximation the

law Eq. (2.20). In particular, the initial peak is strongly enhanced with
increasing tunnel rate. This behavior is related to an initial increase of the
total pseudo spin as can be seen from the ‘phase–space’ plot (inset of Fig.
(2.6)) of the expectation values of J and M which both oscillate in time.

2.6.2 Quasi–classical probability packets

From the master equation Eq. (2.21), equations for the expectation values
M(t) := 〈M〉t, 〈J〉t, and 〈N〉t can be derived in a quasiclassical approxima-
tion [141] that neglects fluctuations and writes the (time dependent) proba-
bility distribution

ρ(JMN)t = δM,M(t)δJ,J(t)δN,N(t). (2.28)

The detailed form of the intensity peak and the intensity oscillations obtained
in this way deviate from the exact solution of Eq. (2.21). The qualitative
features, however, coincide and it is in particular possible to derive the ex-
pression Eq. (2.20) for the oscillation frequency.
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Fig. 2.6: Time evolution of the emission intensity νJM = IJM/Γ~ω0 for
different transmission rates T . Inset: 〈J〉t vs. 〈M〉t for T = 64.

Combining Eq. (2.28) and Eq. (2.21), one obtains

d

dt





M(t)
J(t)
N(t)



 = −Γ





νJ(t)M(t)

0
0



 (2.29)

−
∑

J ′M ′N ′α

Γα
J(t)M(t)N(t)→J ′M ′N ′





M(t) −M ′

J(t) − J ′

N(t) −N ′



 .
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Combining Eq. (2.27) and Eq. (2.29) leads to three coupled equations

d

dt





M(t)
J(t)
N(t)



 = −Γ





νJ(t)M(t)

0
0





+ T I





1
2

1
2

2M+1
2J+1

1



− TO







−1
2

+ M
4J(J+1)

−M
4

2J+1
J(J+1)

1 − M
2J(J+1)

,






(2.30)

which can be further simplified for large J where one can neglect terms 1/J
(but not M/J) whence the N–equation decouples. For equal tunnel matrix
elements T I = TO =: T , one obtains

Ṁ = −ΓνJM + T

J̇ = TM/J

Ṅ = 0, TR = T I =: T

νJM := (J +M) (J −M + 1) (2.31)

which agrees with the previous phenomenological derivation.
In the original Dicke problem, a fixed total number N of electrons with

exactly one pseudo spin σ on each site i is assumed. Here, we work in a
grand–canonical ensemble where N varies through single electron tunneling:
doubly occupied or empty single particle levels i become possible, i.e. there
is no longer an exact ‘half–filling’. One immediate consequence is that a
tunneling electron changes the quantum numbers J and M . The change J̇ of
J is proportional to M itself, J̇(t) = TM(t)/J(t), which follows considering
the Clebsch–Gordan coefficients for adding a pseudo up spin. At the same
time, M is increased by 1/2 as is the case for out–tunneling of a pseudo down
spin: M increases by 1 at the tunnel rate T and decreases by spontaneous
emission at a rate ΓνJM . Therefore, J and M obey roughly the Eq.(2.31).

2.6.3 Oscillations (ringing) in conventional superradiance versus pumped
superradiance oscillations

Oscillations in superradiating systems have been well known since the first
experimental confirmation of the effect [133]. In fact, the emission intensity
from a superradiating ensemble is subject to a ‘ringing’ effect. In particular,
photons that have been emitted by one atom can be reabsorbed elsewhere,
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an effect which is not contained in the simplifying description of the origi-
nal Dicke superradiance model. This flow of energy between the atoms and
the field modes leads to a revival of the inversion due to reabsorption of
photons. In general, the physics of this mechanism and the related light
propagation effects are a complicated time– and space dependent process. A
quite complete analysis of this kind of oscillation has been given by Bonifacio
and Preparata [159] in a one–mode model with generalized Rabi–oscillations
in a Jaynes–Cummings like model. In fact, the mean field theory of the
Maxwell–Bloch equations in a one–dimensional model [73] leads to an oscil-
lation frequency

ω ≈ Ω/2 lnN, Ω := (2πNd2ω0/~)1/2, (2.32)

where ω0 is the transition frequency, d the dipole moment, and N the number
of two–level systems.

We point out that in contrast to these oscillations between atom and field
mode energy, the oscillations with frequency

ω ≈
√

2ΓT (2.33)

in our model are due to the combination of two mechanisms, i.e. spontaneous
decay and pumping, as discussed above. In particular, backflow of energy
from the electric field is neglected in our model since we assume that a photon,
once emitted, can escape from the system.

2.6.4 Pumped superradiance in an atomic system

We mention that an oscillation effect similar to the one predicted by us has
been found by Steudel and Leonhardt [160]. They discussed the Maxwell–
Bloch equations (see chapter 3) for an atomic system with a level scheme
shown in Fig. (2.7). Continous optical pumping from 0 to 3 and fast relax-
ation to 2 provide a pumping mechanism for the superflourescent transition
from 2 → 1. This pumping is the optical analog to our tunneling mechanism
as described by the parameter T . Interestingly, in [160], self–similar solutions
of the Maxwell–Bloch equations [73] were found that had also an oscillatory
character. These solutions should describe experiments of superfluorescence
in two–level systems where pumping is continous and not (as in usual atomic
superfluorescence experiments) just used to generate an approximately com-
plete inversion of the system.
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Fig. 2.7: Level scheme for pumped atomic superflourescence, after Steudel
and Leonhardt [160].

2.7 Discussion

We now turn to the question in what physical systems the effects described
above can be observed experimentally.

2.7.1 Experimental realization

We note that the tunneling processes can be replaced with classical injection
processes over potential barriers, because we have assumed that quantum
correlation is absent between subsequent tunneling processes. We thus pro-
pose the system of electrons and holes in semiconductor quantum wells in
strong magnetic fields. Vertical injection of conduction band electrons and
valence band holes into an active region acts like the pumping mechanism
described above. In fact, this mechanism is exactly what is used in lasers or
light emitting diodes with forward biased pn junctions. In our case, mirrors
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as in a laser are not necessary, in particular stimulated emission processes
must play no role. The strong magnetic field is necessary to have dispersion-
less single electron levels i = X, corresponding to the lowest Landau bands
(n = 0) and guiding center X [161] in the conduction and the valence bands.
In this case, the interband optical matrix elements are diagonal in i. The
correspondence with our model can be seen by mapping its four basic single
particle states to the states of the electron–hole system (Fig. (2.8)): the
empty state becomes the hole (h), the pseudo–spin down electron becomes
the empty state, the doubly occupied state becomes the electron (e), and the
pseudo–spin up electron becomes the state with one electron and one hole.
The number of total electrons N in our model has its correspondence via

N = Ne +Ns −Nh, (2.34)

where Ns = Φ/Φ0 is the degeneracy for a given magnetic flux Φ (Φ0 = hc/e
is the flux quantum), Ne the number of electrons in the conduction band,
and Nh the number of holes in the valence band.

We predict that an initial optical or current excitation of the system leads
to a superradiant peak of emitted light that becomes strongly enhanced if
the tunneling rate becomes higher. Furthermore, subsequent oscillations of
the emitted light should be visible at an approximate frequency Eq. (2.20).
We also expect similar oscillations to be visible as weak corrections to the
injection current. In chapter 3, we present detailed calculations of the super-
radiance effect in the emission of light from a magnetoplasma.

As a second experimental setup, we propose an array of identical quan-
tum dots, coupled to electron reservoirs as above. The array must have the
capability to coherently radiate, where each dot has a pair of well-defined
internal levels that allow for transitions under emission of photons. Alter-
natively the coherent emission of phonons from an array of double quantum
dots could be a candidate for oscillatory superradiance. This system will be
discussed in chapter 4.

Another possible realization could be a geometry as in the quantum cas-
cade laser which has been proposed recently [162, 163] as an alternative to
conventional semiconductor diode lasers. In this case, transitions between
different electronic subbands lead to photon emission. Note that in all three
cases, the photon escape time τ = L/c (L is the linear dimension of the active
region and c the speed of light) has to be much smaller than all other time
scales of the problem, because in our model we assumed the ‘small sample
superradiance case’ where reabsorption effects play no role.
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Fig. 2.8: Correspondence of our model (superradiance with reservoir) with
an electron–hole system. ‘e’ denotes an electron in the conduction band, ‘h’ a
hole in the valence band.

We mention that all the effects described above should in principle be
observable not only for photons, but also for other bosonic fields such as
phonons, or magnons.

2.7.2 Phase coherence

We point out that so far we have not addressed the question of phase co-
herence. In fact, the conventional superradiance is a transient process that
occurs only on a ‘mesocopic’ time scale with an upper boundary given by a
phase coherence time τφ (The lower boundary is given by the photon escape
time τ). Inelastic processes such as dipole–dipole interactions [139, 140] in
general destroy the phase coherence between single particle states and the
description using the Dicke states with well–defined J and M becomes void.
On the other hand, coherence between states with different J and different
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M is not required in our formalism, on the contrary this would require con-
sideration of coherent tunneling which is beyond the scope of our approach.
We assume that dephasing processes are weak such that the time to observe
the initial Dicke peak and some cycles of the subsequent oscillations is still
shorter than τφ. An ideal case would be a strong initial excitation to a high
initial pseudo spin J , and a high tunnel rate T that yields fast oscillations.
Furthermore, strong magnetic fields in general suppress scattering rates al-
though at the present state we can give no quantitative estimates for τφ.

The following two chapters are devoted to a more detailed discussion of
a possible experimental realization of the oscillatory superradiance effect.
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3. SUPERRADIANCE IN A
MAGNETOPLASMA

We present theoretical results for superradiance, i.e. the collective coherent
decay of a radiating system, in a semiconductor heterostructure under a
strong quantizing magnetic field. Pumping of electrons and holes into an
optical active region at a rate T leads to a novel kind of oscillations with
frequency ∼

√
T in the limit of the lowest Landau level. If more Landau

levels are involved, the emitted intensity shows a chaotic–like behavior as a
function of time.

3.1 Introduction

In this chapter, we discuss the superradiance effect in the electron–hole gas of
a two–dimensional semiconductor quantum well under a strong, quantizing
magnetic field. For such a system, in the calculation of chapter 2 we predicted
a novel form of superradiance in case that an optical active region is pumped
externally by electron (hole) reservoirs. In the limit of only the lowest Landau
level occupied, the coherent decay of electron–hole pairs leads to a peak of
the emitted light with a strong intensity that, as a function of time, shows
oscillations with a frequency

ω '
√

2ΓT , (3.1)

where Γ is the spontaneous decay rate of a single electron–hole pair and T
the rate at which electrons are pumped in the conduction and holes into
the valence band. Our previous calculation was based on a master equation
description of the optical active region that was described in a simplifying
manner in the space of the so–called Dicke states by only two quantum
numbers J and M , the total pseudo spin and its projection. Here, we extend
these calculations in the following way:
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1. We start from the microscopic wave functions of the heterostructure
under the magnetic field.

2. We take into account Coulomb interactions between electron and holes
on the Hartree–Fock level.

3. We set up the microscopic Maxwell–semiconductor Bloch equations
(MBE) for the expectation values of the inversion and polarization. These
equations are solved for a simplified model of a two–band semiconductor
magnetoplasma, neglecting intraband scattering processes.

We note that Belyanin et al. [164] also found the possibility of superradi-
ance in bulk (3d) semiconductors in magnetic fields, but without interactions
among the electrons and without pumping.

Our results are the following:

1. In the strong magnetic field limit of only the lowest Landau level
occupied in both conductance and valence band, the equations describe su-
perradiance in exact correspondence to atomic systems: each two–level atom
corresponds, roughly speaking, to an electron–hole pair with quantum num-
bers n = 0 (Landau level) and k, the momentum in one direction perpendic-
ular to the magnetic field. The density of atoms corresponds to the number
of flux quanta per optical active volume. Excitations with an incoherent light
pulse shorter than 1 ps shall provide a total inversion at initial time t = 0.
Thereafter, the emitted light has the form of the characteristic Dicke peak
with a maximum that is proportional to the square of the magnetic field for
constant filling factors ν = 1.

2. We consider only Coulomb effects in s–wave approximation. Then,
Coulomb effects only show up if more than one Landau level is involved, i.e.
at larger filling factors. In this case, there are additional oscillations after
the initial Dicke peak even without external pumping. The oscillations are
smeared out by the Coulomb interactions.

3. In case of pumping of electrons and holes into the system (as in laser
diodes), the solutions of the MBE have a much richer structure: a) for only
the lowest Landau level occupied, we basically recover our former result,
i.e. ‘pumped superradiance’. The emission peak periodically disappears and
reappears as a function of time, it is (in contrast to our previous model) nearly
undamped, but with the same period; b) for a larger number of occupied
Landau levels, i.e. in the limit of smaller magnetic fields, the total emission
shows a completely irregular, chaotic bebavior as a function of time.
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3.2 Model

3.2.1 Electrons in a magnetic field

We start from non–interacting electrons in a semiconductor heterostructure
under a strong magnetic field (~ = c = 1),

H0 =
(p − eAB(x))2

2m
+ U(x) + V (z), (3.2)

where AB is the vector potential of the homogeneous magnetic field in z–
direction, U(x) the periodic lattic potential and V (z) the potential that
confines the electron motion to a two–dimensional plane. Here, m is the bare
electron mass and e the charge of the electron in vacuum. The eigenstates
of H0 in absence of confinement potential and magnetic field are

χlk(x) =
1

L3/2
eikxulk(x), (3.3)

where the Bloch function ulk is periodic in the Bravais lattice of the crys-
tal (with volume L3) and has dimension one. We assume spin–polarization
throughout the rest of the calculation. The eigenvalues εl(k) determine the
bandstructure of the ideal crystal (no interactions, no magnetic fields and
no potentials other than U), where l is the band index. The determination
of the eigenstates and eigenvalues of H0 is in general non–trivial even for
non–interacting electrons. Here, we use the approximation of Luttinger and
Kohn [165]: the eigenstates of H0 have the form

ψlα(x) = φlα(x)ul(x); ul(x) = ulk=0(x), (3.4)

where φlα(x) is the solution of

[εl(p − eAB(x)) + V (x)]φlα(x) = εlαφlα(x). (3.5)

For a more detailed discussion of this approximation, see [166, 167]. The
wave functions φ are given by

φlα(x) =
eiky

√
L
φn(x+ k/eB)χl(z), α = (n, k), (3.6)

where k is the momentum in y–direction, B the magnetic field in z–direction,
φn the n–th harmonic oscillator wave function, and χl a standing wave for
the lowest subband of the quantum well as determined by the potential V (z).
Note that the harmonic oscillator wave functions φn do not depend on the
effective electron mass in band l.
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Fig. 3.1: Valence (v) and conductance band (c) of a two–band semiconductor
model (left) under a quantizing field B perpendicular to the two–dimensional
magnetoplasma (right).

3.2.2 Electric field

The theoretical description of superradiance can be done in two alternative
schemes [141]:

a) Schrödinger picture: a master equation for the reduced density op-
erator of the electronic system is derived. The degrees of freedom of the
electromagnetic field are integrated out. In the Markov approximation (no
retardation effects), the coupling to the electromagnetic field basically enters
as one single parameter (the decay rate of a single radiator).

b) Heisenberg picture: the equations of motion for the field operators of
the polarization, occupation numbers, and the polarization are derived. This
approach is useful to discuss propagation effects of the polarization (soliton
solutions etc.). At the same time, it is sufficient to treat the electromagnetic
field classically as described by Maxwells equations, as long as one is not
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interested in the initial stage of the superradiant process that is governed by
quantum fluctuations. For a more detailed discussion of the relation between
the two approaches, see [141].

Here, we adopt the description b) and treat the electric field classically.
This has two advantages: 1. The description becomes close to the usual
semiconductor Maxwell–Bloch equations [51] and 2. These equations have
a superradiant solution even for spatially homogeneous electric fields, if an
additional damping of the field (escape of photons) is introduced [73]. Since
we are interested in interaction and multilevel effects (more than one Landau
level), this simplified description is of great advantage.

The vector potential of the electric field E(t) is denoted by Ae(t) and
gives rise to an additional Hamiltonian He(t) whence the total Hamiltonian
H(t) = H0 +He(t) becomes time–dependent. The matrix elements of He(t)
become

〈lnk|He(t)|l′n′k′〉 = δkk′hll′

nn′(t)

hll′

nn′(t) = −
[

evl
nn′A

e(t) +
e2

2ml
Ae(t)2δnn′

]

δll′

− e

m
pll′A

e(t)Fll′δnn′, (3.7)

where vl
nn′ = vl

nδn,n′+1 + vl∗
n′δn,n′−1, vn = ilBω

l
B

√

n/2(ex − isgn(e)ey), and

lB =

√

1

|e|B , ωl
B =

|e|B
ml

, (3.8)

and

pll′ =
1

ν0

∫

ν0

d3xu∗l (x)pul′(x), (3.9)

where ν0 is the volume of the primitive cell of the lattice. Furthermore,

Fll′ =

∫

dzχ∗
l (z)χl′(z). (3.10)

In Eq.(3.7), one reckognizes intraband (l = l′) and interband (l 6= l′, note
that pll = 0) terms. When intraband terms are not neglected, the Luttinger–
Kohn approximation , in which only the k = 0 Bloch wave functions u are
retained, becomes problematic. In general, intraband processes involve Bloch
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functions with all k vectors [167]. Physically, to describe processes within one
and the same band, an effective Hamiltonian as given by the bandstructure
εl(k) has to be used which means that the masses m in the terms ∼ δll′ in
Eq.(3.7) become renormalized m→ ml to the effective mass in band l.

3.2.3 Coulomb interaction

We consider the Coulomb interaction in the form of an additional Hamilto-
nian Hc,

Hc =
1

2

∑

n1,...,n4,k,k′,q6=0;ll′

V ll′;n1,...,n4

kk′ (q)c†n1klc
†
n2k′l′cn3k′+qyl′cn4k−qyl.(3.11)

In principle, there are additional terms in Hc which do not conserve the
number of electrons in each band. Such processes would be energetically
unfavourable and are therefore neglected. The matrix elements V can be
calculated from the eigenfunctions φl;nk, Eq.(3.6),

V ll′;n1,...,n4

kk′ (q) =
1

L2
Ũll′(q)Mn1n4

kk−qy
(qx)M

n2n3

k′k′+qy
(−qx)

Mnn′

kk′ (q) =

∫

dxeiqxφn(x+ k/eB)φn′(x+ k′/eB) (3.12)

Ũll′(q) =

∫

dxdydzdz′|χl(z)|2|χl′(z
′)|2Uc(x, y, z − z′)e−i(xqx+yqy),

where Uc(x) = e2/(εr|x|) is the three–dimensional Coulomb potential screened
by the static dielectric constant εr of the bulk semiconductor. In the follow-
ing, for the calculation of these matrix elements we neglect the finite thickness
of the quantum well, i.e. we set |χl(z)|2 = δ(z). The matrix elements that
are required for the Hartree–Fock calculation below then become

V nn′nn′

qy,0 (q) =
2πe2

εrq

min(n!, n′!)2

n!n′!
|z|2|n−n′|

[

L
|n−n′|
min(n,n′)(|z|2)

]2

|z|2 =
l2B
2
q2, q = |q|, (3.13)

where q is a two-dimensional vector and L a Laguerre polynomial.
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3.3 Equations of motion

We now set up the equations of motion for the one–particle quantities

pll′

nn′kk′(t) := 〈c†nklcn′k′l′〉t. (3.14)

With the expectation value of any operator A defined by

〈A〉t = Tr(ρ(t)A), i
d

dt
〈A〉t = 〈[A,H(t) +Hc]〉t, (3.15)

one soon reckognizes that due to the interaction term Hc no closed system
of equations can be obtained. We use the Hartree–Fock approximation to
factorize higher order correlation functions, furthermore we consider only
terms in Eq.(3.14) diagonal in the momentum k, i.e.

pll′

nn′kk′(t) =: δkk′pll′

nn′;k(t). (3.16)

The result is
(

i
∂

∂t
+ εln − εl′n′

)

pll′

nn′;k =

− eAe(t)
∑

n′′

(

vn′n′′pll′

nn′′;k − vn′′np
ll′

n′′n′;k

)

− eAe(t)
∑

n′′

(

wl′l′′p
ll′′

nn′;k − wl′′lp
l′′l
nn′;k

)

− 1

2

∑

n1n3n4ql′′

V n1n′n3n4

k+qyk (q)pl′′l′

n1n3;k+qy
pll′′

nn4;k

+
1

2

∑

n1n2n3ql′′

V n1n2n3n
k+qyk (q)pll′′

n1n3;k+qy
pl′′l′

n2n′;k

− 1

2

∑

n2n3n4ql′′

V n′n2n3n4

kk−qy
(q)pll′′

nn3;kp
l′′l′

n2n4;k−qy

+
1

2

∑

n1n2n4ql′′

V n1n2nn4

kk−qy
(q)pl′′l′

n1n′;kp
ll′′

n2n4;k−qy
. (3.17)

Here, we introduced

wll′ =
Fll′

m
pll′, (3.18)
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and εln is the sum of the band energy εl(k = 0) and the energy of Landau
level n in band l with effective electron mass ml,

εln = εl +
|e|B
cml

(n +
1

2
). (3.19)

3.3.1 The equations in the case of no intraband processes

The above equations can be greatly simplified with, when

1. intraband scattering processes are neglected: such processes are due
to terms in Eq.(3.17) ∼ vn. These terms correspond to scattering from one
Landau level n to n ± 1 within the same band. The r.h.s. of Eq.(3.17)
suggests that such terms can be neglected if |vn| � |w|. A rough estimate
leads to |vn|/|w| ≈ 0.01

√

nB[Tesla] for typical bandgaps of 1 eV. However,
this ratio becomes larger if not the bare but the band masses of the electron
in GaAs are used; thus intraband processes in principle are important.

2. only s–wave scattering is considered in the Coulomb terms in Eq.(3.17),
which means that the momentum change qy in y–direction is neglected. In
this case one finds that the Hartree–Fock terms coincide with the HF terms
from an analogous calculation for the magneto–electron–hole plasma in the
angular momentum base, where only s–wave scattering as the most relevant
contribution for optical processes is considered [51].

The quantities p, Eq.(3.14), now effectively become independent of the
momentum k,

pll′

nn′kk′(t) =: δkk′δnn′pll′

n (t). (3.20)

3.3.2 Two–band semiconductor

We furthermore specify to the case of only one conductance band c and one
valence band v in the semiconductor and neglect the contributions from all
other bands. We introduce the energy difference

∆n := εcn − εvn (3.21)

and the inversion

zn(t) := pcc
n − pvv

n (t) (3.22)
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and find

i
∂

∂t
zn = −2eAe(t)[wcvp

cv
n − wvcp

vc
n ] + 2

∑

n′

γnn′[pcv
n′pvc

n − pvc
n′pcv

n ]

i
∂

∂t
pcv

n = −∆np
cv
n − eAe(t)wvczn +

∑

n′

γnn′[pcv
n zn′ − pcv

n′zn], (3.23)

where

γnn′ =
1

L2

∑

q

Ũ(q)|Mnn′

qy0 (qx)|2. (3.24)

3.3.3 Polarization

Neglecting intraband terms, the polarization at point x is given by

P(x) =
∑

ll′α

φ∗
lα(x)φl′α(x)dll′c

†
lαcl′α, α = (n, k)

dll′ =
1

ν0

∫

ν0

d3xu∗l (x)xul′(x). (3.25)

The macroscopic Maxwell equations for the electric field are

∇×∇× E(r, t) +
∂2

∂t2
E(r, t) = −4π

∂2

∂t2
P(r, t) (3.26)

Here, we already have neglected current densities, charge densities and a
term ∼ ∇P, since we are interested in the spatially homogeneous case. We
define an averaged polarization P(t),

P(t) =
1

V

∫

d3x〈P(x)〉t, (3.27)

where

V = L2Lz (3.28)

is the optical active volume of the system. Here, Lz is an estimate for the
thickness of the quantum well. At the same time, the electric field is assumed
to be polarized in the x–y plane and to be extended homogeneously over the
volume V . We note that this is only an approximate description neglecting,
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e.g., boundary conditions for the fields. Performing the k–sum in Eq.(3.25),
one has

P(t) = dcv

∑

n

βn[pcv
n (t) + pvc

n (t)], (3.29)

where we used dcv =dvc and set the form factor Fcv, Eq.(3.10, to unity. Here,
Φ = BL2 is the magnetic flux, Φ0 = hc/e the flux quantum, and

βn :=











Φ
Φ0V

, n = 0, ..., nmax − 1 ≥ 0
(

Ne

V
− Φ

Φ0V
nmax

)

, n = nmax ≥ 1
Ne

V
, n = nmax = 0,

(3.30)

The last condition in Eq.(3.30) comes from the fact that the number of
possible radiating electron–hole pairs for filling factor ν ≤ 1 is given by the
number of electrons in the lowest Landau level. The filling factor at flux Φ
and electron number Ne is defined as

ν = Ne
Φ0

Φ
. (3.31)

3.3.4 Maxwell–Bloch equations

The derivation of the combined Maxwell–semiconductor Bloch equations is
done in analogy to the case of atomic systems [73]. One introduces

E(r, t) = <e
[

E(r, t)e−i(ωt−kx)
]

Rn(t) = 2pvc
n (t)eiωt, (3.32)

where the frequency ω = ∆n=0 is in resonance with the transition frequency
between the lowest Landau levels in the valence and conduction band. One
starts from a one–dimensional version of Eq.(3.26). In the rotating wave
approximation and neglecting time and space derivatives |∂tE| � ω|E|,
|∂xE| � (ω/c)|E| (c speed of light), |∂tR| � ω|R|, |∂xR| � (ω/c)|R|,
one obtains

(∂x + ∂t)E(x, t) = i2πωd
∑

n

βnRn(t)

− κE(x, t), κ := c/εrle. (3.33)
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Here, κ is a phenomenological escape rate for photons that simulates the
decay of the electromagnetic field modes [73] due to escape of photons on a
length scale le. This term is not necessary to find superradiant solutions of
the MBE, if either

1. the full x–dependence of all quantities is kept. Then, one finds so–
called automodelling solutions as a function of a dimensionless variable that
contains both time and space coordinate, or

2. the x–dependence is neglected and one finds (without the damping
term ∼ κ) a flow of energy oscillating between the field and the electronic sys-
tem. Here, we chose the third possibility and introduce the damping term, at
the cost of having one additional phenomenological parameter. As a gain, this
allows to eliminate the electric field from the equations if |∂tE(t)| � κE(t).
A second term is introduced in the equation for the inversion of Landau level
n, zn, in order to simulate the pumping of electrons and holes into the optical
active region. This term has been derived microscopically in chapter 2, cp.
Eq.(2.31) for Ṁ there. In the classical limit of the superradiance equations,
it leads to a term ∂tzn ∼ Tn, i.e. a population increase at a rate Tn. The
final form of the equations then becomes

∂

∂t
zn = −<e

[

R∗
n

∑

n′

Γn′Rn′

]

−=m

[

∑

n′

γnn′Rn′R∗
n

]

+ Tn (3.34)

∂

∂t
Rn = −iωnRnzn

∑

n′

Γn′Rn′ +
∑

n′

γnn′

2i
[Rn′zn − Rnzn′ ] .

Here, we introduced the definitions

ωn = n
eB

cmr
,

1

mr
=

1

mc
+

1

|mv|

Γn :=
Ω2

n

κ
, Ωn =

(

2π∆d2βn

)1/2
. (3.35)

3.4 Discussion

For the following discussion and the numerical evaluation of Eq.(3.34), we
have assumed integer filling factors

ν = nmax + 1 (3.36)
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for simplicity. In this case, Ne = (nmax + 1)Φ/Φ0 and βn = Φ/Φ0V for all n
independent of n. In particular, the Rabi frequency

Ω∆ :=

(

2π∆d2 Φ

Φ0V

)1/2

(3.37)

becomes independent of n then.

3.4.1 Transitions between the lowest Landau levels

We first discuss the case where only the lowest Landau level n = 0 is involved.
Then, Eq. (3.34) simplify to two coupled equations for Z = zn=0 and R =
Rn=0, where R can be chosen real. There is a constant of motion

J2 := R2(t) + Z2(t) (3.38)

in the case without pumping T = Tn=0 = 0. For non–vanishing T , one has

Ż = −Ω2
∆

κ

(

J2 − Z2
)

+ T

J̇ = TZ/J. (3.39)

These equation have been derived and discussed previously in the context
of pumped superradiance [168]. In the case T = 0, they describe Dicke
superradiance, i.e. a strong peak in the emission

|E(t)|2 =

(

Ω∆R(t)

dκ

)2

, (3.40)

where the emission peak is reached for Z(t) = 0 with the emission maximum
∼ (Ω2

∆/dκ)
2. Thus, the maximal emission is proportional to the square of the

number of flux quanta per optical active volume. In fact, the frequency Ω∆ is
identical with the generalized Rabi frequency for the case of one–dimensional
atomic superradiance, if the density of atoms is identified with Φ/(Φ0L

2Lz),
and the band gap energy ∆ with the energy difference between the higher
and the lower energy level of the atom [73].

For T = 0, Eq. (3.39) is the equation of an unharmonic, overdamped
pendulum that falls down from an initially inverted position (Z(0) > 0,
R(0) 6= 0) with J being the total length of the pendulum and Z its pro-
jection to a quantization axis [52, 73]. For T > 0, this pendulum starts to
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Parameter Symbol Value
electron mass mc 0.07m0

electron mass |mv| 0.7m0

dielectric constant εr 13.4
band gap ∆ 1.4eV
dipole moment/e d/e 1.7 · 10−10m
escape rate κ 2.2 · 1013s−1(le[µm])−1

escape length le = c/εrκ 10-100 µm

Rabi frequency Ω∆ 2.2 · 1012s−1B[T ]1/2

well thickness Lz 10−8m
Larmor frequency ~ωn n× 1.7meV B[T ]

Coulomb energy Ec = e2/(
√

2εrlB) 2.9meV B[T ]1/2

Tab. 3.1: Parameters for numerical calculation.

oscillate because it is periodically driven upwards again, the period of these
oscillations given by Eq.(3.1). If damping of the electric field is not consid-
ered, κ = 0, the time–scale of the superradiant process is given by Ω∆. In
this case, even without pumping (T = 0) there are oscillations of the energy
between the field and the electronic system with frequency ∼ Ω∆, see the
discussion in section 2.6.3. In the overdamped limit |∂tE(t)| � κE(t) that
we consider here, these oscillation do not appear because all photons that
have been emitted once escape within a time ∼ 1/κ, which now sets the
relevant time scale.

The Coulomb interaction terms drop out in the case of only the low-
est Landau level occupied: Hartee– and Fock–term cancel exactly. This
cancellation is, however, only due to our s–wave approximation. Without
this approximation, Hartree–Fock yields the magneto–exciton eigenstates in
the equilibrium case [51]; our approximation therefore cannot fully describe
magneto–exciton effects, but only the frequency renormalization and carrier
redistribution effects in an interacting ‘electron–hole plasma’ [51]. Neither
did we include the effect of incoherent Coulomb scattering terms, i.e. the
incoherent collision terms in the carrier Boltzmann equation. This is a seri-
ous limitation of the present model because it does not allow the inclusion
of dephasing effects in the magnetoplasma [169]. The following predictions
therefore have to be understood as addressing to a completely coherent dy-
namics with time–scales such that dephasing is of minor importance.
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Fig. 3.2: Time evolution (time in units 1/κ, horizontal axis) of the emission
intensity |E(T )|2 (units (κ/d)2, vertical axis) for lowest Landau level, le =
100µm, and magnetic field 1 and 2 Tesla. Inset: same with pumping T = 10κ,
T = 40κ at 2 Tesla.

3.4.2 Time scales

For the numerical evaluation of Eq.(3.34), we estimate the parameters for
a GaAs/AlGaAs heterostructure. The dipole moment is approximated as
d/e ≈

√

~2/2∆m, the quantum well form factor is set Fcv = 1.
Results for the lowest Landau level are shown in Fig.(3.2). The system

starts from an initially completely inverted state Z(t = 0) with a finite
polarization <eR(t = 0) = =mR(t = 0) = 0.1. The time evolution of the
emitted light is in the form of a peak with a maximum ∼ B2. This is the
so-called Dicke peak: the radiation is due to transitions of electrons in the
conduction band to empty states in the valence band. The strong magnetic
field quenches the kinetic energy so that all radiators have the same energy
difference ω = ∆n=0. They decay not individually, but in a collective way
coupled by the common radiation field. If electrons are pumped into the
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Fig. 3.3: Time evolution of the emission intensity. Number of highest Landau
level n = 15, no pumping, le = 100µm, B = 1 Tesla, and initial inversion
zn(0) = 0.1. Inset: two lowest Landau levels n = 0, 1 with B = 5 Tesla with
and without Coulomb interaction at le = 10µm. Scales as in Fig. (3.2).

conduction band and holes into the valence band, the emission begins to
oscillate because after each collective decay the system is ‘reloaded’ again.
Note that for the parameters used here, typical time scales are very short
. 1ps.

3.4.3 Higher Landau levels

For higher Landau levels, the Coulomb terms do not cancel any longer. In ad-
dition, coherent oscillations appear. These oscillations are not due to pump-
ing (Tn = 0 in each case), but due to the appearance of the new energy scale,
the Larmor frequency ωn. The Dicke peak repeats itself after a number of
nmax oscillations at a lower intensity. The Coulomb interactions (see inset
Fig. (3.3)) smear out these oscillations, but also lead to a small shift of the
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Fig. 3.4: Time evolution of the total emission intensity |E(T )|2. Number of
highest Landau level n = 15, pumping T = 0.5κ, le = 100µm, B = 1 Tesla.
Scales as in Fig. (3.2).

peak height and position.

The situation changes drastically, if one turns from vanishing pumping to
a non-vanishing pump rate T = Tn at higher Landau levels. The numerical
solution Fig.(3.4) indeed implies that even for moderate pumping T = 0.5κ,
the behavior of the total emitted intensity |E(t)|2 becomes completely irreg-
ular. This fact is underlined by the behavior of the polarization R0(t) as a
function of time in the lowest Landau level, Fig.(3.5).

3.4.4 Conclusion

It seems plausible that the nonlinear coupled equations (3.34) can have
chaotic solutions. Our numerical results imply that the pumping rate T
in this case has the function of a control parameter. Further investigations
are required for the detailed understanding of the crossover to the chaotic
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Fig. 3.5: Real (x-axis) and imaginary part (y-axis) of the polarization
Rn=0(t) × Ω∆/κ. Parameters as in Fig. (3.4)

regime.
Furthermore, the microscopic derivation above shows that Dicke super-

radiance is possible at least in the quantum limit of only the lowest Landau
levels occupied (strong magnetic fields). Still, we have not included the full
magneto-exciton effect into our calculation, but rather considered a mag-
neto plasma, where excitonic and dephasing effects are assumed to be less
important. At least in this case, the complete analogy with conventional su-
perradiance in atomic systems could be proven. It will remain an interesting
task to investigate the interaction effects beyond the s-wave approximation.
This would provide a system where interaction effects in combination with a
chaotic dynamic can be studied from a microscopic model.
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4. SUPERRADIANCE IN COUPLED
DOTS

Abstract

The model of superradiance in open systems is applied to arrays of double quantum

dots. For geometries that allow a collective interaction of the double dots with

phonons, oscillations in the tunnel current are predicted in agreement with the

general scheme developed in chapter 2.

4.1 Introduction

In this chapter, we return back to coupled quantum dots as discussed in chap-
ter (1). Our aim is to investigate coherence in the transport and radiation
properties of an array of N double quantum dots. The bosonic field through
which the double dots are coupled is assumed to be due to phonons since
this is the situation which is the closest to the experiments like the ones by
Fujisawa et al. [30] on lateral dots.

The individual double dots are labeled by an index i and coupled to
electron reservoirs left L and R by tunnel barriers. The i–th dot is described
in just the same way as we did in chapter (1), where we discussed the emission
of phonons from an individual double dot. In the following, we use the spin–
boson form of the dot–phonon Hamiltonian Eq.(A.11). Generalizing to the
case of N dots, this Hamiltonian becomes

Hdp :=

N
∑

i=1

{εiJ i
z + 2T i

cJ
i
x} +

N
∑

Q,i=1

J i
z

(

αi
Q − βi

Q

)

(

a−Q + a†Q

)

+
∑

Q

ωQa
†
QaQ. (4.1)

The energy difference εi and the tunnel matrix elements T i now depend
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on the individual dot i, as does the coupling matrix elements αi
Q and βi

Q.
Recalling the electron–phonon interaction potential,

Vep(x) =
∑

Q

λQe
iQx
(

a−Q + a†−Q

)

, λQ = λ∗−Q, (4.2)

the coupling matrix elements become

αi
Q = λQe

iQri
L

βi
Q = λQe

iQri
R, (4.3)

where we already neglected the formfactors P and F , cp. Eq. (1.78) and the
discussion following there.

Can a system as described by Eq.(4.1) exhibit superradiant properties?
As we have learned above, superradiance is closely related to a collective
time-evolution of the whole system. Collective operators can be introduced
in the superradiant limit

εi = ε, T i
c = Tc

αi
Q = αQ, βi

Q = βQ, (4.4)

i.e. if the matrix elements do not depend on the index i labeling the individual
double dot.

If the double dot array is fabricated within a semiconductor structure,
the restriction of identical energies ε and tunnel matrix element Tc can, at
least in principle, be reached by a careful adjustment of gate-voltages. The
condition of identical coupling constants αi

Q and βi
Q, however, at first glance

seems to be difficult to realize. That is, these constants depend on the
positions of the individual dots, ri

L and ri
R and therefore on the index i.

On the other hand, the limit of small sample superradiance we discuss here
is defined as the case where this dependence can be neglected [52, 73, 131],

with the argument that the phase factors eiqri
L/R play no role as long as a

typical wavelength of the emitted radiation is much larger than the maximal
distance ri

L − ri′

L (ri
R − ri′

R) between pairs of left (right) dots i and i′. It
seems to be difficult to fulfill this condition together with the requirement
Q(ri

L−ri
R) � 0, which comes from the fact that only wavelengths which give

a finite phase difference |1 − eiQ(ri
L−ri

R)| between the left and the right dots
contribute to the spontaneous emission from the individual double dots i.
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Fig. 4.1: Scheme for quasi one–dimensional superradiance in a slab (phonon–
cavity) with several double quantum dots. The left case is a geometry suitable
for one–mode superradiance with only one phonon wave vector Q supported
by the structure. In this case, the double dots do not need to be on top of
each other as in the right geometry.

Fortunately, in the superradiance literature a number of investigations
exists for superradiance in pencil–shaped active volumes, i.e. quasi–one di-
mensional geometries that favor a certain direction of the bosonic modes
Q [73, 137, 138]. In fact, we suggest a geometry where all double quantum
dots are centered symmetrically around a plane (y–z) that is perpendicular
to a direction of phonon propagation in a phonon cavity, cp. section 1.9.2.
If the phonon wave vector direction is along the x–axis, the phase factors
become (we neglect the formfactors F and P in Eq.(4.3))

αi
Q ∝ eiqxxi

L = eiqxxL, βi
Q ∝ eiqxxi

R = eiqxxR , (4.5)

where xR/L = xi
R/L is the x–coordinate of the right/left dots, such that the

matrix elements in fact become independent of i. This situation could be
realized experimentally in phonon cavities that strongly favor one certain
direction of phonon propagation, cp. the right configuration in Fig. (4.1). A
second possibility could be a geometry where only one phonon wave vector
Q is allowed. This corresponds to the one–mode case of superradiance where
there is no longer a sum over the different phonon modes. This could be
interesting for experiments where the phonon waves are generated externally
(e.g. by a transducer generating surface acoustic waves) in the form of a
pulse running through the slab.

In the following, we only consider the first case (right configuration in Fig.
(4.1), for which the corresponding geometry might be difficult to fabricate,
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but which is close to the ‘pure’ Dicke superradiance case. The Hamiltonian
becomes (cp. Eq.(4.5))

Hdp := εJz + Tc(J+ + J−)

+
∑

Q

Jz (αQ − βQ)
(

a−Q + a†Q

)

+
∑

Q

ωQa
†
QaQ

Jz :=

N
∑

i=1

J i
z, J± :=

N
∑

i=1

J i
± (4.6)

Here, we introduced the collective operators Jz and J±, which form the
angular momentum algebra with the Dicke eigenstates, Eq. (2.11).

4.2 Canonical transformation, equations of motion

We have seen above how to describe the time evolution of a superradiating
system in terms of a master equation that could be derived from the equation
of motion of the density matrix (statistical operator). Here, we will follow
the steps that we used in the derivation of the equations of motion for the
double dot in part 1. In particular, the use of the polaron–transformation
technique allows one to go beyond a simple perturbation expansion in terms
of the coupling to the bosonic field.

We introduce the unitary transformation for operators O,

Ō := eσJzOe−σJz

σ :=
∑

Q

(

αQ − βQ

ωQ

)

(

a−Q + a†Q

)

(4.7)

and use the commutation relations

[J+, J−] = 2Jz, [Jz, J±] = ±J± (4.8)

to obtain

J̄z = Jz, J̄+ = XJ+, J̄− = X†J−, X := eσ, (4.9)

whence the Hamiltonian Hdp is transformed into

H̄dp := H1 + H̄T , H̄T := Tc(J+X + J−X
†)

H1 := εJz − αJ2
z +

∑

Q

ωQa
†
QaQ, α :=

∑

Q

|αQ − βQ|2
ωQ

(4.10)
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4.3 Equation of motion for a closed system

Let us first discuss the dynamics of the system without coupling to electron
reservoirs. We calculate the time-evolution of the current operator that is
defined by

I := iTc(J+ − J−) = −2TcJy (4.11)

The density matrix ρ̃(t) obeys the equation

ρ̃(t) := eiH1tρ̄(t)e−iH1t

= ρ̄0 − i

∫ t

0

dt′[H̃T (t′), ρ̃(t′)], (4.12)

where we again defined an interaction picture for arbitrary operators O in
the unitary transformed frame and the X operators according to

Õ(t′) := eiH1tŌe−iH1t, Xt := eiH1tXe−iH1t. (4.13)

By this we can write

〈I〉t := Tr(ρ̃(t)Ĩ(t)) = (4.14)

= 〈I〉0t − i

∫ t

0

dt′Tr(ρ̃(t′)[Ĩ(t), H̃T (t′)]).

Here, 〈I〉0t describes the decay of an initial current I at t = 0. This equation,
still being exact, is not of great value unless one can find a reasonable ap-
proximation to evaluate the trace. Again, we use a decoupling of the density
matrix according to

ρ̃(t′) ≈ ρ0
phTrphρ̃(t

′). (4.15)

Still, for the case of more than one double dot N > 1, one needs an ad-
ditional approximation. That is, the time evolution of operators according
to Eq.(4.13) in general can not be performed analytically because of the
non-linear term −αJ2

z in the Hamiltonian H1. For the case N = 1, we had
Jz = (1/2)σz, and because σ2

z = 1 this term is just an additive constant. This
is no longer the case for the algebra of (pseudo)–spin operators for N > 1.

We note that the existence of the non–linear term −αJ 2
z in the canonically

transformed Hamiltonian H̄dp, Eq.(4.10), is closely related to the occuring of
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an equilibrium phase transition for strong coupling to the bosonic field, as
discussed by Hepp and Lieb for the one–mode superradiance model [170,171].

In the following, we assume that for small electron–phonon coupling we
can omit this term and set α = 0. Then,

Ĩ(t) = iTc(J+e
iεtXt − J−e

−iεtX†
t )

H̃T (t′) = Tc(J+e
iεt′Xt′ + J−e

−iεt′X†
t′) (4.16)

Performing the commutator and the phonon trace in Eq.(4.14), one obtains

〈I〉t = (4.17)

= T 2
c

∫ t

0

dt′eiε(t−t′) {〈J+J−〉t′C(t− t′) − 〈J−J+〉t′C(t′ − t)}

− T 2
c

∫ t

0

dt′e−iε(t−t′) {〈J−J+〉t′C(t− t′) − 〈J+J−〉t′C(t′ − t)}

= T 2
c 2<

∫ t

0

dt′eiε(t−t′) {〈J+J−〉t′C(t− t′) − 〈J−J+〉t′C∗(t− t′)} ,

where we set the initial current to zero and we again used Eq. (1.57) for an
equilibrium phonon system

〈XtX
†
t′〉0 =: C(t− t′)

C(t− t′) = C∗(t′ − t). (4.18)

4.4 Superradiant inelastic current

We perfom a Laplace transformation of Eq.(4.17),

〈I〉z = T 2
c 〈J+J−〉z [Cε(z) + C∗

ε (z)] − T 2
c 〈J−J+〉z

[

C−ε(z) + C∗
−ε(z)

]

Cε(z) :=

∫ ∞

0

dte−zteiεtC(t); z > 0. (4.19)

To extract the long-time behaviour of the time-evolution, we replace Cε(z) →
Cε(z = 0) =: Cε in Eq.(4.19), which then can be rewritten with the help of
the tunneling probability P (ε), Eq.(1.98),

<eCε = πP (ε) (4.20)
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as

〈I〉z ≈ 2πT 2
c P (ε)〈J+J−〉z − 2πT 2

c P (−ε)〈J−J+〉z. (4.21)

We consider the case ε > 0, where at zero temperature T = 0 only sponta-
neous emission is possible, i.e. P (−ε) = 0. Noting that the current I in the
closed system is related to Jz by

d

dt
Jz = i[Hdp, Jz] = −I, (4.22)

and transforming back eq.(4.21) from z– into t–space, we obtain the differ-
ential equation

− d

dt
〈Jz〉(t) = 2πT 2

c P (ε)〈J+J−〉(t). (4.23)

We can identify the spontaneous emission rate

γ(ε) := T 2
c <eCε ≡ πT 2

c P (ε), (4.24)

cp. Eq. (1.107). We use the quasiclassical approximation [141] that neglects
quantum fluctuations in the operator product J+J− and should work well for
large N ,

〈J+J−〉(t) = [J(t) + Jz(t)] [J(t) − Jz(t) + 1] , (4.25)

where J(t) = J = const because the system is closed. Eq.(4.23) then becomes

− d

dt
〈Jz〉(t) = 2γ(ε) [J + Jz(t)] [J − Jz(t) + 1] , (4.26)

which coincides with the superradiance equation of motion, Eq.(2.15). Note
that 〈Jz〉(t) ≡ M(t) and the identification 2γ(ε) = Γ has to be made.

4.5 Pumped superradiance for double dot arrays

In the following, we consider a system of N coupled double dots which are
connected to electron reservoirs. As in the case of the single double dot, we
assume that electrons can tunnel from the left reservoir into the i–th left dot
at a rate Γi

L, and out of the i–th right dot into the right reservoir at a rate Γi
R.
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For simplicity, we assume identical rates Γi
L = Γi

R = Γ. The coherent part of
the equations of motions for the expectation values of the operators 〈Jz〉 and
〈J±〉 is derived as above. The coupling to the electron reservoirs introduces
incoherent terms in the equations of motion, which are proportional to Γ: we
remember that for the case of N = 1 double dot, the corresponding equation
Eq.(1.51) for the occupation number difference and identical tunneling rates
is

d

dt
(〈nL〉 − 〈nR〉) = −iTc2〈p− p+〉 + 2Γ(N − 〈nL〉), (4.27)

where N = 1. For N > 1, a simple counting argument shows that the
electron tunneling changes 〈Jz〉 by

d

dt

∣

∣

∣

∣

res

〈Jz〉 = Γ(N − 〈NL〉) = Γ(N/2 − 〈Jz〉 − 〈N0〉), (4.28)

where 〈NL〉 is the expectation value of the total electron number in all left
dots, and 〈N0〉 is the expectation value of the number of empty double dots.
Furthermore, we introduced the notation |res to denote the contribution from
the interaction with the electron reservoirs to the time derivative. Further-
more, in Eq.(4.28) have excluded the possibility of double occupancy (two
electrons per double dot), i.e. we address the strong Coulomb blockade
regime where only one additional electron can enter (and leave) the dot.
It is understood that this description again assumes weak coupling to the
reservoirs, i.e. we are outside the Kondo transport regime where higher or-
der tunneling processes become important, cp. section 1.5.2.

4.5.1 Equations of motion for the open system

For the following evaluation, we make the simplifying assumption that the
number of empty dots 〈N0〉t remains small compared to the total number
of double dots during the time evolution of the system, i.e. we assume
〈N0〉t � N for all times t. Physically this means that the tunneling rate
Γ for electrons to tunnel into empty dots should be much larger than the
spontaneous emission rate. In this case, the dots are filled up at a fast rate
due to electrons tunneling in, but the out–tunneling is slow due to a slow
inelastic rate. In order to be consistent, we will check below that this as-
sumption does not contradict the choice of the parameters and the results of
our numerical calculation.
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In this case, the equations of motion become

d

dt
〈Jz〉t = −iTc [〈J+〉t − 〈J−〉t] + Γ

[

N

2
− 〈Jz〉t

]

〈J+〉t = −Γ

∫ t

0

dt′eiε(t−t′)〈J+〉t′

− iTc

∫ t

0

dt′eiε(t−t′) {〈J+J−〉t′C(t− t′) − 〈J−J+〉t′C(t′ − t)}

〈J−〉t = −Γ

∫ t

0

dt′e−iε(t−t′)〈J−〉t′

+ iTc

∫ t

0

dt′e−iε(t−t′) {〈J+J−〉t′C∗(t− t′) 〈J−J+〉t′C∗(t′ − t)} .

Here, we neglected the terms 〈J±〉0t corresponding to the decay of initial
coherences 〈J±〉 at time t = 0.

We use the identity

J2 =
1

2
[J+J− + J−J+] + J2

z . (4.29)

to calculate

d

dt

∣

∣

∣

∣

res

〈J+J− + J−J+〉t = 〈J̇+J− + J+J̇− + J̇−J+ + J−J̇+〉t

= −4Γ〈J2 − J2
z 〉t

d

dt

∣

∣

∣

∣

res

〈J2
z 〉t = 2Γ

〈

Jz

[

N

2
− Jz

]〉

t

, (4.30)

and one obtains

d

dt
〈J2〉t =

d

dt

∣

∣

∣

∣

res

〈J2〉t = Γ
[

NJz − 2J2
]

. (4.31)

To find an (approximate) solution of these equations, we first Laplace
transform them into z–space according to

〈J+〉z =

∫ ∞

0

dte−zt〈J+〉t etc, (4.32)
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Fig. 4.2: Solution of Eq. (4.36): superradiance of phonons from a system of
double quantum dots. Number of double dots N = 160. Inset: ‘phase–space’
plot.

obtaining

〈J+〉z =
−iTc

1 + Γ
z−iε

{〈J+J−〉zCε(z) − 〈J−J+〉zC∗
−ε(z)

}

z〈Jz〉z = −iTc [〈J+〉z − 〈J−〉z] + Γ

[

N

2
− 〈Jz〉z

]

= −2T 2
c

{

〈J+J−〉z<e

(

Cε(z)

1 + Γ
z−iε

)

+ 〈J−J+〉z<e

(

C∗
−ε(z)

1 + Γ
z−iε

)}

+ Γ

[

N

2
− 〈Jz〉z

]

. (4.33)
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We now assume
∣

∣

∣

∣

Γ

z − iε

∣

∣

∣

∣

� 1, (4.34)

and approximate Cε(z) → Cε(z = 0) ≡ Cε. In particular, we require the
energy differences ε between the left and right dots to be much larger than
the energy ~Γ. Then, Eq. (4.33) simplifies in the zero–temperature limit,
where <eC−ε = 0:

z〈Jz〉z = −2γ(ε)〈J+J−〉z + Γ

[

N

2
− 〈Jz〉z

]

, (4.35)

where we again introduced the inelastic rate γ(ε) Eq. (4.24).
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Fig. 4.3: Solution of Eq. (4.36): superradiance of phonons from a system of
double quantum dots. Number of double dots N = 20.

We transform Eq.(4.35) back into the time-domain and use the classical
approximation Eq.(4.25). Combining with the equation for J(t), Eq.(4.31),
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we end up with a closed system of two equations for Jz and J ,

d

dt
M = −2γ(ε)(J +M)(J −M + 1) + Γ

(

N

2
−M

)

d

dt
J2 = Γ

(

NM − 2J2
)

. (4.36)

4.5.2 Discussion

In Figs. (4.2) and (4.3) we show solutions of these equations for a fixed value
of the inelastic rate γ(ε) ≡ γ. The total electric current is the expectation
value

〈I〉t = iTc [〈J+〉t − 〈J−〉t] = −
(

d

dt
〈Jz〉t − Γ

[

N

2
− 〈Jz〉t

])

, (4.37)

cp. Eqs. (4.11) and (4.29). We observe that the current exhibits the typical
features of the oscillatory superradiance as discussed above in chapter 2. Note
that the explicit form of the Eqs. (4.36) differs from the ones in our abstract
model in chapter 2, i.e. Eqs.(2.18). The reason is our special assumption
of no double occupancy and no empty double dots that we made above.
Nevertheless, one reckognizes the obvious qualitative agreement with the
results for the oscillatory type of superradiance in chapter 2, cp. Fig.(2.6).

We also note that our choice Γ/γ = 10 in the solution Fig. (4.2) is
consistent with the requirement that the elastic tunnel rate Γ should be
much larger than the rate for spontaneous emission γ, which was required to
neglect the contribution from empty double dots in our calculation.



5. SPECTRAL LINESHAPES AND THE
DICKE EFFECT

Abstract

Line shapes of absorption spectra of atoms in a gas can become very sharp by

velocity changing collisions (Dicke effect). We show that the appearance of this

Dicke effect is a general feature due to the pole structure of correlation functions

for coupled systems. It therefore can appear in spectral functions for resonant

tunneling through two impurity levels (Shahbazyan, Raikh 1994), or in the (Drude)

ac conductivity for quantum wires in a strong magnetic field (chapter 6).

5.1 Introduction

The original Dicke effect as predicted by Dicke in 1953 [53] is a phenomenon
that occurs in the line shapes of absorption spectra of atoms in a gas. Line
shapes for the absorption of light with wave vector k are subject to Doppler
broadening due to frequency shifts kv, where v is the velocity of an individual
atom. Dicke showed that velocity–changing collisions of the radiating atoms
with the atoms of a (non–radiating) buffer gas can lead to a substantial
narrowing of the spectral line shape in the form of a very sharp peak on top
of a broad line shape, centered around the transition frequency of the atom.

Spectral lineshapes are determined by poles of correlation functions in
the complex frequency plane. The poles are eigenvalues of a collision matrix
which, for the simplest case of only two poles, belong to symmetric and
antisymmetric eigenmodes. As a function of an external parameter (e.g. the
pressure of an atomic gas or the magnetic field applied to wires, see below),
these poles can move through the lower frequency half–plane, whereby the
spectral lineshape becomes a superposition of a strongly broadened and a
strongly sharpened peak. This phenomenon is in analogy with the formation
of a bonding and an anti–bonding state by a coherent coupling of two (real)
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energy levels (level repulsion), with the difference that the Dicke effect is the
splitting of decay rates, i.e. imaginary energies, into a fast (superradiant)
and a slow (subradiant) mode. In fact, the case of a splitting into two modes
can be considered as a precursor of the phenomenon of superradiance [52],
where a symmetric mode of N radiators gives rise to an abnormally large
decay on a time scale 1/N .

Fig. 5.1: Line narrowing due to collisions of a Doppler–broadened spectral
line in the original 1953 Dicke paper [53]. The radiating gas is modeled within
a one–dimensional box of width a; λ is the light wavelength.

From an abstract point of view, this effect thus is of quite general origin
and can be expected to appear in a number of physical situations. Although
the Dicke effect has been known and experimentally verified for a long time
in atomic systems [73, 131, 172], only recently predictions were made for it
to occur in transport and scattering properties of mesoscopic systems. The
Dicke effect was predicted to appear in the conductance for resonant tun-
neling via two impurities [148], the resonant scattering in a strong magnetic
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field [149], and the emission from disordered mesoscopic systems [150]. It
was shown to appear in the intensity of emitted light [168] from quantum
dot arrays, two–dimensional magnetoplasmas [173], and the inelastic current
through double quantum dots [174].

In this and the following chapter, we will extend these analogies and give
a direct comparison between the collision–induced narrowing of the polar-
izability χ(ω) of an atomic gas, as was considered in Dicke’s 1953 paper,
and the ac conductivity σ(ω) of quantum wires in a magnetic field. When
only the two lowest subbands of the wire are occupied, the absorptive part of
σ(ω) shows (as a function of ω) a crossover from a broad Lorentzian to a very
sharp and high peak on top of a broad Lorentzian, when the backscattering
becomes more and more suppressed by an increasing magnetic field. This
behavior is due to inter–subband scattering by which the transport rates for
the two subbands become coupled and split into one fast and one slow mode.
The absorptive behavior of this system can be simulated by a classical cir-
cuit consisting of two impedances in parallel. The effect should be observable
in the frequency dependent microwave absorption properties of wires under
magnetic fields.

5.2 Atomic line shapes and collision effects

The Dicke effect (line narrowing due to collisions), its experimental con-
sequences and the conditions under which it can been observed have been
reviewed excellently in the past [172]. Here, we will review the theoretical
approach in terms of a Boltzmann equation.

5.2.1 Boltzmann equation

A gas of two–level atoms of mass M can be described by a one–particle
density matrix, defined as a trace of the statistical operator ρ,

ρσσ′(r1, r2; t) := Tr
(

ρΨ+
σ′(r2t)Ψσ(r1t)

)

, (5.1)

where the field operator Ψ+
σ (r2) creates an atom at position r2 with the

upper level (σ =↑) or the lower level (σ =↓) occupied. The ‘spin’–index σ
thus denotes the internal degree of freedom of the atom.

An electric field E(x, t) now gives rise to dipole transitions within an
atom at position x. If the corresponding matrix element is denoted as d (for



132 5. Spectral Lineshapes and the Dicke Effect

simplicity we set d ≡ d↑↓ ≡ d↓↑), and the transition frequency is ω0, the
Hamiltonian of the system in second quantization is

H =
∑

σ=±

∫

d3xΨ+
σ (x)

[

σ
ω0

2
− ∆

2M

]

Ψσ(x)

+

∫

d3x(−dE(x, t))
[

Ψ+
↑ (x)Ψ↓(x) + Ψ+

↓ (x)Ψ↑(x)
]

, (5.2)

where ∆ is the Laplacian and we have set ~ = 1. The quantum-mechanical
distribution function

f(p, r, t) =
1

(2π)3

∫

d3r′e−ipr′ρ(r, r′; t) (5.3)

with r = (r1 + r2)/2 and r′ = r1 − r2 is introduced, for which one derives
an equation of motion from the Heisenberg equations of the field operators
Ψσ(x), as

(

∂

∂t
− iω0 + vp∇r

)

f↓↑(p, r, t) = idE(r, t) [f↑↑(p, r, t) − f↓↓(p, r, t)] ,

(

∂

∂t
+ iω0 + vp∇r

)

f↑↓(p, r, t) = −idE(r, t) [f↑↑(p, r, t) − f↓↓(p, r, t)]

vp = p/M, (5.4)

and corresponding equations for f↑↑ and f↓↓. The electric field E(x, t) has
been assumed to vary spatially on a length scale which is much larger than
the de-Broglie wave length of the atoms; apart from this Eq.(5.4) is exact.

The Dicke effect has its origin in collisions of the atoms with a buffer
gas. These collisions are assumed to change only the momentum p of the
atoms and no their internal degree of freedom σ. Furthermore, the buffer
gas is optically inactive. This situation corresponds to elastic scattering of
electrons at impurities in electronic systems like metals or semiconductors.
In the theoretical description of these scattering events, one introduces a
collision term

L[fσ,σ′ ](p, r, t) := −
∫

dp′W (p,p′) [fσ,σ′(p, r, t) − fσ,σ′(p′, r, t)] (5.5)

on the r.h.s. of the kinetic equation Eq.(5.4). Here, W (p,p′) is the prob-
ability for scattering from p to p′, which can be calculated in second order



5.2. Atomic line shapes and collision effects 133

perturbation theory (Fermi’s Golden rule) from a scattering potential. Fur-
thermore, the spontaneous decay due to spontaneous emission of light from
the upper level of the atoms leads to a decay of the polarization at a rate γ.
This dissipative process is introduced as an additional collision term for f↑↓
and f↓↑

L′[f↓↑] = −γf↓↑, L′[f↑↓] = −γf↑↓. (5.6)

The polarization of the atom gas

P(r, t) = d

∫

dp [f↑↓(p, r, t) + f↓↑(p, r, t)] (5.7)

can be obtained in linear response to the electric field: the occupation prob-
abilities of the upper and lower level are assumed to be constant in time and
space, f↑↑(p, r, t)− f↓↓(p, r, t) = N(p). The resulting equation of motion for
f↑↓ then becomes

(

∂

∂t
+ iω0 + γ + vp∇r

)

)f↑↓(p, r, t) = (5.8)

= −idE(r, t)N(p) + L[f↑↓](p, r, t).

Eq. (5.8) is a linearized Boltzmann equation for the distribution function f↑↓.

5.2.2 One–dimensional model

Dicke originally considered the scattering processes in a one–dimensional
model: atoms bouncing back and forth within a one–dimensional container
[53]. In fact, a one-dimensional version of the Boltzmann equation is very
suitable to understand the line narrowing from Eq.(5.8). Due to energy
conservation, W (p, p′) ∝ δ(p2 − p

′2), which we can write as

W (p, p′) = Γ(p)[δ(p− p′) + δ(p+ p′)], (5.9)

where Γ(p) = Γ(−p) is a scattering rate with dimension 1/time.
In the collision integral, only the backscattering term remains, i.e.

L[fσ,σ′ ](p, r, t) := −
∫

dp′Γ(p)δ(p+ p′) [fσ,σ′(p, r, t) − fσ,σ′(−p, r, t)]

= −Γ(p) [fσ,σ′(p, r, t) − fσ,σ′(−p, r, t)] . (5.10)



134 5. Spectral Lineshapes and the Dicke Effect

The solution of Eq.(5.8) is easily obtained in Fourier-space where ∂t → −iω
and ∂r → ik;

(−iω + iω0 + γ + Γ(p) + ivpk) f↑↓(p, k, ω)

− Γ(p)f↑↓(−p, k, ω) = −idE(q, ω)N(p). (5.11)

This can be solved by writing a second equation for f↑↓(−p, k, ω) by simply
changing p→ −p. The result is a two-by-two system of equations for f↑↓(p)
and f↑↓(−p) (we can omit all other variables for the moment),

(

−iΩp + Γ(p) −Γ(p)
−Γ(p) −iΩ−p + Γ(p)

)(

f↑↓(p)
f↑↓(−p)

)

=

(

g(p)
g(−p)

)

,

(5.12)

where we introduced the abbreviations

g(p) := −idE(k, ω)N(p)

Ωp := ω − ω0 − vpk + iγ. (5.13)

Note that the velocity vp is an odd function of p,

vp ≡ p/M = −v−p. (5.14)

The solution can be found by inverting the two–by–two matrix as

f↑↓(p, k, ω) = idE(k, ω)N(p) × (5.15)

× −i(ω − ω0 + vpk + iγ) + 2Γ(p)

[ω − ω+(p, k)][ω − ω−(p, k)]
.

(5.16)

Here, the two poles ω±(p, k) in the denominator of Eq.(5.15) are given by

ω±(p, k) := ω0 − iγ − i
(

Γ(p) ±
√

Γ(p)2 − v2
pk

2
)

, (5.17)

and the result for f↓↑(p, k, ω) is obtained from Eq.(5.15) by changing ω0 →
−ω0 and N(p) → −N(p).
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5.2.3 Pole–structure

Using these results, one can now express a linear relation between the Fourier
transform of the polarization, Eq.(5.7), and the electric field E(k, ω),

P (k, ω) = χ(k, ω)E(k, ω)

χ(k, ω) = d2

∫

dpN(p)
ω − ω0 + vpk + iγ + 2iΓ(p)

[ω − ω+(p, k)][ω − ω−(p, k)]

− (ω0 → −ω0). (5.18)

The spectral line shape is determined by the polarizability χ(k, ω), the
form of which in turn depends on the poles ω±(p, k). The position of the
poles in the complex plane is a central point for the (abstract) understanding
of the Dicke effect, and we discuss it in some detail here and in Fig.(5.2). We
can distinguish two limiting cases:

1. collisionless limit Γ2(p) � v2
pk

2, cp. Fig.(5.2) : in this case, ω±(p, k) =
ω0 ± vpk− iγ. The linewidth is determined by the broadening through
spontaneous emission γ and is shifted from the central position ω0 by
the Doppler–shifts ±vpk. Note that the final result for the polarizability
still involves an integration over the distribution function N(p) and
therefore depends on the occupations of the upper and lower levels.
This leads to the final Doppler broadening due to the Doppler–shifts
±vpk.

2. Dicke–limit Γ2(p) � v2
pk

2, cp. Fig.(5.2): this is the most interesting
case, where in the square–root in the two poles the Doppler–broadening
can be neglected and

ω+ = ω0 − iγ − 2iΓ(p)

ω− = ω0 − iγ. (5.19)

The first pole ω+ corresponds to a broad resonance of width γ+2Γ(p),
the second pole ω− corresponds to a resonance whose width is solely
determined by the ‘natural’ line-width γ, i.e. a resonance which is no
longer Doppler–broadened.

The splitting into two qualitatively different decay channels is the key feature
of the Dicke effect. We have already encountered it in the emission of light
from a two–ion system, where the spontaneous decay splitted into one fast



136 5. Spectral Lineshapes and the Dicke Effect

-1.0 -0.5 0.0 0.5 1.0
-4

-3

-2

-1

0
OO

O: collisionless
limit
X : Dicke limit

X

X

γ= 0.1

ω
-

ω
+

Re ω - ω0

Im
 ω

 -
 ω

0

Fig. 5.2: Zeros ω± − ω0 according to Eq.(5.17) appearing in the distribution
function Eq.(5.15) and the polarizability Eq.(5.18). The real and imaginary
part of the frequencies are in units of the Doppler shift vpk which is fixed
here. The two curves are plots parametric in the elastic collision rate Γ(p);
the arrows indicate the direction of increasing Γ(p). For Γ(p) � |vpk|, both
curves approach the Dicke limit Eq.(5.19), where the imaginary part of ω−−ω0

becomes the negative of γ, and the imaginary part of ω+ − ω0 flows to minus
infinity.

(superradiant) and one slow (subradiant) channel, cp. chapter 1. In fact, in
the Dicke limit the polarizability is given by a sum of the two resonances ω±:
from Eq.(5.18), one obtains

χ(k, ω) = d2

∫

dpN(p)
ω − ω0 + vpk + iγ + 2iΓ(p)

ω+ − ω−
×

×
[

1

ω − ω+
− 1

ω − ω−

]

− (ω0 → −ω0) (5.20)
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In the Dicke limit, this becomes

χ(k, ω) ≈ d2

∫

dp
N(p)

−2iΓ(p)
×

×
[

vpk

ω − ω+

− 2iΓ(p)

ω − ω−

]

− (ω0 → −ω0). (5.21)

The two resonances thus correspond to an antisymmetric term vpk/(ω −
ω+) (odd function of p) and a symmetric term 2iΓ(p)/(ω−ω−) (even function
of p). Note that the antisymmetric term gives no contribution to χ(k, ω) for
even distribution N(p) = N(−p). Still, the appearance of a definite type of
symmetry together with each type of resonance is typical for the Dicke effect
and has its origin in the coupling of the two components f(p) and f(−p) in
the matrix equation Eq.(5.12). We can re-write this equation in a suggestive
way, that is (we again consider only the component f↑↓)

(A− λ1)

(

f↑↓(p)
f↑↓(−p)

)

= −ig(p)
(

1
1

)

, (5.22)

where we already used N(p) = N(−p) and defined

A :=

(

vpk − iΓ(p) iΓ(p)
iΓ(p) −vpk − iΓ(p)

)

λ := ω − ω0 + iγ. (5.23)

In the limit Γ(p) � |vpk|, the matrix A has the eigenvectors (1, 1) and (1,−1),

−iΓ(p)

(

1 −1
−1 1

)(

1
1

)

= 0

−iΓ(p)

(

1 −1
−1 1

)(

1
−1

)

= −2iΓ(p)

(

1
−1

)

. (5.24)

For the symmetric eigenvector, the effect of the collisions therefore is
annihilated to zero, and this eigenvector solves Eq.(5.22) with

−λf↑↓(p) = −ig(p), (5.25)

which means

f↑↓(p) =
dE(k, ω)N(p)

ω − ω0 + iγ
. (5.26)

This agrees with our previous result Eq.(5.15) in the Dicke limit Γ(p) � |vpk|:
the collision broadening has disappeared and the line is determined by the
remaining natural line width γ.
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Fig. 5.3: Imaginary part of the polarizability χ(k, ω) in units of d2/Γ (d:
dipole moment) around ω = ω0 for a one–dimensional model. All frequencies
are in units of the collision rate Γ of the radiating atoms with the atoms of
the buffer gas. The spontaneous emission rate γ = 0.1; the atom mass M and
the light wave vector k enter into the frequency ν0 = kp0/M which determines
the width of the momentum distribution Eq.(5.27).

5.2.4 Numerical example

To conclude this discussion, we give a quantitative numerical example. The
distribution function N(p) = f↑↑ − f↓↓ is assumed to be a 1d Gaussian

−N(p) =
1√
2πp0

e
− p2

2p2
0 , (5.27)
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Fig. 5.4: Same as Fig.(5.3) in logarithmic scale. For broad distributions
(larger ν0), the sharp ‘Dicke–peak’ appears on top of the Doppler–broadened
lineshape.

i.e. a symmetric momentum distribution of width p0. We plot the imaginary
part χ

′′

1(k, ω) of the first term in the polarizability Eq.(5.18),

χ
′′

1(k, ω) := d2=m

∫

dpN(p)
ω − ω0 + vpk + iγ + 2iΓ(p)

[ω − ω+(p, k)][ω − ω−(p, k)]
, (5.28)

i.e. the resonance around ω ≈ ω0. We assume a constant Γ(p) = Γ and
introduce the frequency ν0 := p0k/M for a fixed k. The result (which requires
one numerical integration) is shown in Fig.(5.3) for different widths ν0 of
the distribution N(p). For a sharp momentum distribution (small ν0), the
line-width is determined by the spontaneous emission rate γ and there is
basically no Doppler–broadening (Dicke–limit). In the opposite case of a
broad momentum distribution, the form of the line is determined by a sharp
peak of width ∼ γ on top of a broad curve of width ∼ v0. This last case is
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best visible in the logarithmic plot Fig.(5.4) and reflects the appearance of
the two poles ω+ and ω− in χ(k, ω).

5.3 Spectral function for two impurity levels
(Shahbazyan, Raikh)

The appearance of the Dicke effect in a spectral function for electronic states
has been found first by Shahbazyan and Raikh [148]. They considered the
two–channel resonant tunneling of electrons through a systems of two res-
onant impurities (localized states) of energy ε1 and ε2, see Fig.(5.5). The
conductance of such a system can be expressed by its scattering properties,
if Coulomb interactions among the electrons are neglected [15,16,175]. Here,
we follow the discussion of Shahbazyan and Ulloa who later generalized this
problem to the case of scattering properties in a strong magnetic field [149].

The spectral function of an electronic system can be related to the imag-
inary part of its retarded Green’s function [83, 114]. For the case of two
energy levels ε1 and ε2 that are assumed to belong to two spatially separated
localized impurity states, one can define the spectral function in the Hilbert
space of the two localized states where it becomes a two–by–two matrix,

S(ω) = − 1

π
=m

1

2
Tr

1

ω − ε̂+ iŴ
. (5.29)

It is assumed that transitions between the localized states i → |k〉 → j are
possible via virtual transitions to extended states (plane waves |k〉). Such
a situation is realized, e.g., for a coupling of two resonant impurity levels
which are both coupled via a tunnel barrier to a continuum. The two levels
then become coupled indirectly by virtual transitions of electrons from the
impurities to the continuum and back again. Then, ε is diagonal in the εi,
and Ŵ is a self–energy operator that describes the possibility of transitions
between localized levels i and j via extended states with wave vector k. In
second order perturbation theory, the self–energy operator Ŵ is given by

Wij = π
∑

k

tiktkjδ(ω − Ek), (5.30)

where ~ = 1 and the dependence on ω of Ŵ is no longer indicated. The
quantities tik are overlaps between the localized states i and the plane waves
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Fig. 5.5: Resonant tunneling through two impurity levels, from Shahbazyan
and Raikh [148]. Left: Tunnel junction with two resonant impurities 1 and 2
in a distance d in horizontal and distance s12 in vertical direction. Left: linear
conductance for identical impurity levels E as a function of E = EF −E, where
EF is the Fermi energy of the tunneling electron. The characteristic shape of
the spectral function Eq.(5.32), as known from the Dicke effect, appears here
in the conductance with increasing parameter q = 0, q = 0.75, q = 0.95, cp.
Eq.(5.31). Γ is the tunneling rate through the left and the right barrier.

|k〉, their dependence on the impurity position ri is given by the phase factor
from the plane wave at the position of the impurity, i.e. tik ∝ exp(ikri).

We reckognize that this spatial dependence of the matrix element tik is
analogous to the relation αQ ∝ exp(iQrL), βQ ∝ exp(iQrR) of the electron–
phonon coupling in the left (L) and (R) dot in the double dots discussed in
chapter 1, cp. Eq. (1.78) there. Furthermore, the product αQβ

∗
Q ∝ exp iQd

there (d was the distance between the two dots) appears in a completely
analogous way here, i.e. tikt

∗
jk ∝ exp iQrij, where rij is the distance between

the two impurities. The non–diagonal elements W12 can then be shown to
become an oscillating function of the distance rij,

W12 = q
√

W1W2, q = J0(r12kF ), (5.31)

where kF is the Fermi wave vector and J0 the Bessel function, resulting
from an angular integral in the plane of the two impurities. If the diagonal
elements W11 and W22 and both energies are assumed to be identical for
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simplicity, ε1 = ε2 = ε and W11 = W22 = W , inversion of Eq.(5.29) yields

S(ω) =
1

2π

[

W−
(ω − ε)2 +W 2

−
+

W+

(ω − ε)2 +W 2
+

]

W± = (1 ± q)W. (5.32)

This spectral function represents a superposition of two Lorentzians: one
narrow line with width W−, corresponding to a subradiant channel, and one
broad line with width W+, corresponding to a superradiant channel. This
splitting is fact is analogous to the spitting of a radiating decay channel of two
coupled radiators as discussed in chapter 1. If the parameter q is small, q � 1,
one has W+ ≈ W− ≈ W and the spectral function is a simple Lorentzian if
width W . The crossover to the Dicke regime with the splitting into a sharp
and a broad part of S(ω) is thus governed by q = J0(r12kF ) and therefore
by the ratio of the distance of the impurities to the Fermi wavelength of the
electron. This again shows that the effect is due to interference.

The two localized impurity states are therefore coupled by the continuum
of plane waves. As for their scattering properties, they have to be considered
as one quantum mechanical entity as long as their distance is of the same
order or smaller than the wavelength of scattering electrons. In this case, the
(linear) conductance G(EF ) for resonant tunneling shows the typical feature
of the Dicke effect as a function of the energy EF of a tunneling electron: as
it is determined by the spectral function S(ω) [175], the Dicke peak becomes
directly visible in the conductance, see Fig. (5.5). If the energies ε1 and ε2

of the two impurity levels become different, the resonant peak even shows a
more complex behavior; as a function of the parameter q there is a crossover
to a sharp transmission minimum [148].



6. THE DICKE EFFECT IN THE AC
DRUDE CONDUCTIVITY

Abstract

We show that in quantum wires in a strong magnetic field, impurity interband

scattering leads to a (Drude) ac conductivity which shows (as a function of fre-

quency) a sharp peak on top of a broad Lorentzian. This is a realization of the

Dicke effect (as discussed in the previous chapter) in an electronic system.

6.1 Introduction

We now turn from the collision–induced narrowing of the polarizability χ(ω)
of an atomic gas, as was considered first in Dicke’s 1953 paper, to a com-
pletely different quantity, that is the ac conductivity σ(ω) of quantum wires
in a magnetic field. Quantum wires are electronic systems where the motion
of electrons is confined in two perpendicular direction of space and free in the
third. The large amount of literature about the transport and optical prop-
erties of such systems indicates the fascinating physics contained in them.
We will not try to give a review here and refer to some recent textbook pre-
sentations [5–8, 50, 51]. We will neither touch the many novel aspects [49]
concerning localization and interaction effects in transport and optical prop-
erties of quantum wires here. Rather, in the following our strategy will be to
concentrate on basically one aspect, that is the quasi–one dimensional band
structure of wires.

In the presence of impurity scattering and when only the two lowest
subbands of the wire are occupied, the absorptive part of σ(ω) shows (as
a function of ω) the Dicke effect in analogy to the spectral line narrowing
discussed above. The parameter that drives the effect is the magnetic field B.
Impurity backscattering becomes more and more suppressed with increasing
B, which leads to a crossover in σ(ω) from a broad Lorentzian to a very sharp
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and high peak on top of a broad Lorentzian. This is due to inter–subband
scattering by which the transport rates for the two subbands become coupled
and split into one fast and one slow mode, corresponding to the superradiant
and the subradiant channel in the superradiance problem.

As mentioned in the introduction, this splitting of decay rates (‘imaginary
energies’) is similar to level repulsion of real energy levels, its origin being
the particular pole structure of a response function (the conductivity) of a
coupled system. The ‘wandering’ of poles in the complex frequency plane as
a function of an external parameter (here the magnetic field B) has already
been discussed in detail in the foregoing section. In the following, we concen-
trate on the details of this mechanism in the context of frequency dependent
transport in a quantum wire under a magnetic field.

6.2 Model

We consider a quantum wire in x–direction within a quantum well in the
x–y–plane under a magnetic field in z direction , see Fig.(6.1).

The wire is defined by a harmonic confinement potential of frequency ω0.
The single electron eigenstates |nk〉 with eigenenergies εnk of the clean system
(no impurities, Landau gauge) have two quantum numbers n (Landau band)
and k (momentum in direction of the wire) [14]. In the Drude conductivity,
quantum interference effects and localization of electrons are disregarded,
and the electronic transport is determined by the average electron scattering
rate at the impurities [176–179].

We use the memory function formalism [180, 181] to calculate the fre-
quency dependent conductivity σ(ω). An alternative way to calculate this
quantity is to solve the Boltzmann equation [176], which has been done for the
DC conductivity of quantum wires by, e.g., Bruus, Flensberg and Smith [106]
or Akera and Ando [182]. The basic advantage of the memory function for-
malism is that non–trivial interaction effects can in principle be incorporated
in the form of interaction dependent correlation functions. It is in particular
useful to combine exact results, e.g. for correlation functions of interacting
one–dimensional systems, with a perturbative description of impurity scat-
tering [34,183]. Although such effects are neglected here (and the final result
can be shown to coincide with the one obtained from the Boltzmann equation
in the limit of zero temperature and small frequencies ω we are interested
here), we chose the memory function formalism for its generality.
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Fig. 6.1: Subband dispersion εnk of a wire (upper left) in a magnetic field B.

In our model, the Hamiltonian of the wire is given by

H =
∑

nk

εnkc
+
nkcnk +

1

Ls

∑

nmkq

Vnm(q)c+nkcmk+q, (6.1)

where Ls is the length of the wire, cnk the electron creation operator for band
n, and Vnm(q) the matrix element for impurity scattering with momentum
transfer q from a state with quantum number nk to a statemk+q. To simplify
the notation, the spin index σ in the operators c

(+)
nkσ has not been written out

explicitely. The scattering potential is assumed to be spin–independent, so
that we implicitely include the summation over the spin in all k, k′–sums.

6.3 The conductivity and the memory function formalism

The linear response of an electronic system to a monochromatic electric
field E(x) cos(ωt) in general is governed by a non–local conductivity tensor
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σ(x,x′, ω). Many electronic transport properties of quantum wires (many–
subband quasi one–dimensional systems) have to be discussed in terms of
the conductance Γ (the inverse resistance) [15, 16, 99, 184–186] rather than
the conductivity, although the former is related to the latter in special
cases [187–191]. The conductance is regarded as the proper transport prop-
erty to explain, e.g., phenomena like step–like features in the electronic trans-
port properties, i.e. a quantization of Γ in multiples of 2e2/h [49]. This and
other phenomena like localization due to disorder [12] in general are believed
to exist due to phase coherence [121, 122, 192].

In presence of phase breaking processes, a crossover to a regime that can
be described by a Drude–like theory is expected even for one–dimensional sys-
tems when their length Ls becomes larger than the distance Lφ over which
phase coherence is maintained. In this case, the conductivity σ(ω) becomes
a meaningful quantity (we mention that the problems of phase coherence,
localization, and interactions in quantum wires are the subject of intensive
ongoing research). Furthermore, the conductivity as physical quantity in
quantum wires is also used to describe deviations from ideal, unperturbed
situations, e.g. deviations from conductance plateaus due to scattering pro-
cesses where a low order (sometimes renormalized) perturbation theory [193]
is possible. It is these two regimes that we have in mind when considering
the (homogeneous, impurity averaged) conductivity of a quantum wire in the
following.

The starting point is the expression of the homogeneous conductivity as
a function of complex frequency z in terms of the current–current correlation
function [180, 181],

σ(z) = −ie
2

z

(

χ(z) − ne

m∗

)

, (6.2)

where

−χ(z) = 〈〈ĵ; ĵ〉〉z =: −iLs

∫ ∞

0

dteizt〈[ĵ(t), ĵ(0)]〉0 (6.3)

is the (Zubarev) correlation function of the q = 0 component of the mass
current density operator ĵ = ĵ(q = 0). Furthermore, ne is the electron den-
sity, −e < 0 the electron charge and m∗ its conduction band mass. The
multichannel wire is described as a set of quasi one-dimensional subbands
(channels) n = 1, ..., Nc of dispersion εnk and corresponding electron veloc-
ities vnk = ∂εnk/∂k (we set ~ = 1). The current in the total system is the
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sum of the currents of all channels,

ĵ =
1

Ls

∑

n,k

vnkc
+
nkcnk, (6.4)

which allows for writing the conductivity as

σ(z) = −ie
2

z

(

∑

n,m

χnm(z) − ne

m∗

)

, (6.5)

where

χnm(z) := −〈〈jn, jm〉〉z, jn :=
1

Ls

∑

k

vnkc
+
nkcnk (6.6)

is the matrix of the current–current correlation functions. The total number
of electrons Ne is given by Ne =

∑

n,|k|<kn
. Here, the Fermi momentum kn in

subband n is related to the Fermi energy εF as εnk = εF , k = kn, which in
turn is determined by the total number of electrons via Ne =

∑

n,|k|<kn
and

the magnetic field dependent band structure εnk. One has

ne

m∗ =:
∑

nm

χ0
nm, χ0

nm := δnm
s

π
vn, s spin degeneracy, (6.7)

where

vn = vnk=kn = kn/m
∗ (6.8)

is the Fermi velocity in subband n and the sum in Eq. (6.7) runs over all
occupied subbands.

In Appendix (B.1), a multichannel version of the memory function for-
malism [180] is used to find the expression for the frequency dependent con-
ductivity σ(ω) at zero temperature T = 0 and small excitations ~ω around
the Fermi surface, i.e. frequencies ω � |εF − εn=0,k=0|/~. In this paper, we
restrict ourselves to excitations much smaller than the inter–subband dis-
tance ~ωB = ~

√

ω2
0 + ω2

c , where ωc = |e|B/m∗c is the cyclotron frequency
for magnetic field B. To get an estimate for the relevant frequency range, we
consider B = 0 and ~ω0 = 1 meV, i.e. ω0 = 1500 GHz. Frequencies ω from
0 − 100 GHz � ω0 thus are in the microwave spectroscopy regime.
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The general expression for σ(ω) is given in Appendix (B.1), Eqs. (B.15),
(B.7), together with (6.7). In the following, we discuss the case where the
two lowest subbands n = 0 and n = 1 are occupied. The expression for the
conductivity is

σ(z) = ie2
z s

π
(v0 + v1) + i

[

v0

v1
L11 + v1

v0
L00 − 2L01

]

(

z + iπL00

sv0

)(

z + iπL11

sv1

)

+
π2L2

01

s2v0v1

(6.9)

with

L00 =
s

π
Ls
v0

v1

(

|V01(k0 − k1)|2 + |V01(k0 + k1)|2 +
2s

π
V00(2k0)

2

)

L11 =
s

π
Ls
v1

v0

(

|V01(k0 − k1)|2 + |V01(k0 + k1)|2 +
2s

π
V11(2k1)

2

)

L01 =
s

π
Ls

(

|V01(k0 + k1)|2 − |V01(k0 − k1)|2
)

. (6.10)

Here, s = 2 if the electrons are taken as spin degenerate, and s = 1 if the
electrons are assumed to be spin-polarized.

6.4 Conductivity for impurity scattering

We consider scattering of electrons at random impurities. In lowest order
perturbation theory (Born approximation) in the impurity scattering, it is
sufficient to know the impurity averaged square of the matrix element

|Vnn′(k − k′)|2 = n2D
i

∑

q

|u(q)|2|〈nk|e−iqx|n′k′〉|2, (6.11)

that enters into the expressions Lij in Eq.(6.10). Here, u(q) is the two-
dimensional Fourier transform of the static potential of a single impurity
potential u(x, y). All impurities are assumed to be identical scatterers and
distributed with a concentration n2D

i per area L2. Finite quantum well thick-
ness corrections (form factors) are neglected here for simplicity. The averaged
matrix elements are calculated in Appendix (B.2) for Delta-scatterers , where
the Fourier component |u(q)|2 =: V 2

0 is a constant. The dependence on the
magnetic field is only through the ratio β := (ωc/ω0)

2.



6.4. Conductivity for impurity scattering 149

0.001

0.01

0.1

1

10

100

1000

10000

-10 -5 0 5 10

R
e 

σ 
(ω

)/σ
0 

ω τ

Fig. 6.2: Real part of the frequency-dependent Drude conductivity of a two–
channel quantum wire in a magnetic field, Eq. (B.26), in units of σ0 :=
e2svF0

τ/π (s=1 for spin–polarized electrons). Different curves are for ωc/ω0

= 0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, where ω0 is the frequency of the harmonic
confinement potential, and ωc = eB/m the cyclotron frequency for magnetic
field B.

We express the scattering matrix elements by the scattering rate τ−1

without magnetic field,

τ−1 := n2D
i V 2

0 m
∗/
√

4π~
3 (6.12)

(in comparison with [106], we defined τ−1 with an additional factor of 1/
√

4π
for convenience). In the following, we discuss the conductivity σ(ω) as a
function of frequency ω and magnetic field B for the Fermi energy fixed
between the bands n = 1 and n = 2, i.e. εF = 2~ωB, cp. Fig.(6.1).
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Fig. 6.3: Imaginary part of the frequency–dependent Drude conductivity of
a two–channel quantum wire in a magnetic field, Eq. (B.26). Different curves
are for ωc/ω0 = 0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8 (from below, note the double–
logarithmic scale).

6.5 Discussion

The frequency dependence of the conductivity Eq.(B.26) is shown in Fig.
(6.2) and (6.3). The real part <eσ(ω) has a Lorentzian shape for small
magnetic fields. For increasing magnetic field, i.e. larger ωc/ω0, this shape
develops into a very sharp Lorentzian on top of a broad Lorentzian . This
indicates that one of the two poles z± in σ(z) approaches zero: this is the
Dicke effect as discussed in the previous chapter. Here, in the Dicke limit
the subradiant pole is zero and has no small finite imaginary part, since
we have not included scattering processes other than impurity scattering in
contrast to Eq.(5.19), where spontaneous emission at a rate γ lead to a finite
imaginary part −iγ in both zeros.
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Fig. 6.4: Real part of the inverse impedance Z−1(ω) (conductance in units
of R) for a classical circuit, Fig.(6.4), that simulates the Dicke effect in a two–
subband quantum wire, Fig.(6.2). Above: Classical circuit to simulate the
Dicke effect in a two–subband quantum wire.

The two poles of σ(z) determine the width of <eσ(ω).In fact, for large
magnetic fields B, in L̃00, L̃11, L̃01 one can neglect the terms which are not
due to intersubband forward scattering, and

L̃01 ≈ −s
Lsπ

|V01(k0 − k1)|2, L̃00 =
v0

v1
L̃01, L̃11 =

v1

v0
L̃01. (6.13)

The quadratic equation that determines the poles of σ(z) then has the solu-
tions

z− = 0, z+ =
−i|V01(k0 − k1)|2

Ls

(

1

v0
+

1

v1

)

, (6.14)

i.e. in this limit one of the poles becomes zero, corresponding to the very
sharp peak in <eσ(ω).
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This analysis shows that the coupling of the two subbands by the in-
tersubband impurity scattering is essential for the appearance of the Dicke
effect here. Furthermore, for large magnetic fields, backscattering with mo-
mentum transfer 2k0, 2k1, and k0 + k1 from one side to the other side of the
wire becomes largely suppressed due to the exponential dependence of the
matrix elements on the square of the momentum transfer, cp. Eq.(B.24),
(B.20). With increasing magnetic fields, such scattering processes become
much weaker than intersubband forward scattering, i.e. scattering between
the bands n = 0 and n = 1. This absence of backward scattering, of course,
leads to a more and more increasing DC conductivity.

In the Dicke–limit Eq.(6.13), simple algebraic manipulations lead to an
expression for σ(z) with the Fermi velocities v0 and v1 in subband n = 0 and
n = 1,

σ(z) ≈ ie2 s

π

(

v+

z − z+
+

v−
z − z−

)

v+ := (v0 − v1)
v0/v1 − 1

v0/v1 + 1
, v− :=

4v0v1

v0 + v1
. (6.15)

The conductivity then becomes a sum of two contributions from the ‘super-
radiant’ mode corresponding to z+ and the ‘subradiant’ mode corresponding
to z−. Note that these modes are superpositions of contributions from both
subbands n = 0 and n = 1.

We note that it is possible to simulate the behavior at least of <eσ(ω) as
a function of ω by a classical circuit composed of two impedances in parallel:
This circuit consists of one huge inductance L0 which is in series with a
small resistance R0, the whole being in parallel with a small inductance L,
a large resistance R, and a capacitance C in series. Such classical circuits
are sometimes useful to simulate the ac transport properties of other, more
complicated systems [186, 194]. The complex impedance

Z−1(ω) =
iωC

1 + iωRC − ω2LC
+

1

R0 + iωL0

(6.16)

contains the time scale RC and the three parameters

α := L/R2C, β := L0/RR0C, γ0 := R/R0 (6.17)

by which a fit that qualitatively compares well with <eσ(ω) can be achieved.
Note that the case β/α ≡ L0R0/LR � 1 together with γ0 ≡ R/R0 � 1 sets
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very drastic conditions for the possible ratios L0/L and R0/R, if one tried to
simulate <eσ(ω) by a classical circuit in real experiment.

Finally, we check if the range of frequencies where the effect could be
observed experimentally is accessible. From Figs. (6.2) and (6.3), one should
be able to vary ω such that 0.1 . ωτ . 5 in order to scan the characteristic
shape of the Dicke peak. Impurity scattering times for AlGaAs/GaAs het-
erostructures are between 3.8 ·10−12 s and 3.8 ·10−10 s for mobilities between
105 − 107 cm2/Vs, cp. [6]. A scattering time of 10−11 s requires frequencies
of ω ≈100 GHz for ωτ ≈ 1, which is consistent with the requirement of ω
being much smaller than the effective confinement frequency (ω0 = 1500 Ghz
for ~ω0 = 1 meV). For an experimental check of the Dicke effect in quan-
tum wires under magnetic fields, we therefore suggest microwave absorption
experiments, i.e. determination of <eσ(ω) in relatively long wires. Our cal-
culation applies for the case where the two lowest subbands are occupied.
Temperatures T should be much lower than the subband–distance energy
~ωB, because thermal excitation of carriers would smear the effect. For ~ωB

of the order of a few meV, T should be of the order of a few Kelvin or less.
The Dicke peak appears for magnetic fields such that ωc/ω0 becomes of the
order and larger than unity. For convenience, we note that the cyclotron
energy in GaAs is ~ωc[meV] = 1.728B[T].

We have neglected electron interaction effects throughout our calcula-
tions. Recent experiments seem to indicate that such effects (Tomonaga–
Luttinger liquid behavior) become weaker in longer > 10µm cleaved–edge–
overgrowth wires [195], which might be due to loss of phase coherence in long
wires. The transport regime where interaction effects are of minor impor-
tance and the (incoherent) Drude–like theory can be applied is, on the other
hand, just the regime where we expect the effects discussed above to appear.
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7. SUMMARY,
ACKNOWLEDGEMENTS

This thesis has been devoted to the study of a class of interference phenomena
in electronic transport that are related to the Dicke–effect.

Our first chapter introduced the simplest case of this effect, that is the
splitting of a decay channel for two coupled radiators into a sub– and a super-
radiant channel. We discussed how interference of matrix elements leads to
oscillations in the inelastic current through coupled semiconductor quantum
dots, and compared our results to recent experiments in such systems. In
the second chapter, we generalized the Dicke superradiance model to allow
for a varying electron number. This lead to an ‘oscillatory’ superradiance,
the realization of which we discussed in chapter 3 for light emission from
a magnetoplasma and in chapter 4 for superradiance of phonons in double
dot arrays. The Dicke spectral line narrowing effect was reviewed in chapter
5, where we worked out its mathematical origin, i.e. a certain behavior of
correlation function poles in the complex plane. We discussed the appear-
ance of the electronic analogon of this effect in resonant tunneling and finally
predicted the effect to appear also in the ac conductivity of disordered wires
under a magnetic field. 1

As mentioned in the introduction, one of our motivations throughout this
work has been the transfer of ideas from quantum optics to electronic trans-
port. We are aware of the fact that many questions remain open and that
this new area of coherent, collective effects in the transport properties of

1 Part of the present material has been published in the form of short letters and con-
ference contributions: [174], [196], [197] (chapter 1); [168], [198] (chapter 2); [173] (chapter
3). The material in chapter 6 is based partly on work on ac transport in electronic sys-
tems [179, 199–202] and quantum wires [193]. Section 1.9.2 is work which is partly still
in progress in collaboration with cand–phys. S. Debald [125] and Dipl.–Phys. T. Vor-
rath [107], University of Hamburg. This thesis is an original work of the author.
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Effect Quantity Reference

Dicke superradiance Spontaneous light
emission from N
radiators

Dicke 1954 [52]; [chap-
ter 2]

Oscillatory superradi-

ance

Light emission from a
magnetoplasma

[chapter 3]

Pumped atomic super-

radiance

Spontaneous light
emission from atomic
gases

Steudel, Leonhardt
1994 [160] [section
2.6.4]

Oscillatory superradi-

ance

Time–dependent cur-
rent through quantum
dot arrays

[chapter 4]

Sub– and superradiance Spontaneous light
emission from trapped
ions

DeVoe, Brewer [68]
[section 1.2.2, 1.8.3]

Spontaneous emission of

phonons

Stationary current
through double dots

[chapter 1]

Spectral line narrowing Collision induced nar-
rowing of atomic po-
larizability

Dicke 1953 [53] [chap-
ter 5]

Dicke effect in resonant

tunneling

Narrowing of spectral
function for two impu-
rity levels

Shahbazyan, Raikh
1994 [148] [section
5.3]

Dicke effect in quantum

wires

Drude AC conductiv-
ity for two–subband
wire in magnetic field

[chapter 6]

The Dicke effect as discussed in this thesis.

mesoscopic systems is still a very new and developing field. We therefore
have tried to achieve a style of presentation that allows an advanced student
or newcomer to use it as a sort of textbook, where further study might be
facilitated by the references.

I would like to use the present opportunity to express my thanks to Prof.
B. Kramer who supported me throughout my stay in Hamburg in his group.
Furthermore, I am grateful to Prof. A. Shimizu for introducing me to the
Dicke effect and motivating me to study it in the context presented here. It
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workers and friends, all of whom I would like to thank here.

The financial support of the Deutsche Forschungsgemeinschaft (DFG),
the European Union Science and Technology Fellowship Program, the Japanese
JST (CREST) Program, and the WE Heraeus Foundation is gratefully ac-
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APPENDIX





A. DOUBLE QUANTUM DOTS

A.1 The function Cε

Here, we describe the splitting into a zero–temperature and a finite temper-
ature contributions to the function Φ(t) in the calculation of the correlation
function Cε. This function was defined as

Cε := lim
δ→0

∫ ∞

0

dte−δteiεte−Φ(t) (A.1)

Φ(t) :=

∫ ∞

0

dωρ(ω) {(1 − cosωt) coth(βω/2) + i sinωt}

ρ(ω)) := ρ0(ω) − ρ1(ω)

ρ0(ω) :=
g

ω
e−ω/ωc

ρ1(ω) :=
gωd

ω2
sin

(

ω

ωd

)

e−ω/ωc,

where ωc is the cutoff frequency for the smooth exponential cutoff of the
effective phonon density of states ρ(ω), and ωd := c/d (c is the speed of
sound and d the distance between the two wave function centers in the right
and the left dot). Throughout the numerical calculations, the approximate
form of the function ρ(ω), Eq.(1.87), is used.

Numerically, it is of advantage to separate the T = 0 contribution of Φ(t),
which can be calculated analytically, from the T > 0 contribution: We write

Φ(t) = Φ0(t) + Φ1(t) + ΦT0(t) + ΦT1(t)

Φ0/1(t) =

∫ ∞

0

dωρ0/1(ω) {1 − cosωt+ i sinωt}

ΦT0/T1(t) =

∫ ∞

0

dωρ0/1(ω) {(1 − cosωt)

× [coth(βω/2)− 1]} . (A.2)
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For the function Φ0(t), we find

e−Φ0(t) = (1 + (ωct)
2)−g/2e−ig arctan(ωct). (A.3)

For the function Φ1(t), we find

Φ1(t) = g
ωd

ωc

[

2f

(

ωct,
ωc

ωd

)

+ ig

(

ωct,
ωc

ωd

)]

f(x, y) :=
1

8

{

y ln

[

(1 + (x + y)2)(1 + (x− y)2)

(1 + y2)2

]

+ x ln

[

1 + (x + y)2

1 + (x− y)2

]

+ 2 arctan(x+ y) + 2 arctan(y − x)

− 4 arctan(y)

}

g(x, y) :=
1

2

{

1

2
ln

[

1 + (x+ y)2

1 + (x− y)2

]

+ (x + y) arctan(x + y)

− (y − x) arctan(y − x)

}

. (A.4)

For ΦT0(t), we find

ΦT0(t) = −2g ln

∣

∣

∣

∣

∣

∣

Γ
(

1 + 1
βωc

+ i t
β

)

Γ
(

1 + 1
βωc

)

∣

∣

∣

∣

∣

∣

. (A.5)

Summarizing, we have

Cε := lim
δ→0

∫ ∞

0

dt exp {i[(ε+ iδ)t− g arctan(ωct)]}

× exp {Φ1(t)} (1 + (ωct)
2)−g/2

×

∣

∣

∣

∣

∣

∣

Γ
(

1 + 1
βωc

+ i t
β

)

Γ
(

1 + 1
βωc

)

∣

∣

∣

∣

∣

∣

2g

exp {−ΦT1(t)} . (A.6)

This form is convenient for the final numerical evaluation of the function
Cε. It is useful to take advantage of special routines for integrals over the
semi-infinite, positive real axis with weight functions sin and cos. Eq. (A.6)
is already in a form so that one can directly apply these routines.
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A.2 Relation to the spin–boson model

The spin–boson model is a generic model for the description of dissipation in
two–level systems [101,102]. Without coupling to the electron reservoirs, the
double dot in presence of phonons can be described by the generic spin–boson
Hamiltonian: We introduce the operators

Jz :=
1

2
(nL − nR) =

1

2

(

1 0
0 −1

)

J− := |R〉〈L| =

(

0 0
1 0

)

J+ := |L〉〈R| =

(

0 1
0 0

)

Jx :=
1

2
(J+ + J−), Jy :=

1

2i
(J+ − J−), (A.7)

where we used the representation of the two states as

|R〉 =

(

0
1

)

, |L〉 =

(

1
0

)

. (A.8)

Note the factor 1/2 in the definition of Jz which we used to be consistent
with the definition of the higher angular momentum operators used in the
superradiance literature and in chapter 2. In particular, the relation of the
spin 1/2 matrices Jz, Jx, and Jy to the Pauli matrices is

Ji =
1

2
σi, i = x, y, z (A.9)

Using these definitions, we can re–write the Hamiltonian Eq.(1.17),(1.18) as

Hd ≡ = εLnL + εRnR + Tc(p+ p†)

=
1

2
(εL + εR) + (εL − εR)Jz + 2TcJx

Hαβ =
∑

Q

(αQnL + βQnR)
(

a−Q + a†Q

)

= Jz

∑

Q

(αQ − βQ)
(

a−Q + a†Q

)

+
1

2

∑

Q

(αQ + βQ)
(

a−Q + a†Q

)

. (A.10)
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The term (1/2)(εL + εR) is a constant and can be omitted. The last term
of Hαβ can be eliminated by shifting the phonon operators according to
aQ → bQ := aQ − (αQ + βQ)/ωQ. This leads to a phonon Hamiltonian Hp =
∑

Q ωQb
†
QbQ −

∑

Q |(αQ +βQ)/ωQ|2, and an additional energy -Jz

∑

Q(αQ−
βQ)(α∗

Q+β∗
Q)/ωQ. The latter is a mere renormalization of the energy variable

ε = εL − εR. Therefore, the Hamiltonian for the coupling of the double dot
to the phonons, Eq.(A.10), can be written as

H := εJz + 2TcJx + Jz

∑

Q

(αQ − βQ)
(

a−Q + a†Q

)

+
∑

Q

ωQa
†
QaQ, (A.11)

where for simplicity we used the same symbols for the renormalized energy
ε and the shifted phonon operators, and omitted the constant energy shifts.

This can be compared to the spin–boson Hamiltonian [101]

HSB = −1

2
∆σx +

1

2
εσz +

∑

α

(

1

2
mαω

2
αx

2
α + p2

α/2m
2
α

)

+
1

2
q0σz

∑

α

Cαxα, (A.12)

where xα, pα, mα, and ωα are, respectively, the coordinate, momentum, mass,
and frequency of the α’s harmonic oscillator coupled to the two–level system
via the last term in Eq.(A.12).

The bias ε in the spin–boson model is the difference ε between left and
right dot energies. Furthermore, the bare tunneling matrix element ∆ =
−2Tc with Tc the coupling between the two dots. The spectral function of
the spin–boson model

J(ω) =
π

2

∑

α

C2
α

mαω
δ(ω − ωα) (A.13)

is proportional to our effective electron–phonon coupling function ρ(ω),

ρ(ω) =
∑

Q

|αQ − βQ|2
~2ω2

δ(ω − ωQ), (A.14)

the latter being defined with one additional factor ω in the denominator.



B. THE DICKE EFFECT IN THE AC
DRUDE CONDUCTIVITY

B.1 Memory function

The memory function formalism starts from the observation that it is better
to perform an expansion of the inverse conductivity σ−1 rather than of σ
itself. The reason is that σ ∼ τ , the transport time which (to lowest order)
in turn is inversely proportional to the potential. Therefore, one introduces
a memory function [180], which in the multichannel case becomes a matrix,

M(z) := zχ(z)[χ0 − χ(z)]−1. (B.1)

Solving for the matrix

χ(z) = [z +M(z)]−1Mχ0 (B.2)

and inserting into Eq. (6.5), with Eq. (6.7) one obtains

σ(z) = ie2
∑

nm

(

[z +M ]−1χ0
)

nm
. (B.3)

Note that M and χ0 are matrices so that in the multichannel case a matrix
inversion is required. The calculation is started by expanding Eq. (B.2) in
terms of the memory matrix, zχ = Mχ0 +.... Since M is calculated here only
to second order in the scattering potential Vnm, the resulting expression for σ
is only an approximation and, e.g., localization effects can not be described
correctly. However, by calculating M rather then χ, a partial summation in
the scattering potential (ladder diagrams) is already performed.

The equation of motion

z〈〈jn; jm〉〉z = Ls〈[jn, jm]〉 + 〈〈An; jm〉〉z, An := [jn, H], (B.4)
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together with [jn, jm] = 0 is used twice [180] to obtain an expression for M ,

z(Mχ0)nm = φnm(z) − φnm(0), φnm(z) := 〈〈An;Am〉〉z. (B.5)

The matrix M(z) has a spectral representation and can be decomposed
into real and imaginary part, M(ω+i0) = M ′(ω)+iM ′′(ω) with real matrices
M ′(ω) = −M ′(ω) and M ′′(ω) = M ′′(−ω). For ω → 0, the real part M ′(0) =
0. Consequently, in the DC limit z = ω + i0 → 0 + i0,

M(z)χ0 =
φ(z) − φ(0)

z
→ iIm

∂

∂ω
φ(ω)

∣

∣

∣

∣

ω=0

=: iL. (B.6)

An expression for the ac conductivity can be obtained in the limit of
frequencies z so small that the dependence of M(z) on z can be neglected.
In the limit of ~ω � ε, the energy dependence of the scattering rates around
the Fermi energy εF is assumed to be negligeable. In terms of the L–matrix,
σ(z) then can be written as

σ(z) = ie2
∑

nm

(

χ0[zχ0 + iL]−1χ0
)

nm
. (B.7)

The commutator An is easily obtained as

An =
1

L2
s

∑

k,q,n′

[

Vnn′(k, q)vnkc
+
nkcn′k+q − Vn′n(k, q)vnk+qc

+
n′kcnk+q

]

. (B.8)

Calculation of the matrix elements z(M(z)χ0)nm, Eq. (B.5), requires the
correlation function matrix elements which we denote by

< n, n′;m,m′ >:= 〈〈c+nkcn′k+q; c
+
mk′cm′k′+q′〉〉z, (B.9)

suppressing the indices k, k′, q, q′ which remain the same. This leads to

φnm(z) =
1

L4
s

∑

n′m′kk′qq′

[Vnn′(k, q)Vmm′(k′q′)vnkvmk′ < n, n′;m,m′ >

− Vnn′(k, q) Vm′m(k′q′)vnk vmk′+q′ < n, n′;m′, m >

− Vn′n(k, q) Vmm′(k′q′)vnk+qvmk′ < n′, n;m,m′ >

+ Vn′n(k, q) Vm′m(k′q′)vnk+qvmk′+q′ < n′, n;m′, m >]. (B.10)

The above equations constitute the general framework for the calculation of
the conductivity in a multichannel system. To second order in the potential
scattering, they are still completely general.
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For non–interacting electrons, one has

< n, n′;m,m′ > = δq,−q′δk′,k+qδnm′δn′mLsϕnm(z)

ϕnm(z) :=
f(εnk) − f(εmk+q)

z + εnk − εmk+q
, (B.11)

where we again suppressed the indices k and k + q. One obtains from
Eq. (B.11) and Eq. (B.10)

φnm(z) =
1

L3
s

∑

kq

|Vnm(q)|2 [vnkvmk+qϕnm(z) + vnk+qvmkϕmn(z)] (B.12)

− δnm
1

L3
s

∑

kqn′

|Vnn′(q)|2 [vnkvmkϕnn′(z) + vnk+qvmk+qϕn′n(z)] .

In the limit of temperatures kBT, ~ω � εF , one has

−Imϕnm(ω) =
πω

vnvm
[ δ(k − kn) {δ(q + kn − km) + δ(q + kn + km)}

+ δ(k + kn) {δ(q − kn − km) + δ(q − kn + km)}] . (B.13)

This leads to

−Im φnm(ω) = s
4πω

(2π)2Ls

(

|Vnm(kn − km)|2 − |Vnm(kn + km)|2
)

(B.14)

− δnm

∑

n′

s
4πω

(2π)2Ls

vn

vn′

(

|Vnn′(kn − kn′)|2 + |Vnn′(kn + kn′)|2
)

,

where s = 1 or s = 2 is the spin degeneracy. Using Eq. (6.7) and Eq. (B.6),
the matrix L thus is

Lnm =
s

πLs

(

|Vnm(kn + km)|2 − |Vnm(kn − km)|2
)

, n 6= m (B.15)

Lnn =
s

πLs

[

∑

n′ 6=n

vn

vn′

(

|Vnn′(kn − kn′)|2 + |Vnn′(kn + kn′)|2
)

+ 2|Vnn(2kn)|2
]

.

B.2 Potential scattering matrix elements

The momentum matrix element

〈nk|e−iqx|n′k′〉 = δk,k′+qxM
qx

nn′(qy) (B.16)
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reflects momentum conservation in x–direction. The matrix elements M can
be calculated exactly, their explicit expressions for n = 0, 1 are

|M qx

00 (qy)|2 = e−
1

2(ξ2+η2)

|M qx

10 (qy)|2 = e−
1

2(ξ2+η2) 1

2

[

ξ2 + η2
]

|M qx

11 (qy)|2 = e−
1

2(ξ2+η2)
[

1 − 1

2
(ξ2 + η2)

]2

ξ = lBαqx, η = lBqy, (B.17)

where we introduced the effective magnetic length lB, the cyclotron frequency
ωB, and the parameter α according to

α :=
ωc

ωB
, ωc :=

eB

m∗c
, ωB :=

√

ω2
0 + ω2

c , lB :=

√

~

m∗ωB
. (B.18)

B.2.1 Delta scatterers

The matrix elements Eq. (6.11) can be evaluated explicitely for Delta–
scatterers with u(q) independent of q. In this case,

|u (q = (k − k′, qy))|2 =: V 2
0 , (B.19)

The remaining sum (1/Ls)
∑

qy
|M qx

nn′(qy)|2 can be transformed into an inte-
gral and yields the result

|V00(q)|2 =
niV

2
0 Ls

√

2πl2B
e−

1

2
(lBαq)2

|V10(q)|2 = |V00(q)|2
1

2

[

1 + (lBαq)
2
]

|V11(q)|2 = |V00(q)|2
[

3

4
− 1

2
(lBαq)

2 +
1

4
(lBαq)

4

]

(B.20)

B.2.2 Explicit expression for σ(z)

The energy bandstructure of a quantum wire with parabolic confinement
potential of strength ~ω0 in a perpendicular magnetic field B is

εnk =

(

n+
1

2

)

~ωB + γB
~

2

2m∗k
2, γB =

(

ω0

ωB

)2

=
1

1 +
(

ωc

ω0

)2 , (B.21)
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i.e. a set of equidistant parabolas, labeled by the Landau band index n.

We fix the Fermi energy between the subbands n = 1 and n = 2, i.e.
εF = 2~ωB. The two subband Fermi wave vectors then become

k0 =

√

2m∗

γB~2

(

εF − 1

2
~ωB

)

=

√

3

2

(

ωB

ω0

)3/2

kF0

k1 =

√

2m∗

γB~2

(

εF − 3

2
~ωB

)

=

√

1

2

(

ωB

ω0

)3/2

kF0

kF0 :=

√

2m∗ω0

~
. (B.22)

Reckognizing that

(lBα)2

(

ωB

ω0

)3

k2
F0 = 2

(

ωc

ω0

)2

, (B.23)

the arguments lBαq in the matrix elements become

(lBαq)
2 =















β[
√

3 + 1]2, q = k0 + k1

β[
√

3 − 1]2, q = k0 − k1

β[2]2, q = 2k0

β[2
√

3]2, q = 2k1

β :=

(

ωc

ω0

)2

(B.24)

for the four cases of intraband backscattering q = 2k0, 2k1, interband back-
ward (q = k0 − k1) and interband forward scattering (q = k0 + k1).

The dependence on the magnetic field can be completely absorbed into
the parameter β. We express the scattering matrix elements by the scattering
rate τ−1 without magnetic field,

τ−1 :=
n2D

i V 2
0

√

2πl20vF0
~2

=
niV

2
0 m

∗
√

4π~3
(B.25)

with vF0
:= ~kF0/m

∗ and l0 =
√

~/m∗ω0. Then, one has lB = l0(1 + β)−1/4,
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and the conductivity can be written as

σ(z) = ie2 s

π
vF0τ(1 + β)−1/4

×
zτ
(√

3
2

+
√

1
2

)

+ i
[√

3L̃11 + 1√
3
L̃00 − 2L̃01

]

[

zτ + i
√

2
3
L̃00

] [
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√

1
2
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+ 2√
3
L̃2

01
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2
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σ=±1
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1 +
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1 + σ
√

3
]2
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2
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}

+ 2e−6β
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1

2
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3
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2
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1 + σ
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, (B.26)

where we used Eq.(6.10),(B.24),

niV
2
0

√

2πl2B
= vF0

τ−1 l0
lB

= vF0
τ−1(1 + β)

1

4 , (B.27)

and dimensionless functions L̃00 = πL00/(svF0
τ−1) etc.

The Fermi velocities v0 and v1 can be expressed by the Fermi velocity vF0

as

v0 = vF0

√

3

2
(1 + β)−

1

4 , v1 = vF0

√

1

2
(1 + β)−

1

4 . (B.28)
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[158] K. Jauregui, W. Häusler, D. Weinmann, B. Kramer, Phys. Rev. B 53,
R1713 (1996).

[159] R. Bonifacio and G. Preparata, Phys. Rev. A 2, 336 (1970).

[160] H. Steudel and I. Leonhardt, Opt. Comm. 107, 88 (1994).

[161] L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Vol. 3 of Landau
and Lifshitz, Course of Theoretical Physics (Pergamon Press, Oxford,
1965).

[162] J. Faist, F. Capasso, D. .L. Sivco, C. Sirtori, A. L. Hutchinson, and
A. Y. Cho, Science 264, 553 (1994).

[163] J. Faist, F. Capasso, C. Sirtori, D. .L. Sivco, A. L. Hutchinson, and
A. Y. Cho, Appl. Phys. Lett. 66, 538 (1995).

[164] A. A. Belyanin, V. V. Kocharovsky, and Vl. V. Kocharovsky, Solid
State Comm. 80, 243 (1991); Laser Physics 2, 952 (1992).

[165] J. M. Luttinger, W. Kohn, Phys. Rev. 97, 869 (1955); L. Roth, B. Lax,
and S. Zwerdling, Phys. Rev. 114, 90 (1959).

[166] C. Kittel, Quantum Theory of Solids (John Wiley, New York, 1963).



182 Bibliography

[167] A. Shimizu in: Mesoscopic Physics and Electronics, Ed. T. Ando, H.
Nakashima, and S. Komiyama (Springer, Berlin 1998). .

[168] T. Brandes, J. Inoue, and A. Shimizu, Phys. Rev. Lett. 80, 3952 (1998).

[169] M. W. Wu and H. Haug, Phys. Rev. B 58, 13060 (1998).

[170] K. Hepp and E. Lieb, Ann. Phys. 76, 360 (1971).

[171] A. Andreev, V. Emel’yanov, and Y. A. Il’inski, in Cooperative Effects
in Optics, Malvern Physics Series (Institute of Physics, Bristol, 1993),
Chap. 5.8.

[172] P. R. Berman, Appl. Phys. 6, 283 (1975).

[173] T. Brandes, J. Inoue, and A. Shimizu, Physica B 272, 341 (1999).

[174] T. Brandes and B. Kramer, Phys. Rev. Lett. 83, 3021 (1999).

[175] H. Haug and A.-P. Jauho, in Quantum Kinetics in Transport and
Optics of Semiconductors, Vol. 123 of Solid-State Sciences (Springer,
Berlin, 1996), Chap. 12.
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