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This lecture aims at providing graduate students in physics and neighboring sciences with a
heuristic approach to master equations. Although the focus of the lecture is on rate equations,
their derivation will be based on quantum-mechanical principles, such that basic knowledge of
quantum theory is mandatory. The lecture will try to be as self-contained as possible and aims at
providing rather recipes than proofs.

As successful learning requires practice, a number of exercises will be given during the lecture,
the solution to these exercises may be turned in in the next lecture (computer algebra may be used
if applicable), for which students may earn points. Students having earned 50 % of the points at
the end of the lecture are entitled to three ECTS credit points.

This script will be made available online at

http://wwwitp.physik.tu-berlin.de/~ schaller/.
In any first draft errors are quite likely, such that corrections and suggestions should be ad-

dressed to

gernot.schaller@tu-berlin.de.
I thank the many colleagues that have given valuable feedback to improve the notes, in partic-

ular Dr. Malte Vogl, Dr. Christian Nietner, and Prof. Dr. Enrico Arrigoni.
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Chapter 1

An introduction to Master Equations

1.1 Master Equations – A Definition

Many processes in nature are stochastic. In classical physics, this may be due to our incomplete
knowledge of the system. Due to the unknown microstate of e.g. a gas in a box, the collisions of gas
particles with the domain wall will appear random. In quantum theory, the evolution equations
themselves involve amplitudes rather than observables in the lowest level, such that a stochastic
evolution is intrinsic. In order to understand such processes in great detail, a description should
include such random events via a probabilistic description. If the master equation is a system of
linear ODEs Ṗ = AP , we will call it rate equation.

Box 1 (Rate Equation) A rate equation is a first order differential equation describing the time
evolution of probabilities, e.g. for discrete events

dPk
dt

=
∑
`

[Tk`P` − T`kPk] , Ṗ = TP , (1.1)

where the Tk` > 0 are transition rates between events ` and k. In matrix representation, this
implies

T =



−
∑
i 6=1

Ti1 T12 . . . T1N

T21 −
∑
i 6=2

Ti2 T2N

...
. . .

...
TN1 . . . . . . −

∑
i 6=N

TiN

 (1.2)

The rate equation is said to satisfy detailed balance, when for the stationary state T P̄ = 0
the equality Tk`P̄` = T`kP̄k holds for all pairs (k, `) separately.

Furthermore, when the transition matrix Tk` is symmetric, all processes are reversible at the
level of the rate equation description.

Here, we will use the term master equation in more general terms describing any system of
coupled ODEs for probabilities. This is more general than a rate equation, since, for example, the

9



10 CHAPTER 1. AN INTRODUCTION TO MASTER EQUATIONS

Markovian quantum master equation does in general not only involve probabilities (diagonals of
the density matrix) but also coherences (off-diagonals).

It is straightforward to show that rate equations conserve the total probability∑
k

dPk
dt

=
∑
k`

(Tk`P` − T`kPk) =
∑
k`

(T`kPk − T`kPk) = 0 . (1.3)

Beyond this, all probabilities must remain positive, which is also respected by a normal rate
equation: Evidently, the solution of a rate equation is continuous, such that when initialized
with valid probabilities 0 ≤ Pi(0) ≤ 1 all probabilities are non-negative initially. Let us assume
that after some time, the probability Pk it the first to approach zero (such that all others are
non-negative). Its time-derivative is then always non-negative

dPk
dt

∣∣∣∣
Pk=0

= +
∑
`

Tk`P` ≥ 0 , (1.4)

which implies that Pk = 0 is repulsive, and negative probabilities are prohibited.
Finally, the probabilities must remain smaller than one throughout the evolution. This however

follows immediately from
∑

k Pk = 1 and Pk ≥ 0 by contradiction.
In conclusion, a rate equation of the form (1.1) automatically preserves the sum of probabilities

and also keeps 0 ≤ Pi(t) ≤ 1 – a valid initialization provided. That is, under the evolution of a
rate equation, probabilities remain probabilities.

1.1.1 Example 1: Fluctuating two-level system

Let us consider a system of two possible events, to which we associate the time-dependent proba-
bilities P0(t) and P1(t). These events could for example be the two conformations of a molecule,
the configurations of a spin, the two states of an excitable atom, etc. To introduce some dynamics,
let the transition rate from 0→ 1 be denoted by T10 > 0 and the inverse transition rate 1→ 0 be
denoted by T01 > 0. The associated master equation is then given by

d

dt

(
P0

P1

)
=

(
−T10 +T01

+T10 −T01

)(
P0

P1

)
(1.5)

Exercise 1 (Temporal Dynamics of a two-level system) (1 point)
Calculate the solution of Eq. (1.5). What is the stationary state?

1.1.2 Example 2: Interacting quantum dots

Imagine a double quantum dot, where the Coulomb interaction energy is so large that the doubly
occupied state can be omitted from the considerations. In essence, only three states remain.
Let |0〉 denote the empty, |L〉 the left-occupied, and |R〉 the right-occupied states, respectively.
Now assume the two quantum dots to be tunnel-coupled to adjacent reservoirs but not among
themselves, such that particle transport between the dots is prohibited. The occupation of a dot
tunnel-coupled to a junction with bare tunneling rate Γ will fluctuate depending on the Fermi level
of the junction, see Fig. 1.1. In particular, if at time t the dot was empty, the probability to find
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Figure 1.1: A single quantum dot coupled to a single junction, where the electronic occupation of
energy levels is well approximated by a Fermi distribution.

an electron in the dot at time t+ ∆t is roughly given by Γ∆tf(ε) with the Fermi function defined
as

f(ω) =
1

eβ(ω−µ) + 1
, (1.6)

where β denotes the inverse temperature and µ the chemical potential of the junction. The
transition rate is thus given by the tunneling rate Γ multiplied by the probability to have an
electron in the junction at the required energy ε ready to jump into the system. The inverse
probability to find an initially filled dot empty reads Γ∆t [1− f(ε)], i.e., here one has to muliply
the bare tunneling rate with the probability to have a free slot at energy ε in the junction. Applying
this recipe to every dot separately we obtain for the total rate matrix

T = ΓL

 −fL 1− fL 0
+fL −(1− fL) 0

0 0 0

+ ΓR

 −fR 0 1− fR
0 0 0

+fR 0 −(1− fR)

 . (1.7)

In fact, a microscopic derivation can be used to confirm the above-mentioned assumptions, and
the parameters fα become the Fermi functions

fα =
1

eβα(εα−µα) + 1
(1.8)

with inverse temperature βα, chemical potentials µα, and dot level energy εα.

Exercise 2 (Detailed balance) Determine whether the rate matrix (1.7) obeys detailed balance.

1.1.3 Example 3: Diffusion Equation

Consider an infinite chain of coupled compartments as displayed in Fig. 1.2. Now suppose that
along the chain, a molecule may move from one compartment to another with a transition rate
T that is unbiased, i.e., symmetric in all directions. The evolution of probabilities obeys the
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Figure 1.2: Linear chain of compartments coupled with a transition rate T , where only next
neighbors are coupled to each other symmetrically.

infinite-size master equation

Ṗi(t) = TPi−1(t) + TPi+1(t)− 2TPi(t)

= T∆x2Pi−1(t) + Pi+1(t)− 2Pi(t)

∆x2
. (1.9)

We can introduce the probability density ρ(xi, t) = Pi(t)/∆x, such that as ∆x → 0 and T → ∞
in a way that D = T∆x2 remains constant, we obtain the partial differential equation

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2
with D = T∆x2 . (1.10)

We note here that while the Pi(t) describe (dimensionless) probabilities, ρ(x, t) describes a time-
dependent probability density (with dimension of inverse length).

Such diffusion equations are used to describe the distribution of chemicals in a soluble in the
highly diluted limit, the kinetic dynamics of bacteria and further undirected transport processes.
From our analysis of master equations, we can immediately conclude that the diffusion equation

preserves positivity and total norm, i.e., ρ(x, t) ≥ 0 and
+∞∫
−∞

ρ(x, t)dx = 1. Note that it is straight-

forward to generalize the mapping between master equations and the diffusion equation to the
higher-dimensional case.

One can now think of microscopic models where the hopping rates in different directions are
not equal (drift) and may also depend on the position (spatially-dependent diffusion coefficient).
A corresponding model (in next-neighbor approximation) would be given by

Ṗi = Ti,i−1Pi−1(t) + Ti,i+1Pi+1(t)− (Ti−1,i + Ti+1,i)Pi(t) , (1.11)

where Ta,b denotes the rate of jumping from b to a. An educated guess is given by the ansatz

∂P

∂t
=

∂2

∂x2
[A(x)P (x, t)] +

∂

∂x
[B(x)P (x, t)]

≡ Ai−1Pi−1 − 2AiPi + Ai+1Pi+1

∆x2
+
Bi+1Pi+1 −Bi−1Pi−1

2∆x

=

[
Ai−1

∆x2
− Bi−1

2∆x

]
Pi−1 −

2Ai
∆x2

Pi +

[
Ai+1

∆x2
+
Bi+1

2∆x

]
Pi+1 , (1.12)

which is equivalent to our master equation when

Ai =
∆x2

2
[Ti−1,i + Ti+1,i] , Bi = ∆x [Ti−1,i − Ti+1,i] . (1.13)
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We conclude that the Fokker-Planck equation

∂ρ

∂t
=

∂2

∂x2
[A(x)ρ(x, t)] +

∂

∂x
[B(x)ρ(x, t)] (1.14)

with A(x) ≥ 0 preserves norm and positivity of the probability distribution ρ(x, t).

Exercise 3 (Reaction-Diffusion Equation) (1 point)
Along a linear chain of compartments consider the master equation for two species

Ṗi = T [Pi−1(t) + Pi+1(t)− 2Pi(t)]− γPi(t) ,
ṗi = τ [pi−1(t) + pi+1(t)− 2pi(t)] + γPi(t),

where Pi(t) may denote the concentration of a molecule that irreversibly reacts with chemicals in
the soluble to an inert form characterized by pi(t). To which partial differential equation does the
master equation map?

In some cases, the probabilities may not only depend on the probabilities themselves, but
also on external parameters, which appear then in the master equation. Here, we will use the
term master equation for any equation describing the time evolution of probabilities, i.e., auxiliary
variables may appear in the master equation.

1.2 Density Matrix Formalism

1.2.1 Density Matrix

Suppose one wants to describe a quantum system, where the system state is not exactly known.
That is, there is an ensemble of known normalized states {|Φi〉}, but there is uncertainty in which
of these states the system is. Such systems can be conveniently described by the density matrix.

Box 2 (Density Matrix) The density matrix can be written as

ρ =
∑
i

pi |Φi〉 〈Φi| , (1.15)

where 0 ≤ pi ≤ 1 denote the probabilities to be in the state |Φi〉 with
∑

i pi = 1. Note that we
require the states to be normalized (〈Φi|Φi〉 = 1) but not generally orthogonal (〈Φi|Φj〉 6= δij is
allowed).

Formally, any matrix fulfilling the properties

• self-adjointness: ρ† = ρ

• normalization: Tr {ρ} = 1

• positivity: 〈Ψ| ρ |Ψ〉 ≥ 0 for all vectors Ψ

can be interpreted as a valid density matrix.
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For a pure state one has pī = 1 and thereby ρ = |Φī〉 〈Φī|. Evidently, a density matrix is pure
if and only if ρ = ρ2.

The expectation value of an operator for a known state |Ψ〉

〈A〉 = 〈Ψ|A |Ψ〉 (1.16)

can be obtained conveniently from the corresponding pure density matrix ρ = |Ψ〉 〈Ψ| by simply
computing the trace

〈A〉 ≡ Tr {Aρ} = Tr {ρA} = Tr {A |Ψ〉 〈Ψ|}

=
∑
n

〈n|A |Ψ〉 〈Ψ|n〉 = 〈Ψ|

(∑
n

|n〉 〈n|

)
A |Ψ〉

= 〈Ψ|A |Ψ〉 . (1.17)

When the state is not exactly known but its probability distribution, the expectation value is
obtained by computing the weighted average

〈A〉 =
∑
i

Pi 〈Φi|A |Φi〉 , (1.18)

where Pi denotes the probability to be in state |Φi〉. The definition of obtaining expectation values
by calculating traces of operators with the density matrix is also consistent with mixed states

〈A〉 ≡ Tr {Aρ} = Tr

{
A
∑
i

pi |Φi〉 〈Φi|

}
=
∑
i

piTr {A |Φi〉 〈Φi|}

=
∑
i

pi
∑
n

〈n|A |Φi〉 〈Φi|n〉 =
∑
i

pi 〈Φi|

(∑
n

|n〉 〈n|

)
A |Φi〉

=
∑
i

pi 〈Φi|A |Φi〉 . (1.19)

Exercise 4 (Superposition vs Localized States) (1 point)
Calculate the density matrix for a statistical mixture in the states |0〉 and |1〉 with probability
p0 = 3/4 and p1 = 1/4. What is the density matrix for a statistical mixture of the superposition
states |Ψa〉 =

√
3/4 |0〉+

√
1/4 |1〉 and |Ψb〉 =

√
3/4 |0〉−

√
1/4 |1〉 with probabilities pa = pb = 1/2.

1.2.2 Dynamical Evolution in a closed system

The evolution of a pure state vector in a closed quantum system is described by the evolution
operator U(t), as e.g. for the Schrödinger equation∣∣∣Ψ̇(t)

〉
= −iH(t) |Ψ(t)〉 (1.20)

the time evolution operator

U(t) = τ̂ exp

−i

t∫
0

H(t′)dt′

 (1.21)
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may be defined as the solution to the operator equation

U̇(t) = −iH(t)U(t) . (1.22)

For constant H(0) = H, we simply have the solution U(t) = e−iHt. Similarly, a pure-state density
matrix ρ = |Ψ〉 〈Ψ| would evolve according to the von-Neumann equation

ρ̇ = −i [H(t), ρ(t)] (1.23)

with the formal solution ρ(t) = U(t)ρ(0)U †(t), compare Eq. (1.21).
When we simply apply this evolution equation to a density matrix that is not pure, we obtain

ρ(t) =
∑
i

piU(t) |Φi〉 〈Φi|U †(t) , (1.24)

i.e., transitions between the (now time-dependent) state vectors |Φi(t)〉 = U(t) |Φi〉 are impossible
with unitary evolution. This means that the von-Neumann evolution equation does yield the same
dynamics as the Schrödinger equation if it is restarted on different initial states.

Exercise 5 (Preservation of density matrix properties by unitary evolution) (1 point)
Show that the von-Neumann (1.23) equation preserves self-adjointness, trace, and positivity of the
density matrix.

Also the Measurement process can be generalized similarly. For a quantum state |Ψ〉, measure-
ments are described by a set of measurement operators {Mm}, each corresponding to a certain
measurement outcome, and with the completeness relation

∑
mM

†
mMm = 1. The probability of

obtaining result m is given by

pm = 〈Ψ|M †
mMm |Ψ〉 (1.25)

and after the measurement with outcome m, the quantum state is collapsed

|Ψ〉 m→ Mm |Ψ〉√
〈Ψ|M †

mMm |Ψ〉
. (1.26)

The projective measurement is just a special case of that with Mm = |m〉 〈m|.

Box 3 (Measurements with density matrix) For a set of measurement operators {Mm} cor-
responding to different outcomes m and obeying the completeness relation

∑
mM

†
mMm = 1, the

probability to obtain result m is given by

pm = Tr
{
M †

mMmρ
}

(1.27)

and action of measurement on the density matrix – provided that result m was obtained – can be
summarized as

ρ
m→ ρ′ =

MmρM
†
m

Tr
{
M †

mMmρ
} (1.28)
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It is therefore straightforward to see that description by Schrödinger equation or von-Neumann
equation with the respective measurement postulates are equivalent. The density matrix formal-
ism conveniently includes statistical mixtures in the description but at the cost of quadratically
increasing the number of state variables.

Exercise 6 (Preservation of density matrix properties by measurement) (1 point)
Show that the measurement postulate preserves self-adjointness, trace, and positivity of the density
matrix.

1.2.3 Most general evolution

Finally, we mention here that the most general evolution preserving all the nice properties of a
density matrix is the so-called Kraus map. A density matrix ρ (hermitian, positive definite, and
with trace one) can be mapped to another density matrix ρ′ via

ρ′ =
∑
αβ

γαβAαρA
†
β , with

∑
αβ

γαβA
†
βAα = 1 , (1.29)

where the prefactors γαβ form a hermitian (γαβ = γ∗βα) and positive definite (
∑

αβ x
∗
αγαβxβ ≥ 0 or

equivalently all eigenvalues of (γαβ) are non-negative) matrix. It is straightforward to see that the
above map preserves trace and hermiticity of the density matrix. In addition, ρ′ also inherits the
positivity from ρ =

∑
n Pn |n〉 〈n|

〈Ψ| ρ′ |Ψ〉 =
∑
αβ

γαβ 〈Ψ|AαρA†β |Ψ〉 =
∑
n

Pn
∑
αβ

γαβ 〈Ψ|Aα |n〉 〈n|A†β |Ψ〉

=
∑
n

Pn︸︷︷︸
≥0

∑
αβ

(
〈n|A†α |Ψ〉

)∗
γαβ 〈n|A†β |Ψ〉︸ ︷︷ ︸

≥0

≥ 0 . (1.30)

Since the matrix γαβ is hermitian, it can be diagonalized by a suitable unitary transformation, and
we introduce the new operators Aα =

∑
α′ Uαα′K̄α′

ρ′ =
∑
αβ

∑
α′β′

γαβUαα′K̄α′ρU
∗
ββ′K

†
β′ =

∑
α′β′

K̄α′ρK̄
†
β′

∑
αβ

Uαα′γαβU
∗
ββ′︸ ︷︷ ︸

γα′δα′β′

=
∑
α

γαK̄αρK̄
†
α , (1.31)

where γα ≥ 0 represent the eigenvalues of the matrix (γαβ). Since these are by construction
positive, we introduce further new operators Kα =

√
γαK̄α to obtain the simplest representation

of a Kraus map.

Box 4 (Kraus map) The map

ρ(t+ ∆t) =
∑
α

Kα(t,∆t)ρ(t)K†α(t,∆t) (1.32)



1.2. DENSITY MATRIX FORMALISM 17

with Kraus operators Kα(t,∆t) obeying the relation
∑

αK
†
α(t,∆t)Kα(t,∆t) = 1 preserves her-

miticity, trace, and positivity of the density matrix.

Obviously, both unitary evolution and evolution under measurement are just special cases of a
Kraus map. Though Kraus maps are heavily used in quantum information, they are not often very
easy to interpret. For example, it is not straightforward to identify the unitary and the non-unitary
part induced the Kraus map.

1.2.4 Lindblad master equation

Any dynamical evolution equation for the density matrix should (at least in some approximate
sense) preserve its interpretation as density matrix, i.e., trace, hermiticity, and positivity must
be preserved. By construction, the measurement postulate and unitary evolution preserve these
properties. However, more general evolutions are conceivable. If we constrain ourselves to master
equations that are local in time and have constant coefficients, the most general evolution that
preserves trace, self-adjointness, and positivity of the density matrix is given by a Lindblad form.

Box 5 (Lindblad form) In an N-dimensional system Hilbert space, a master equation of Lind-
blad form has the structure

ρ̇ = Lρ = −i [H, ρ] +
N2−1∑
α,β=1

γαβ

(
AαρA

†
β −

1

2

{
A†βAα, ρ

})
, (1.33)

where the hermitian operator H = H† can be interpreted as an effective Hamiltonian and γαβ = γ∗βα
is a positive semidefinite matrix, i.e., it fulfills

∑
αβ

x∗αγαβxβ ≥ 0 for all vectors x (or, equivalently

that all eigenvalues of (γαβ) are non-negative λi ≥ 0).

Exercise 7 (Trace and Hermiticity preservation by Lindblad forms) (1 points)
Show that the Lindblad form master equation preserves trace and hermiticity of the density matrix.

The Lindblad type master equation can be written in simpler form: As the dampening ma-
trix γ is hermitian, it can be diagonalized by a suitable unitary transformation U , such that∑

αβ Uα′αγαβ(U †)ββ′ = δα′β′γα′ with γα ≥ 0 representing its non-negative eigenvalues. Using this
unitary operation, a new set of operators can be defined via Aα =

∑
α′ Uα′αLα′ . Inserting this
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decomposition in the master equation, we obtain

ρ̇ = −i [H, ρ] +
N2−1∑
α,β=1

γαβ

(
AαρA

†
β −

1

2

{
A†βAα, ρ

})

= −i [H, ρ] +
∑
α′,β′

[∑
αβ

γαβUα′αU
∗
β′β

](
Lα′ρL

†
β′ −

1

2

{
L†β′Lα′ , ρ

})
= −i [H, ρ] +

∑
α

γα

(
LαρL

†
α −

1

2

{
L†αLα, ρ

})
, (1.34)

where γα denote the N2 − 1 non-negative eigenvalues of the dampening matrix. Furthermore, we
can in principle absorb the γα in the Lindblad operators L̄α =

√
γαLα, such that another form of

a Lindblad master equation would be

ρ̇ = −i [H, ρ] +
∑
α

(
L̄αρL̄

†
α −

1

2

{
L̄†αL̄α, ρ

})
. (1.35)

Evidently, the representation of a master equation is not unique.
Any other unitary operation would lead to a different non-diagonal form of γαβ which however

describes the same master equation. In addition, we note here that the master equation is not
only invariant to unitary transformations of the operators Aα, but in the diagonal representation
also to inhomogeneous transformations of the form

Lα → L′α = Lα + aα

H → H ′ = H +
1

2i

∑
α

γα
(
a∗αLα − aαL†α

)
+ b , (1.36)

with complex numbers aα and a real number b. The numbers aα can be chosen such that the
Lindblad operators are traceless Tr {Lα} = 0, which is a popular convention. Choosing b simply
corresponds to gauging the energy of the system.

Exercise 8 (Shift invariance) (1 points)
Show the invariance of the diagonal representation of a Lindblad form master equation (1.34) with
respect to the transformation (1.36).

We would like to demonstrate the preservation of positivity here. Since preservation of her-
miticity follows directly from the Lindblad form, we can – at any time – formally write the density
matrix in its spectral representation

ρ(t) =
∑
j

Pj(t) |Ψj(t)〉 〈Ψj(t)| (1.37)

with probabilities Pj(t) ∈ R (we still have to show that these remain positive) and time-dependent
orthonormal eigenstates obeying unitary evolution∣∣∣Ψ̇j(t)

〉
= −iK(t) |Ψj(t)〉 , K(t) = K†(t) . (1.38)
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Exercise 9 (Evolution of Eigenstates is Unitary) Show that orthonormality of time-
dependent eigenstates implies unitary evolution, i.e., a hermitian operator K(t).

The hermitian conjugate equation also implies that
〈

Ψ̇j

∣∣∣ = +i 〈Ψj|K. Therefore, its time-

derivative becomes

ρ̇ =
∑
j

[
Ṗj |Ψj〉 〈Ψj| − iPjK |Ψj〉 〈Ψj|+ iPj |Ψj〉 〈Ψj|K

]
, (1.39)

and sandwiching the density matrix yields to the cancellation of two terms, such that 〈Ψj(t)| ρ̇ |Ψj(t)〉 =
Ṗj(t). On the other hand, we can also use the Lindblad equation to obtain

Ṗj = −i 〈Ψj|H |Ψj〉Pj + iPj 〈Ψj|H |Ψj〉

+
∑
α

γα

[
〈Ψj|Lα(

∑
k

Pk |Ψk〉 〈Ψk|)L†α |Ψj〉 − 〈Ψj|L†αLα |Ψj〉Pj

]

=

(∑
k

∑
α

γα|〈Ψj|Lα |Ψk〉|2Pk

)
−

(∑
α

γα 〈Ψj|L†αLα |Ψj〉

)
Pj . (1.40)

This is nothing but a rate equation with positive but time-dependent transition rates

Rk→j(t) =
∑
α

γα|〈Ψj(t)|Lα |Ψk(t)〉|2 ≥ 0 , (1.41)

and with our arguments from Sec. 1.1 it follows that the positivity of the eigenvalues Pj(t) is
granted, a valid initialization provided. Unfortunately, the basis within which this simple rate
equation holds is time-dependent and also only known after solving the master equation and
diagonalizing the solution. It is therefore not very practical in most occasions.

1.2.5 Example: Master Equation for a cavity in a thermal bath

Consider the Lindblad form master equation

ρ̇ = −i
[
Ωa†a, ρ

]
+ Γ(1 + nB)

[
aρa† − 1

2
a†aρ− 1

2
ρa†a

]
+ΓnB

[
a†ρa− 1

2
aa†ρ− 1

2
ρaa†

]
, (1.42)

with bosonic operators
[
a, a†

]
= 1 and Bose-Einstein bath occupation nB =

[
eβΩ − 1

]−1
and cavity

frequency Ω. In Fock-space representation, these operators act as a† |n〉 =
√
n+ 1 |n+ 1〉 (where

0 ≤ n <∞), such that the above master equation couples only the diagonals of the density matrix
ρn = 〈n| ρ |n〉 to each other. This is directly visible by sandwhiching the master equation with
〈n| . . . |n〉

ρ̇n = Γ(1 + nB) [(n+ 1)ρn+1 − nρn] + ΓnB [nρn−1 − (n+ 1)ρn]

= ΓnBnρn−1 − Γ [n+ (2n+ 1)nB] ρn + Γ(1 + nB)(n+ 1)ρn+1 , (1.43)
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which shows that the rate equation arising for the diagonals even has a simple tri-diagonal form.
That makes it particularly easy to calculate its stationary state recursively, since the boundary
solution nBρ̄0 = (1 + nB)ρ̄1 implies for all n the relation

ρ̄n+1

ρ̄n
=

nB
1 + nB

= e−βΩ , (1.44)

i.e., the stationary state is a thermalized Gibbs state with the same temperature as the reservoir.

Exercise 10 (Moments) (1 points)
Calculate the expectation value of the number operator n = a†a and its square n2 = a†aa†a in the
stationary state of the master equation (1.42).

In general, the matrix elements of the density matrix ρnm = 〈n| ρ |m〉 will obey

ρ̇nm = −iΩ(n−m)ρnm + Γ(1 + nB)

[√
(n+ 1)(m+ 1)ρn+1,m+1 −

n+m

2
ρnm

]
+ΓnB

[√
nmρn−1,m−1 −

n+ 1 +m+ 1

2
ρnm

]
=

[
−iΩ(n−m)− Γ

(1 + nB)(n+m) + nB(n+ 1 +m+ 1)

2

]
ρnm

+Γ(1 + nB)
√

(n+ 1)(m+ 1)ρn+1,m+1 + ΓnB
√
nmρn−1,m−1 , (1.45)

and it is straightforward to see that vanishing coherences (off-diagonal matrix elements) ρ̄n 6=m = 0
are a valid steady-state solution. Not being aware of the Lindblad form we may nevertheless ask
whether there are other solutions. The above equation shows that among the coherences, only few
couple, and by arranging them in a favorable form we can write these equations in matrix form
with infinite-dimensional tri-diagonal matrices (for brevity we use γ = ΓnB and γ̄ = Γ(1 + nB))

W =



...
. . . +γ̄

√
nm 0

. . . +γ
√
nm

[
−iΩ(n−m)− γ̄ n+m

2
− γ n+1+m+1

2

]
+γ̄
√

(n+ 1)(m+ 1) . . .

0 +γ
√

(n+ 1)(m+ 1)
. . .

...


.(1.46)

By examining every column in detail, we see that the real part of the diagonal entries has always
larger magnitude than the sum of the off-diagonal entries

γ̄
n+m

2
+ γ

n+ 1 +m+ 1

2
≥ +γ̄

√
nm+ γ

√
(n+ 1)(m+ 1) , (1.47)

where equality actually only holds for the diagonal elements (n = m). From Gershgorins circle
theorem, we can therefore conclude that all the eigenvalues of the matrix W have for n 6= m a
negative real part. Consequently, the coherences must decay and the stationary state only contains
populations in the Fock space representation.
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1.2.6 Master Equation for a driven cavity

When the cavity is driven with a laser and simultaneously coupled to a vaccuum bath nB = 0, one
often uses the master equation

ρ̇S = −i

[
Ωa†a+

P

2
e+iωta+

P ∗

2
e−iωta†, ρS

]
+ γ

[
aρSa

† − 1

2
a†aρS −

1

2
ρSa

†a

]
(1.48)

with the Laser frequency ω and amplitude P . The transformation ρ = e+iωa†atρSe
−iωa†at maps to

a time-independent master equation

ρ̇ = −i

[
(Ω− ω)a†a+

P

2
a+

P ∗

2
a†, ρ

]
+ γ

[
aρa† − 1

2
a†aρ− 1

2
ρa†a

]
. (1.49)

This equation couples coherences and populations in the Fock space representation, and in the
long-term limit we will also observe non-vanishing coherences. Nevertheless, it is possible to solve
for the evolution of expectation values by just making use of the bosonic commutation relations.
Here, the basic idea is to obtain a closed set of differential equations for observables〈

Ȯα

〉
= Tr {Oαρ̇} = Tr {OαLρ} =

∑
αβ

Γαβ 〈Oβ〉 , (1.50)

where the coefficients Γαβ have to be obtained from

Exercise 11 (Coherent state) (1 points)
Using the driven cavity master equation, show that the stationary expectation value of the cavity
occupation fulfils

lim
t→∞

〈
a†a
〉

=
|P |2

γ2 + 4(Ω− ω)2
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Chapter 2

Obtaining a Master Equation

2.1 Mathematical Prerequisites

Master equations are often used to describe the dynamics of systems interacting with one or many
large reservoirs (baths). To derive them from microscopic models – including the Hamiltonian of
the full system – requires to review some basic mathematical concepts.

2.1.1 Tensor Product

The greatest advantage of the density matrix formalism is visible when quantum systems composed
of several subsystems are considered. Roughly speaking, the tensor product represents a way to
construct a larger vector space from two (or more) smaller vector spaces.

Box 6 (Tensor Product) Let V and W be Hilbert spaces (vector spaces with scalar product) of
dimension m and n with basis vectors {|v〉} and {|w〉}, respectively. Then V ⊗ W is a Hilbert
space of dimension m · n, and a basis is spanned by {|v〉 ⊗ |w〉}, which is a set combining every
basis vector of V with every basis vector of W .

Mathematical properties

• Bilinearity (z1 |v1〉+ z2 |v2〉)⊗ |w〉 = z1 |v1〉 ⊗ |w〉+ z2 |v2〉 ⊗ |w〉

• operators acting on the combined Hilbert space A⊗B act on the basis states as (A⊗B)(|v〉⊗
|w〉) = (A |v〉)⊗ (B |w〉)

• any linear operator on V ⊗W can be decomposed as C =
∑

i ciAi ⊗Bi

• the scalar product is inherited in the natural way, i.e., one has for |a〉 =
∑

ij aij |vi〉 ⊗ |wj〉
and |b〉 =

∑
k` bk` |vk〉⊗|w`〉 the scalar product 〈a|b〉 =

∑
ijk` a

∗
ijbk` 〈vi|vk〉 〈wj|w`〉 =

∑
ij a
∗
ijbij

If more than just two vector spaces are combined to form a larger vector space, the dimension of
the joint vector space grows rapidly, as e.g. exemplified by the case of a qubit: Its Hilbert space is
just spanned by two vectors |0〉 and |1〉. The joint Hilbert space of two qubits is four-dimensional, of
three qubits 8-dimensional, and of n qubits 2n-dimensional. Eventually, this exponential growth of
the Hilbert space dimension for composite quantum systems is at the heart of quantum computing.

23
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Exercise 12 (Tensor Products of Operators) (1 points)
Let σ denote the Pauli matrices, i.e.,

σ1 =

(
0 +1

+1 0

)
σ2 =

(
0 −i

+i 0

)
σ3 =

(
+1 0
0 −1

)
Compute the trace of the operator

Σ = a1⊗ 1 +
3∑
i=1

αiσ
i ⊗ 1 +

3∑
j=1

βj1⊗ σj +
3∑

i,j=1

aijσ
i ⊗ σj .

Since the scalar product is inherited, this typically enables a convenient calculation of the trace
in case of a few operator decomposition, e.g., for just two operators

Tr {A⊗B} =
∑
nA,nB

〈nA, nB|A⊗B |nA, nB〉

=

[∑
nA

〈nA|A |nA〉

][∑
nB

〈nB|B |nB〉

]
= TrA{A}TrB{B} , (2.1)

where TrA/B denote the trace in the Hilbert space of A and B, respectively.

2.1.2 The partial trace

For composite systems, it is usually not necessary to keep all information of the complete system
in the density matrix. Rather, one would like to have a density matrix that encodes all the
information on a particular subsystem only. Obviously, the map ρ → TrB {ρ} to such a reduced
density matrix should leave all expectation values of observables A acting only on the considered
subsystem invariant, i.e.,

Tr {A⊗ 1ρ} = Tr {ATrB {ρ}} . (2.2)

If this basic condition was not fulfilled, there would be no point in defining such a thing as a
reduced density matrix: Measurement would yield different results depending on the Hilbert space
of the experimenters feeling.

Box 7 (Partial Trace) Let |a1〉 and |a2〉 be vectors of state space A and |b1〉 and |b2〉 vectors of
state space B. Then, the partial trace over state space B is defined via

TrB {|a1〉 〈a2| ⊗ |b1〉 〈b2|} = |a1〉 〈a2|Tr {|b1〉 〈b2|} . (2.3)

The partial trace is linear, such that the partial trace of arbitrary operators is calculated
similarly. By choosing the |aα〉 and |bγ〉 as an orthonormal basis in the respective Hilbert space,
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one may therefore calculate the most general partial trace via

TrB {C} = TrB

{∑
αβγδ

cαβγδ |aα〉 〈aβ| ⊗ |bγ〉 〈bδ|

}
=

∑
αβγδ

cαβγδTrB {|aα〉 〈aβ| ⊗ |bγ〉 〈bδ|}

=
∑
αβγδ

cαβγδ |aα〉 〈aβ|Tr {|bγ〉 〈bδ|}

=
∑
αβγδ

cαβγδ |aα〉 〈aβ|
∑
ε

〈bε|bγ〉 〈bδ|bε〉

=
∑
αβ

[∑
γ

cαβγγ

]
|aα〉 〈aβ| . (2.4)

The definition 7 is the only linear map that respects the invariance of expectation values.

Exercise 13 (Partial Trace) (1 points)
Compute the partial trace of a pure density matrix ρ = |Ψ〉 〈Ψ| in the bipartite state

|Ψ〉 =
1√
2

(|01〉+ |10〉) ≡ 1√
2

(|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉)

2.2 Derivations for Open Quantum Systems

In some cases, it is possible to derive a master equation rigorously based only on a few assumptions.
Open quantum systems for example are mostly treated as part of a much larger closed quantum
system (the union of system and bath), where the partial trace is used to eliminate the unwanted
(typically many) degrees of freedom of the bath, see Fig. 2.1. Technically speaking, we will consider

Figure 2.1: An open quantum system can be conceived as being part of a larger closed quantum
system, where the system part (HS) is coupled to the bath (HB) via the interaction Hamiltonian
HI.

Hamiltonians of the form

H = HS ⊗ 1 + 1⊗HB +HI , (2.5)
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where the system and bath Hamiltonians act only on the system and bath Hilbert space, respec-
tively. In contrast, the interaction Hamiltonian acts on both Hilbert spaces

HI =
∑
α

Aα ⊗Bα , (2.6)

where the summation boundaries are in the worst case limited by the dimension of the system
Hilbert space. As we consider physical observables here, it is required that all Hamiltonians are
self-adjoint.

Exercise 14 (Hermiticity of Couplings) (1 points)
Show that it is always possible to choose hermitian coupling operators Aα = A†α and Bα = B†α using
that HI = H†I .

2.2.1 Standard Quantum-Optical Derivation

Interaction Picture

When the interaction HI is small, it is justified to apply perturbation theory. The von-Neumann
equation in the joint total quantum system

ρ̇ = −i [HS ⊗ 1 + 1⊗HB +HI, ρ] (2.7)

describes the full evolution of the combined density matrix. This equation can be formally solved by
the unitary evolution ρ(t) = e−iHtρ0e

+iHt, which however is impractical to compute as H involves
too many degrees of freedom.

Transforming to the interaction picture

ρ(t) = e+i(HS+HB)tρ(t)e−i(HS+HB)t , (2.8)

which will be denoted by bold symbols throughout, the von-Neumann equation transforms into

ρ̇ = −i [HI(t),ρ] , (2.9)

where the in general time-dependent interaction Hamiltonian

HI(t) = e+i(HS+HB)tHIe
−i(HS+HB)t =

∑
α

e+iHStAαe
−iHSt ⊗ e+iHBtBαe

−iHBt

=
∑
α

Aα(t)⊗Bα(t) (2.10)

allows to perform perturbation theory.
Without loss of generality we will for simplicity assume here the case of hermitian coupling

operators Aα = A†α and Bα = B†α. One heuristic way to perform perturbation theory is to formally
integrate Eq. (2.10) and to re-insert the result in the r.h.s. of Eq. (2.10). The time-derivative of
the system density matrix is obtained by performing the partial trace

ρ̇S = −iTrB {[HI(t), ρ0]} −
t∫

0

TrB {[HI(t), [HI(t
′),ρ(t′)]] dt′} . (2.11)

This integro-differential equation is still exact but unfortunately not closed as the r.h.s. does not
depend on ρS but the full density matrix at all previous times.
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Born approximation

To close the above equation, we employ factorization of the initial density matrix

ρ0 = ρ0
S ⊗ ρ̄B (2.12)

together with perturbative considerations: Assuming that HI(t) = O{λ} with λ beeing a small
dimensionless perturbation parameter (solely used for bookkeeping purposes here) and that the
environment is so large such that it is hardly affected by the presence of the system, we may
formally expand the full density matrix

ρ(t) = ρS(t)⊗ ρ̄B +O{λ} , (2.13)

where the neglect of all higher orders is known as Born approximation. Eq. (2.11) demonstrates
that the Born approximation is equivalent to a perturbation theory in the interaction Hamiltonian

ρ̇S = −iTrB {[HI(t), ρ0]} −
t∫

0

TrB {[HI(t), [HI(t
′),ρS(t′)⊗ ρ̄B]] dt′}+O{λ3} . (2.14)

Using the decomposition of the interaction Hamiltonian (2.6), this obviously yields a closed equa-
tion for the system density matrix

ρ̇S = −i
∑
α

[
Aα(t)ρ0

STr {Bα(t)ρ̄B} − ρ0
SAα(t)Tr {ρ̄BBα(t)}

]
−
∑
αβ

t∫
0

[
+Aα(t)Aβ(t′)ρS(t′)Tr {Bα(t)Bβ(t′)ρ̄B}
−Aα(t)ρS(t′)Aβ(t′)Tr {Bα(t)ρ̄BBβ(t′)}
−Aβ(t′)ρS(t′)Aα(t)Tr {Bβ(t′)ρ̄BBα(t)}

+ρS(t′)Aβ(t′)Aα(t)Tr {ρ̄BBβ(t′)Bα(t)}
]
dt′ . (2.15)

Without loss of generality, we proceed by assuming that the single coupling operator expectation
value vanishes

Tr {Bα(t)ρ̄B} = 0 . (2.16)

This situation can always be constructed by simultaneously modifying system Hamiltonian HS

and coupling operators Aα, see exercise 15.

Exercise 15 (Vanishing single-operator expectation values) (1 points)
Show that by modifying system and interaction Hamiltonian

HS → HS +
∑
α

gαAα , Bα → Bα − gα1 (2.17)

one can construct a situation where Tr {Bα(t)ρ̄B} = 0. Determine gα.
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Using the cyclic property of the trace, we obtain

ρ̇S = −
∑
αβ

t∫
0

dt′
[
Cαβ(t, t′) [Aα(t),Aβ(t′)ρS(t′)]

+Cβα(t′, t) [ρS(t′)Aβ(t′),Aα(t)]
]

(2.18)

with the bath correlation function

Cαβ(t1, t2) = Tr {Bα(t1)Bβ(t2)ρ̄B} . (2.19)

The integro-differential equation (2.18) is a non-Markovian master equation, as the r.h.s.
depends on the value of the dynamical variable (the density matrix) at all previous times – weighted
by the bath correlation functions. It does preserve trace and hermiticity of the system density
matrix, but not necessarily its positivity. Such integro-differential equations can only be solved in
very specific cases, e.g., when the correlation functions have a very simple decay law. Therefore,
we motivate further approximations, for which we need to discuss the analytic properties of the
bath correlation functions.

Markov approximation

It is quite straightforward to see that when the bath Hamiltonian commutes with the bath density
matrix [HB, ρ̄B] = 0, the bath correlation functions actually only depend on the difference of their
time arguments Cαβ(t1, t2) = Cαβ(t1 − t2) with

Cαβ(t1 − t2) = Tr
{
e+iHB(t1−t2)Bαe

−iHB(t1−t2)Bβ ρ̄B

}
. (2.20)

Since we chose our coupling operators hermitian, we have the additional symmetry that Cαβ(τ) =
C∗βα(−τ). One can now evaluate several system-bath models and when the bath has a dense
spectrum, the bath correlation functions are typically found to be strongly peaked around zero,
see exercise 16.

Exercise 16 (Bath Correlation Function) (1 points)
Evaluate the Fourier transform γαβ(ω) =

∫
Cαβ(τ)e+iωτdτ of the bath correlation functions for

the coupling operators B1 =
∑

k hkbk and B2 =
∑

k h
∗
kb
†
k for a bosonic bath HB =

∑
k ωkb

†
kbk in

the thermal equilibrium state ρ̄0
B = e−βHB

Tr{e−βHB} . You may use the continous representation Γ(ω) =

2π
∑

k |hk|
2δ(ω − ωk) for the tunneling rates.

In superoperator notation, one can also write the integro-differential equation (2.18) as

ρ̇S =

t∫
0

W(t− t′)ρS(t′)dt′ , (2.21)

where the kernel W(τ) assigns a much smaller weight to density matrices far in the past than
to the density matrix just an instant ago. In the most extreme case, we would approximate
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Cαβ(t1, t2) ≈ Γαβδ(t1 − t2), but we will be cautious here and assume that only the density matrix
varies slower than the decay time of the bath correlation functions. Therefore, we replace in the
r.h.s. ρS(t′)→ ρS(t) (first Markov approximation), which yields in Eq. (2.14)

ρ̇S = −
t∫

0

TrB {[HI(t), [HI(t
′),ρS(t)⊗ ρ̄B]]} dt′ (2.22)

This equation is often called Born-Redfield equation. It is time-local and preserves trace and
hermiticity, but still has time-dependent coefficients (also when transforming back from the inter-
action picture). We substitute τ = t− t′

ρ̇S = −
t∫

0

TrB {[HI(t), [HI(t− τ),ρS(t)⊗ ρ̄B]]} dτ (2.23)

= −
∑
αβ

t∫
0

{Cαβ(τ) [Aα(t),Aβ(t− τ)ρS(t)] + Cβα(−τ) [ρS(t)Aβ(t− τ),Aα(t)]} dτ

The problem that the r.h.s. still depends on time is removed by extending the integration bounds
to infinity (second Markov approximation) – by the same reasoning that the bath correlation
functions decay rapidly

ρ̇S = −
∞∫

0

TrB {[HI(t), [HI(t− τ),ρS(t)⊗ ρ̄B]]} dτ . (2.24)

This equation is called the Markovian master equation, which in the original Schrödinger
picture

ρ̇S = −i [HS, ρS(t)]−
∑
αβ

∞∫
0

Cαβ(τ)
[
Aα, e

−iHSτAβe
+iHSτρS(t)

]
dτ

−
∑
αβ

∞∫
0

Cβα(−τ)
[
ρS(t)e−iHSτAβe

+iHSτ , Aα
]
dτ (2.25)

is time-local, preserves trace and hermiticity, and has constant coefficients – best prerequisites for
treatment with established solution methods.

Exercise 17 (Properties of the Markovian Master Equation) (1 points)
Show that the Markovian Master equation (2.25) preserves trace and hermiticity of the density
matrix.

In addition, it can be obtained easily from the coupling Hamiltonian: We have so far not used
that the coupling operators should be hermitian, and the above form is therefore also valid for
non-hermitian coupling operators.

There is just one problem left: In the general case, it is not of Lindblad form. Note that
there are specific cases where the Markovian master equation is of Lindblad form, but these rather
include simple limits. Though this is sometimes considered a rather cosmetic drawback, it may
lead to unphysical results such as negative probabilities.
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Secular Approximation

To generally obtain a Lindblad type master equation, a further approximation is required. The
secular approximation involves an averaging over fast oscillating terms, but in order to identify
the oscillating terms, it is necessary to at least formally calculate the interaction picture dynamics
of the system coupling operators. We begin by writing Eq. (2.25) in the interaction picture again
explicitly – now using the hermiticity of the coupling operators

ρ̇S = −
∞∫

0

∑
αβ

{Cαβ(τ) [Aα(t),Aβ(t− τ)ρS(t)] + h.c.} dτ

= +

∞∫
0

∑
αβ

Cαβ(τ)
∑
a,b,c,d

{
|a〉 〈a|Aβ(t− τ) |b〉 〈b|ρS(t) |d〉 〈d|Aα(t) |c〉 〈c|

− |d〉 〈d|Aα(t) |c〉 〈c| |a〉 〈a|Aβ(t− τ) |b〉 〈b|ρS(t)
}
dτ + h.c. , (2.26)

where we have introduced the system energy eigenbasis

HS |a〉 = Ea |a〉 . (2.27)

We can use this eigenbasis to make the time-dependence of the coupling operators in the interaction
picture explicit. To reduce the notational effort, we abbreviate Aabα = 〈a|Aα |b〉 and Lab = |a〉 〈b|.
Then, the density matrix becomes

ρ̇S = +

∞∫
0

∑
αβ

Cαβ(τ)
∑
a,b,c,d

{
e+i(Ea−Eb)(t−τ)e+i(Ed−Ec)tAabβ A

dc
α LabρS(t)L†cd

−e+i(Ea−Eb)(t−τ)e+i(Ed−Ec)tAabβ A
dc
α L
†
cdLabρS(t)

}
dτ + h.c. ,

=
∑
αβ

∑
a,b,c,d

∞∫
0

Cαβ(τ)e+i(Eb−Ea)τdτe−i(Eb−Ea−(Ed−Ec))tAabβ (Acdα )∗
{
LabρS(t)L†cd − L

†
cdLabρS(t)

}
+h.c. (2.28)

The secular approximation now involves neglecting all terms that are oscillatory in time t
(long-time average), i.e., we have

ρ̇S =
∑
αβ

∑
a,b,c,d

Γαβ(Eb − Ea)δEb−Ea,Ed−EcAabβ (Acdα )∗
{

+LabρS(t)L†cd − L
†
cdLabρS(t)

}
+
∑
αβ

∑
a,b,c,d

Γ∗αβ(Eb − Ea)δEb−Ea,Ed−Ec(Aabβ )∗Acdα

{
+LcdρS(t)L†ab − ρS(t)L†abLcd

}
,(2.29)

where we have introduced the half-sided Fourier transform of the bath correlation functions

Γαβ(ω) =

∞∫
0

Cαβ(τ)e+iωτdτ . (2.30)

This equation preserves trace, hermiticity, and positivity of the density matrix and hence all desired
properties, since it is of Lindblad form (which will be shown later). Unfortunately, it is typically
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not so easy to obtain as it requires diagonalization of the system Hamiltonian first. By using the
transformations α↔ β, a↔ c, and b↔ d in the second line and also using that the δ-function is
symmetric, we may rewrite the master equation as

ρ̇S =
∑
αβ

∑
a,b,c,d

[
Γαβ(Eb − Ea) + Γ∗βα(Eb − Ea)

]
δEb−Ea,Ed−EcA

ab
β (Acdα )∗LabρS(t)L†cd

−
∑
αβ

∑
a,b,c,d

Γαβ(Eb − Ea)δEb−Ea,Ed−EcAabβ (Acdα )∗L†cdLabρS(t)

−
∑
αβ

∑
a,b,c,d

Γ∗βα(Eb − Ea)δEb−Ea,Ed−EcAabβ (Acdα )∗ρS(t)L†cdLab . (2.31)

We split the matrix-valued function Γαβ(ω) into hermitian and anti-hermitian parts

Γαβ(ω) =
1

2
γαβ(ω) +

1

2
σαβ(ω) ,

Γ∗βα(ω) =
1

2
γαβ(ω)− 1

2
σαβ(ω) , (2.32)

with hermitian γαβ(ω) = γ∗βα(ω) and anti-hermitian σαβ(ω) = −σ∗βα(ω). These new functions can
be interpreted as full even and odd Fourier transforms of the bath correlation functions

γαβ(ω) = Γαβ(ω) + Γ∗βα(ω) =

+∞∫
−∞

Cαβ(τ)e+iωτdτ ,

σαβ(ω) = Γαβ(ω)− Γ∗βα(ω) =

+∞∫
−∞

Cαβ(τ)sgn(τ)e+iωτdτ . (2.33)

Exercise 18 (Odd Fourier Transform) (1 points)
Show that the odd Fourier transform σαβ(ω) may be obtained from the even Fourier transform
γαβ(ω) by a Cauchy principal value integral

σαβ(ω) =
i

π
P

+∞∫
−∞

γαβ(Ω)

ω − Ω
dΩ .

In the master equation, these replacements lead to

ρ̇S =
∑
αβ

∑
a,b,c,d

γαβ(Eb − Ea)δEb−Ea,Ed−EcAabβ (Acdα )∗
[
LabρS(t)L†cd −

1

2

{
L†cdLab,ρS(t)

}]
−i
∑
αβ

∑
a,b,c,d

1

2i
σαβ(Eb − Ea)δEb−Ea,Ed−EcAabβ (Acdα )∗

[
L†cdLab,ρS(t)

]
=

∑
αβ

∑
a,b,c,d

γαβ(Eb − Ea)δEb−Ea,Ed−EcAabβ (Acdα )∗
[
LabρS(t)L†cd −

1

2

{
L†cdLab,ρS(t)

}]
(2.34)

−i

[∑
αβ

∑
a,b,c

1

2i
σαβ(Eb − Ec)δEb,EaAcbβ (Acaα )∗Lab,ρS(t)

]
.
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To prove that we have a Lindblad form, it is easy to see first that the term in the commutator

HLS =
∑
αβ

∑
a,b,c

1

2i
σαβ(Eb − Ec)δEb,EaAcbβ (Acaα )∗ |a〉 〈b| (2.35)

is an effective Hamiltonian. This Hamiltonian is often called Lamb-shift Hamiltonian, since it
renormalizes the system Hamiltonian due to the interaction with the reservoir. Note that we have
[HS, HLS] = 0.

Exercise 19 (Lamb-shift) (1 points)
Show that HLS = H†LS and [HLS,HS] = 0.

To show the Lindblad-form of the non-unitary evolution, we identify the Lindblad jump oper-
ator Lα = |a〉 〈b| = L(a,b). For an N -dimensional system Hilbert space with N eigenvectors of HS

we would have N2 such jump operators, but the identity matrix 1 =
∑

a |a〉 〈a| has trivial action,
which can be used to eliminate one jump operator. It remains to be shown that the matrix

γ(ab),(cd) =
∑
αβ

γαβ(Eb − Ea)δEb−Ea,Ed−EcAabβ (Acdα )∗ (2.36)

is non-negative, i.e.,
∑

a,b,c,d x
∗
abγ(ab),(cd)xcd ≥ 0 for all xab. We first note that for hermitian coupling

operators the Fourier transform matrix at fixed ω is positive (recall that Bα = B†α and [ρ̄B,HB] = 0)

Γ =
∑
αβ

x∗αγαβ(ω)xβ

=

+∞∫
−∞

dτe+iωτTr

{
eiHSτ

[∑
α

x∗αBα

]
e−iHSτ

[∑
β

xβBβ

]
ρ̄B

}

=

+∞∫
−∞

dτe+iωτ
∑
nm

e+i(En−Em)τ 〈n|B† |m〉 〈m|Bρ̄B |n〉

=
∑
nm

2πδ(ω + En − Em)|〈m|B |n〉|2ρn

≥ 0 . (2.37)

Now, we replace the Kronecker symbol in the dampening coefficients by two via the introduction
of an auxiliary summation

Γ̃ =
∑
abcd

x∗abγ(ab),(cd)xcd

=
∑
ω

∑
αβ

∑
abcd

γαβ(ω)δEb−Ea,ωδEd−Ec,ωx
∗
ab 〈a|Aβ |b〉xcd 〈c|Aα |d〉

∗

=
∑
ω

∑
αβ

[∑
cd

xcd 〈c|Aα |d〉∗ δEd−Ec,ω

]
γαβ(ω)

[∑
ab

x∗ab 〈a|Aβ |b〉 δEb−Ea,ω

]
=

∑
ω

∑
αβ

y∗α(ω)γαβ(ω)yβ(ω) ≥ 0 . (2.38)
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Transforming Eq. (2.34) back to the Schrödinger picture (note that the δ-functions prohibit
the occurrence of oscillatory factors), we finally obtain the Born-Markov-secular master equation.

Box 8 (BMS master equation) In the weak coupling limit, an interaction Hamiltonian of the
form HI =

∑
αAα⊗Bα with hermitian coupling operators (Aα = A†α and Bα = B†α) and [HB, ρ̄B] =

0 and Tr {Bαρ̄B} = 0 leads in the system energy eigenbasis HS |a〉 = Ea |a〉 to the Lindblad-form
master equation

ρ̇S = −i

[
HS +

∑
ab

σab |a〉 〈b| , ρS(t)

]

+
∑
a,b,c,d

γab,cd

[
|a〉 〈b|ρS(t) (|c〉 〈d|)† − 1

2

{
(|c〉 〈d|)† |a〉 〈b| ,ρS(t)

}]
,

γab,cd =
∑
αβ

γαβ(Eb − Ea)δEb−Ea,Ed−Ec 〈a|Aβ |b〉 〈c|Aα |d〉
∗ , (2.39)

where the Lamb-shift Hamiltonian HLS =
∑

ab σab |a〉 〈b| matrix elements read

σab =
∑
αβ

∑
c

1

2i
σαβ(Eb − Ec)δEb,Ea 〈c|Aβ |b〉 〈c|Aα |a〉

∗ (2.40)

and the constants are given by even and odd Fourier transforms

γαβ(ω) =

+∞∫
−∞

Cαβ(τ)e+iωτdτ ,

σαβ(ω) =

+∞∫
−∞

Cαβ(τ)sgn(τ)e+iωτdτ =
i

π
P

+∞∫
−∞

γαβ(ω′)

ω − ω′
dω′ (2.41)

of the bath correlation functions

Cαβ(τ) = Tr
{
e+iHBτBαe

−iHBτBβ ρ̄B

}
. (2.42)

The above definition may serve as a recipe to derive a Lindblad type master equation in the
weak-coupling limit. It is expected to yield good results in the weak coupling and Markovian limit
(continuous and nearly flat bath spectral density) and when [ρ̄B,HB] = 0. It requires to rewrite
the coupling operators in hermitian form, the calculation of the bath correlation function Fourier
transforms, and the diagonalization of the system Hamiltonian.

In the case that the spectrum of the system Hamiltonian is non-degenerate, we have a further
simplification, since the δ-functions simplify further, e.g. δEb,Ea → δab. By taking matrix elements
of Eq. (2.39) in the energy eigenbasis ρaa = 〈a| ρS |a〉, we obtain an effective rate equation for the
populations only

ρ̇aa = +
∑
b

γab,abρbb −

[∑
b

γba,ba

]
ρaa , (2.43)
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i.e., the coherences decouple from the evolution of the populations. The transition rates from state
b to state a reduce in this case to

γab,ab =
∑
αβ

γαβ(Eb − Ea) 〈a|Aβ |b〉 〈a|Aα |b〉∗ ≥ 0 , (2.44)

which – after inserting all definitions condenses basically to Fermis Golden Rule. Therefore, with
such a rate equation description, open quantum systems can be described with the same complexity
as closed quantum systems, since only N dynamical variables have to be evolved. The BMS
master equation is problematic for near-degenerate systems: For exact degeneracies, couplings to
coherences between energetically degenerate states have to be kept, but for lifted degeneracies,
they are neglected. This discontinuous behaviour may map to observables and poses the question
which of the two resulting equations is correct, in particular for near degeneracies. Despite such
problems, the BMS master equation is heavily used since it has many favorable properties. For
example, we will see later that if coupled to a single thermal bath, the quantum system generally
relaxes to the Gibbs equilibrium, i.e., we obtain simply equilibration of the system temperature
with the temperature of the bath.

2.2.2 Coarse-Graining

Perturbation Theory in the Interaction Picture

Although the BMS approximation respects of course the exact initial condition, we have in the
derivation made several long-term approximations. For example, the Markov approximation im-
plied that we consider timescales much larger than the decay time of the bath correlation functions.
Similarly, the secular approximation implied timescales larger than the inverse minimal splitting
of the system energy eigenvalues. Therefore, we can only expect the solution originating from the
BMS master equation to be an asymptotically valid long-term approximation.

Coarse-graining in contrast provides a possibility to obtain valid short-time approximations
of the density matrix with a generator that is of Lindblad form, see Fig. 2.2. We start with the
von-Neumann equation in the interaction picture (2.9). For factorizing initial density matrices, it
is formally solved by U(t)ρ0

S ⊗ ρ̄BU
†(t), where the time evolution operator

U(t) = τ̂ exp

−i

t∫
0

HI(t
′)dt′

 (2.45)

obeys the evolution equation

U̇ = −iHI(t)U(t) , (2.46)

which defines the time-ordering operator τ̂ . Formally integrating this equation with the evident
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Figure 2.2: Sketch of the coarse-graining perturbation theory. Calculating the exact time evolution

operator U(t) = τ exp

{
−i

t∫
0

HI(t
′)dt′

}
in a closed form is usually prohibitive, which renders the

calculation of the exact solution an impossible task (black curve). It is however possible to expand

the evolution operator U2(t) = 1−i
t∫

0

HI(t
′)dt′−

t∫
0

dt1dt2HI(t1)HI(t2)Θ(t1−t2) to second order in

HI and to obtain the corresponding reduced approximate density matrix. Calculating the matrix
exponential of a constant Lindblad-type generator LCG

τ is also usually prohibitive, but the first
order approximation may be matched with U2(t) at time t = τ to obtain a defining equation for
LCG
τ .

initial condition U (0) = 1 yields

U (t) = 1− i

t∫
0

HI(t
′)U(t′)dt′

= 1− i

t∫
0

HI(t
′)dt′ −

t∫
0

dt′HI(t
′)

 t′∫
0

dt′′HI(t
′′)U(t′′)


≈ 1− i

t∫
0

HI(t
′)dt′ −

t∫
0

dt1dt2HI(t1)HI(t2)Θ(t1 − t2) , (2.47)

where the occurrence of the Heaviside function is a consequence of time-ordering. For the hermitian
conjugate operator we obtain

U †(t) ≈ 1 + i

t∫
0

HI(t
′)dt′ −

t∫
0

dt1dt2HI(t1)HI(t2)Θ(t2 − t1) . (2.48)

To keep the discussion at a moderate level, we assume Tr {Bαρ̄B} = 0 from the beginning. The
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exact solution ρS(t) = TrB

{
U(t)ρ0

S ⊗ ρ̄BU
†(t)
}

is then approximated by

ρ
(2)
S (t) ≈ TrB

{1− i

t∫
0

HI(t1)dt1 −
t∫

0

dt1dt2HI(t1)HI(t2)Θ(t1 − t2)

 ρ0
S ⊗ ρ̄B ×

×

1 + i

t∫
0

HI(t1)dt1 −
t∫

0

dt1dt2HI(t1)HI(t2)Θ(t2 − t1)

}

= ρ0
S + TrB


t∫

0

dt1

t∫
0

dt2HI(t1)ρ0
S ⊗ ρ̄BHI(t2)


−

t∫
0

dt1dt2TrB

{
Θ(t1 − t2)HI(t1)HI(t2)ρ0

S ⊗ ρ̄B + Θ(t2 − t1)ρ0
S ⊗ ρ̄BHI(t1)HI(t2)

}
.

(2.49)

Again, we introduce the bath correlation functions with two time arguments as in Eq. (2.19)

Cαβ(t1, t2) = Tr {Bα(t1)Bβ(t2)ρ̄B} , (2.50)

such that we have

ρ
(2)
S (t) = ρ0

S +
∑
αβ

t∫
0

dt1

t∫
0

dt2Cαβ(t1, t2)
[
Aβ(t2)ρ0

SAα(t1)

−Θ(t1 − t2)Aα(t1)Aβ(t2)ρ0
S −Θ(t2 − t1)ρ0

SAα(t1)Aβ(t2)
]
. (2.51)

Typically, in the interaction picture, the system coupling operators Aα(t) will simply carry some
oscillatory time dependence. In the worst case, they may remain time-independent. Therefore,
the decay of the correlation function is essential for the convergence of the above integrals. In
particular, we note that the truncated density matrix may remain finite even when t → ∞,
rendering the expansion convergent also in the long-term limit.

Coarse-Graining

The basic idea of coarse-graining is to match this approximate expression for the system density
matrix at time t = τ with one resulting from a Markovian generator

ρS
CG(τ) = eL

CG
τ ·τρ0

S ≈ ρ0
S + τLCG

τ ρ0
S , (2.52)
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such that we can infer the action of the generator on an arbitrary density matrix

LCG
τ ρS =

1

τ

∑
αβ

τ∫
0

dt1

τ∫
0

dt2Cαβ(t1, t2)
[
Aβ(t2)ρSAα(t1)

−Θ(t1 − t2)Aα(t1)Aβ(t2)ρS −Θ(t2 − t1)ρSAα(t1)Aβ(t2)
]

= −i

 1

2iτ

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

Cαβ(t1, t2)sgn(t1 − t2)Aα(t1)Aβ(t2),ρS


+

1

τ

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

Cαβ(t1, t2)

[
Aβ(t2)ρSAα(t1)− 1

2
{Aα(t1)Aβ(t2),ρS}

]
,(2.53)

where we have inserted Θ(x) = 1
2

[1 + sgn(x)] – in order to separate unitary and dissipative effects
of the system-reservoir interaction.

Box 9 (CG Master Equation) In the weak coupling limit, an interaction Hamiltonian of the
form HI =

∑
αAα ⊗Bα leads to the Lindblad-form master equation in the interaction picture

ρ̇S = −i

 1

2iτ

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

Cαβ(t1, t2)sgn(t1 − t2)Aα(t1)Aβ(t2),ρS


+

1

τ

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

Cαβ(t1, t2)

[
Aβ(t2)ρSAα(t1)− 1

2
{Aα(t1)Aβ(t2),ρS}

]
,

where the bath correlation functions are given by

Cαβ(tt, t2) = Tr
{
e+iHBt1Bαe

−iHBt1e+iHBt2Bβe
−iHBt2 ρ̄B

}
. (2.54)

We have not used hermiticity of the coupling operators nor that the bath correlation functions
do typically only depend on a single argument. However, if the coupling operators were chosen
hermitian, it is easy to show the Lindblad form. For completeness, we also note there that a
Lindblad form is also obtained for non-hermitian couplings. Obtaining the master equation requires
the calculation of bath correlation functions and the evolution of the coupling operators in the
interaction picture.

Exercise 20 (Lindblad form) (1 point)
By assuming hermitian coupling operators Aα = A†α, show that the CG master equation is of
Lindblad form for all coarse-graining times τ .
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Correspondence to the quantum-optical master equation

Let us make once more the time-dependence of the coupling operators explicit, which is most
conveniently done in the system energy eigenbasis. Now, we also assume that the bath correlation
functions only depend on the difference of their time arguments Cαβ(t1, t2) = Cαβ(t1 − t2), such
that we may use the Fourier transform definitions in Eq. (2.33) to obtain

ρ̇S = −i

 1

2iτ

∑
abc

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

Cαβ(t1 − t2)sgn(t1 − t2) |a〉 〈a|Aα(t1) |c〉 〈c|Aβ(t2) |b〉 〈b| ,ρS


+

1

τ

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

∑
abcd

Cαβ(t1 − t2)
[
|a〉 〈a|Aβ(t2) |b〉 〈b|ρS |d〉 〈d|Aα(t1) |c〉 〈c|

−1

2
{|d〉 〈d|Aα(t1) |c〉 〈c| · |a〉 〈a|Aβ(t2) |b〉 〈b| ,ρS}

]
= −i

1

4iπτ

∫
dω
∑
abc

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

σαβ(ω)e−iω(t1−t2)e+i(Ea−Ec)t1e+i(Ec−Eb)t2Acbβ A
ac
α [Lab,ρS]

+
1

2πτ

∫
dω

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

∑
abcd

γαβ(ω)e−iω(t1−t2)e+i(Ea−Eb)t2e+i(Ed−Ec)t1Aabβ A
dc
α ×

×
[
LabρSL

†
cd −

1

2

{
L†cdLab,ρS

}]
. (2.55)

We perform the temporal integrations by invoking

τ∫
0

eiαktkdtk = τeiαkτ/2sinc
[αkτ

2

]
(2.56)

with sinc(x) = sin(x)/x to obtain

ρ̇S = −i
τ

4iπ

∫
dω
∑
abc

∑
αβ

σαβ(ω)eiτ(Ea−Eb)/2sinc
[τ

2
(Ea − Ec − ω)

]
sinc

[τ
2

(Ec − Eb + ω)
]
×

×〈c|Aβ |b〉 〈c|A†α |a〉
∗ [|a〉 〈b| ,ρS]

+
τ

2π

∫
dω
∑
αβ

∑
abcd

γαβ(ω)eiτ(Ea−Eb+Ed−Ec)/2sinc
[τ

2
(Ed − Ec − ω)

]
sinc

[τ
2

(ω + Ea − Eb)
]
×

×〈a|Aβ |b〉 〈c|A†α |d〉
∗
[
|a〉 〈b|ρS (|c〉 〈d|)† − 1

2

{
(|c〉 〈d|)† |a〉 〈b| ,ρS

}]
. (2.57)

Therefore, we have the same structure as before, but now with coarse-graining time dependent
dampening coefficients

ρ̇S = −i

[∑
ab

στab |a〉 〈b| ,ρS

]

+
∑
abcd

γτab,cd

[
|a〉 〈b|ρS (|c〉 〈d|)† − 1

2

{
(|c〉 〈d|)† |a〉 〈b| ,ρS

}]
(2.58)
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with the coefficients

στab =
1

2i

∫
dω
∑
c

eiτ(Ea−Eb)/2 τ

2π
sinc

[τ
2

(Ea − Ec − ω)
]

sinc
[τ

2
(Eb − Ec − ω)

]
×

×

[∑
αβ

σαβ(ω) 〈c|Aβ |b〉 〈c|A†α |a〉
∗

]
,

γτab,cd =

∫
dωeiτ(Ea−Eb+Ed−Ec)/2 τ

2π
sinc

[τ
2

(Ed − Ec − ω)
]

sinc
[τ

2
(Eb − Ea − ω)

]
×

×

[∑
αβ

γαβ(ω) 〈a|Aβ |b〉 〈c|A†α |d〉
∗

]
. (2.59)

Finally, we note that in the limit of large coarse-graining times τ → ∞ and assuming hermitian
coupling operators Aα = A†α, these dampening coefficients converge to the ones in definition 8, i.e.,
formally

lim
τ→∞

στab = σab ,

lim
τ→∞

γτab,cd = γab,cd . (2.60)

Exercise 21 (CG-BMS correspondence) (1 points)
Show for hermitian coupling operators that when τ →∞, CG and BMS approximation are equiv-
alent. You may use the identity

lim
τ→∞

τsinc
[τ

2
(Ωa − ω)

]
sinc

[τ
2

(Ωb − ω)
]

= 2πδΩa,Ωb
δ(Ωa − ω) .

This shows that coarse-graining provides an alternative derivation of the quantum-optical mas-
ter equation, replacing three subsequent approximations (Born-, Markov- and secular) by just one
(perturbative expansion in the interaction).

2.2.3 Thermalization

The BMS limit has beyond its relatively compact Lindblad form further appealing properties in
the case of a bath that is in thermal equilibrium

ρ̄B =
e−βHB

Tr {e−βHB}
(2.61)

with inverse temperature β. These root in further analytic properties of the bath correlation
functions such as the Kubo-Martin-Schwinger (KMS) condition

Cαβ(τ) = Cβα(−τ − iβ) . (2.62)

Exercise 22 (KMS condition) (1 points)

Show the validity of the KMS condition for a thermal bath with ρ̄B = e−βHB

Tr{e−βHB} .
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For the Fourier transform, this shift property implies

γαβ(−ω) =

+∞∫
−∞

Cαβ(τ)e−iωτdτ =

+∞∫
−∞

Cβα(−τ − iβ)e−iωτdτ

=

−∞−iβ∫
+∞−iβ

Cβα(τ ′)e+iω(τ ′+iβ)(−)dτ ′ =

+∞−iβ∫
−∞−iβ

Cβα(τ ′)e+iωτ ′dτ ′e−βω

=

+∞∫
−∞

Cβα(τ ′)e+iωτ ′dτ ′e−βω = γβα(+ω)e−βω , (2.63)

where in the last line we have used that the bath correlation functions are analytic in τ in the com-
plex plane and vanish at infinity, such that we may safely deform the integration contour. Finally,
the KMS condition can thereby be used to prove that for a reservoir with inverse temperature β,
the density matrix

ρ̄S =
e−βHS

Tr {e−βHS}
(2.64)

is one stationary state of the BMS master equation (and the τ →∞ limit of the CG appraoch).

Exercise 23 (Thermalization) (1 points)

Show that ρ̄S = e−βHS

Tr{e−βHS} is a stationary state of the BMS master equation, when γαβ(−ω) =

γβα(+ω)e−βω.

When the reservoir is in the grand-canonical equilibrium state

ρ̄B =
e−β(HB−µNB)

Tr {e−β(HB−µNB)}
, (2.65)

where N = NS + NBis a conserved quantity [HS +HB +HI, NS +NB] = 0, the KMS condition is
not fulfilled anymore. However, even in this case one can show that a stationary state of the BMS
master equation is given by

ρ̄S =
e−β(HS−µNS)

Tr {e−β(HS−µNS)}
, (2.66)

i.e., both temperature β and chemical potential µ equilibrate.

2.2.4 Example: Spin-Boson Model

The spin-boson model describes the interaction of a spin with a bosonic environment

HS = Ωσz + Tσx , HB =
∑
k

ωkb
†
kbk ,

HI = σz ⊗
∑
k

[
hkbk + h∗kb

†
k

]
, (2.67)
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where Ω and T denote parameters of the system Hamiltonian, σα the Pauli matrices, and b† creates
a boson with frequency ωk in the reservoir. The model can be motivated by a variety of setups,
e.g. a charge qubit (singly-charged double quantum dot) that is coupled to vibrations. We note
the a priori hermitian coupling operators

A1 = σz , B1 =
∑
k

[
hkbk + h∗kb

†
k

]
. (2.68)

We first diagonalize the system part of the Hamiltonian to obtain the eigenbasisHS |n〉 = En |n〉,
where

E± = ±
√

Ω2 + T 2 , |±〉 =
1√

T 2 +
(
Ω±
√

Ω2 + T 2
)2

[(
Ω±
√

Ω2 + T 2
)
|0〉+ T |1〉

]
, (2.69)

where |0/1〉 denote the eigenvectors of the σz Pauli matrix with σz |i〉 = (−1)i |i〉.

Exercise 24 (Eigenbasis) (1 points)
Confirm the validity of Eq. (2.69).

Second, we calculate the correlation function (in this case, there is just one). Transforming
everything in the interaction picture we see that the annihilation operators just pick up time-
dependent phases

C(τ) = Tr

{∑
k

[
hkbke

−iωkτ + h∗kb
†
ke

+iωkτ
]∑

q

[
hqbq + h∗qb

†
q

]
ρ̄B

}
=

∑
k

|hk|2
[
e−iωkτ (1 + nB(ωk)) + e+iωkτnB(ωk)

]
=

1

2π

∫
dωΓ(ω)

[
e−iωτ (1 + nB(ω)) + e+iωτnB(ω)

]
, (2.70)

where we have introduced the spectral coupling density Γ(ω) = 2π
∑

k |hk|
2δ(ω−ωk) and the Bose

distribution

nB(ω) =
1

eβ(ω−µ) − 1
. (2.71)

Exercise 25 (Bose distribution) (1 points)
Confirm the validity of Eq. (2.71), i.e., show that

δkqnB(ωk) = Tr

{
b†kbq

e−β(HB−µNB)

Z

}
, (2.72)

where HB =
∑

k ωkb
†
kbk, NB =

∑
k b
†
kbk, and Z = Tr

{
e−β(HB−µNB)

}
.
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We can directly read off the even Fourier transform of the correlation function

γ(ω) = Γ(+ω)Θ(+ω)[1 + nB(+ω)] + Γ(−ω)Θ(−ω)nB(−ω) . (2.73)

We note that for bosons we necessarily have Γ(ω < 0) = 0, since all oscillator frequencies in the
reservoir must be positive. We compute some relevant dampening coefficients

γ−+,−+ = Γ(+2
√

Ω2 + T 2)[1 + nB(+2
√

Ω2 + T 2)]|〈−|σz |+〉|2 ,
γ+−,+− = Γ(+2

√
Ω2 + T 2)nB(+2

√
Ω2 + T 2)|〈−|σz |+〉|2 ,

γ−−,++ = γ(0) 〈−|σz |−〉 〈+|σz |+〉 . (2.74)

The explicit calculation of the non-vanishing Lamb-shift terms σ−− and σ++ is possible but more
involved. Fortunately, it can be omitted for many applications. Since the system Hamiltonian is
non-degenerate, the populations evolve according to

ρ̇−− = +γ−+,−+ρ++ − γ+−,+−ρ−− , ρ̇++ = +γ+−,+−ρ−− − γ−+,−+ρ++ , (2.75)

which is independent from the coherences

ρ̇−+ = −i (E− − E+ + σ−− − σ++) ρ−+ +

[
γ−−,++ −

γ−+,−+ + γ+−,+−

2

]
ρ−+ . (2.76)

Since the Lamb-shift terms σii are purely imaginary, the quantities at hand already allow us to

deduce that the coherences will decay |ρ−+|2 = e−(−2γ−−,+++γ−+,−++γ+−,+−)t
∣∣ρ0
−+

∣∣2, which shows
that the decoherence rate increases with temperature (finite nB) but can also at zero temperature
not be suppressed below a minimum value. A special (exactly solvable) case arises when T = 0:
Then, the interaction commutes with the system Hamiltonian leaving the energy of the system
invariant. Consistently, the eigenbasis is in this case that of σz and the coefficients γ−+,−+ and
γ+−,+− do vanish. In contrast, the coefficient γ−−,++ → −γ(0) may remain finite. Such models
are called pure dephasing models (since only their coherences decay). However, for finite T the
steady state of the master equation is given by (we assume here µ = 0)

ρ̄++

ρ̄−−
=
γ+−,+−

γ−+,−+

=
nB(+2

√
Ω2 + T 2)

1 + nB(+2
√

Ω2 + T 2)
= e−2β

√
Ω2+T 2

, (2.77)

i.e., the stationary state is given by the thermalized one.



Chapter 3

Multi-Terminal Coupling :
Non-Equilibrium Case I

The most obvious way to achieve non-equilibrium dynamics is to use reservoir states that are non-
thermalized, i.e., states that cannot simply be characterized by just temperature and chemical
potential. Since the derivation of the master equation only requires [ρ̄B,HB] = 0, this would still
allow for many nontrivial models, 〈n| ρ̄B |n〉 could e.g. follow multi-modal distributions. Alterna-
tively, a non-equilibrium situation may be established when a system is coupled to different thermal
equilibrium baths or of course when the system itself is externally driven – either unconditionally
(open-loop feedback) or conditioned on the actual state of the system (closed-loop feedback).

First, we will consider the case of multiple reservoirs at different thermal equilibria that are only
indirectly coupled via the system: Without the system, they would be completely independent.
Since these are chosen at different equilibria, they drag the system towards different thermal states,
and the resulting stationary state is in general a non-thermal one. Since the different compartments
interact only indirectly via the system, we have the case of a multi-terminal system, where one can
most easily derive the corresponding master equation, since each contact may be treated separately.
Therefore, we do now consider multiple (K) reservoirs

HB =
K∑
`=1

H(`)
B (3.1)

with commuting individual parts
[
H(`)

B ,H(k)
B

]
= 0. These are held at different chemical potentials

and different temperatures

ρ̄B =
e−β(H(1)

B −µN
(1)
B )

Tr
{
e−β(H(1)

B −µN
(1)
B )
} ⊗ . . .⊗ e−β(H(K)

B −µN(K)
B )

Tr
{
e−β(H(K)

B −µN(K)
B )
} . (3.2)

To each of the reservoirs, the system is coupled via different coupling operators

HI =
∑
α

Aα ⊗
k∑
`=1

B(`)
α . (3.3)

Since we assume that the first order bath correlation functions vanish
〈
B`
αρ̄B

〉
= 0, the second-order

bath correlation functions may be computed additively

Cαβ(τ) =
K∑
`=1

C
(`)
αβ(τ) . (3.4)

43
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Exercise 26 (Additive Reservoirs) (1 points)
Show with using Eqns. (3.1) and (3.2) that expectation values of coupling operators belonging to
different reservoirs vanish, i.e.,

C(α,`),(β,k)(τ) = Tr
{
B(`)
α (τ)B

(k)
β ρ̄B

}
= δk`C(α,`),(β,`) .

This obviously transfers to their Fourier transforms and thus, also to the final Liouvillian (to
second order in the coupling)

L = L(0) +
K∑
`=1

L(`) . (3.5)

Here, L(0)ρ=̂ − i [HS, ρ] describes the action of the system Hamiltonian and L(`) denotes the Li-
ouvillian resulting only from the `-th reservoir. The resulting stationary state is in general a
non-equilibrium one.

Let us however first identify a special case where even in a non-equilibrium setup we can
determine the non-equilibrium steady state analytically. For some simple models, one obtains that
the coupling structure of all Liouvillians is identical for different reservoirs

L(`) = Γ(`)
[
LA + n(`)LB

]
, (3.6)

i.e., the reservoirs trigger exactly the same transitions within the system. Here, n(`) is a parameter
encoding the thermal properties of the respective bath (e.g. a Fermi-Dirac or a Bose-Einstein
distribution evaluated at one of the systems transition frequencies), and LA/B simply label parts
of the Liouvillian that are proportional to thermal characteristics (B) or not (A). Finally, Γ(`)

represent coupling constants to the different reservoirs. For coupling to a single reservoir, the
stationary state is defined via the equation

L(`)ρ̄(`) = Γ(`)
[
LA + n(`)LB

]
ρ̄(`) = 0 (3.7)

and thus implicitly depends on the thermal parameter ρ̄(`) = ρ̄(n(`)). Obviously, the steady state
will be independent of the coupling strength Γ(`). For the total Liouvillian, it follows that the
dependence of the full stationary state on all thermal parameters simply given by the same depen-
dence on an average thermal parameter

Lρ̄ =
∑
`

L(`)ρ̄ =
∑
`

Γ(`)
[
LA + n(`)LB

]
ρ̄ =

[∑
`

Γ(`)

][
LA +

∑
` Γ(`)n(`)∑
`′ Γ

(`′)
LB
]
ρ̄ ,

=

[∑
`

Γ(`)

]
[LA + n̄LB] ρ̄ , (3.8)

where

n̄ =

∑
` Γ(`)n(`)∑
` Γ(`)

(3.9)
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represents an average thermal parameter (e.g. the average occupation). Formally, this is the
same equation that determines the steady state for a single reservoir, which may now however be
non-thermal.

This can be illustrated by upgrading the Liouvillian for a single resonant level coupled to a
single junction

L =

(
−Γf +Γ(1− f)
+Γf −Γ(1− f)

)
, (3.10)

where the Fermi function f =
[
eβ(ε−µ) + 1

]−1
of the contact is evaluated at the dot level ε, to the

Liouvillian for a single-electron transistor (SET) coupled to two (left and right) junctions

L =

(
−ΓLfL − ΓRfR +ΓL(1− fL) + ΓR(1− fR)
+ΓLfL + ΓRfR −ΓL(1− fL)− ΓR(1− fR)

)
. (3.11)

Now, the system is coupled to two fermionic reservoirs, and in order to support a current, the dot
level ε must be within the transport window, see Fig. 3.1. This also explains the name single-

Figure 3.1: Sketch of a single resonant level (QD at energy level ε) coupled to two junctions with
different Fermi distributions (e.g. with different chemical potentials or different temperatures. If
the dot level ε is changed with a third gate, the device functions as a transistor, since the current
through the system is exponentially suppressed when the the dot level ε is not within the transport
window.

electron transistor, since the dot level ε may be tuned by a third gate, which thereby controls the
current.

Exercise 27 (Pseudo-Nonequilibrium) (1 points)
Show that the stationary state of Eq.(3.11) is a thermal one, i.e., that

ρ̄11

ρ̄00

=
f̄

1− f̄
.

Determine f̄ in dependence of Γα and fα.

3.1 Conditional Master equation from conservation laws

Suppose we have derived a QME for an open system, where the combined system obeys the
conservation of some conserved quantity (e.g., the total number of particles). Then, it can be
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directly concluded that a change in the system particle number by e.g. minus one must be directly
accompagnied by the corresponding change of the reservoir particle number by plus one. For
couplings to multiple reservoirs these terms can also be uniquely identified, since the Liouvillians
are additive. Whereas its actual density matrix says little about the number of quanta that have
already passed the quantum system, a full trajectory would reveal this information. In such cases,
it is reasonable to discretize the master equation in time, where it can most easily be upgraded to
an n-resolved (conditional) master equation. In what follows, we just track the particle number in
a single attached reservoir and denote by ρ(n)(t) the system density matrix under the condition that
n net particles have left into the monitored reservoirs, but the method may easily be generalized.
Assuming that at time t, we have n particles transferred to the reservoir, we may discretize the
conventional master equation ρ̇ = Lρ in time and identify terms that increase or decrease the
particle number (often called jumpers)

ρ̇(n) = L0ρ
(n) + L+ρ

(n−1) + L−ρ(n+1) . (3.12)

Here, L+ increases the number of particles in the monitored reservoirs by one and L− decreases
it by one. All remaining processes (jumps to other reservoirs or internal transitions within the
system) are contained in L0, such that the original Liouvillian is given by

L = L0 + L− + L+ . (3.13)

Since the total number of transferred particles is normally not constrained, this immediately yields
an infinite set of equations for the conditioned system density matrix. Exploiting the translational
invariance suggests to use the (discrete) Fourier transform

ρ(χ, t) =
∑
n

ρ(n)(t)e+inχ , (3.14)

which recovers the original dimension of the master equation

ρ̇(χ, t) =
[
L0 + e+iχL+ + e−iχL−

]
ρ(χ, t) = L(χ)ρ(χ, t) , (3.15)

but at the cost of introducing the parameter χ – called counting field further-on.

Exercise 28 (Counting Field Master Equation) (1 points)
How would Eqns. (3.12) and (3.15) change when particles could only tunnel in pairs?

The advantage of this form however is that – since χ is a parameter – we can readily write
down the solution

ρ(χ, t) = eL(χ)tρ(χ, 0) = eL(χ)tρ0 , (3.16)

where we have used the convention that ρ(n)(0) = δn,0ρ0. We stress here again that we have written
everything in superoperator notation, i.e., the density matrix elements are arranged in a vector
(conventionally, one puts the populations first), such that the Liouvillian acts as a matrix from
the left. Stating that the populations evolve independently from the coherences corresponds to
a block form of the Liouvillian in this picture. Having solved the master equation for ρ(t), we
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can then rearrange the solution vector into matrix form and calculate traces with operators etc.
However, noticing that we can of course also represent ordinary operators acting in the Hilbert
space of the system as superoperators, it is important to realize that we can conveniently perform
all operations in superoperator notation. Since the trace just involves summing over the diagonal
elements of the result, this transfers to a product with a transposed vector of the form (we take
an N ×N density matrix)

Tr {Aρ} =̂Tr {Aρ} =

1, . . . , 1︸ ︷︷ ︸
N

, 0, . . . , 0

 (A)



ρ11
...

ρNN
ρ12
...

ρN,N−1


. (3.17)

Exercise 29 (Superoperators) How would the Pauli matrix σx act on the density matrix if it
was arranged as a superoperator, i.e., determine Σx and Σ̄x in

(
0 1
1 0

)(
ρ00 ρ01

ρ10 ρ11

)
=̂ Σx


ρ00

ρ11

ρ01

ρ10

 ,

(
ρ00 ρ01

ρ10 ρ11

)(
0 1
1 0

)
=̂ Σ̄x


ρ00

ρ11

ρ01

ρ10

 . (3.18)

As an example, we phenomenologically convert the SET master equation (3.11) into an n-
resolved version. Since we have a simple rate equation, we have neglected the block describing
the evolution of coherences. We choose the right reservoir as the one to monitor and denote the
number of particles that have tunneled into the right reservoir by n, where negative n would simply
imply a current from right to left. Then, the conditional density matrix obeys

ρ̇(n) =

(
−ΓLfL − ΓRfR +ΓL(1− fL)

+ΓLfL −ΓL(1− fL)− ΓR(1− fR)

)
ρ(n)

+

(
0 ΓR(1− fR)
0 0

)
ρ(n−1) +

(
0 0

+ΓRfR 0

)
ρ(n+1) . (3.19)

Performing the Fourier transformation (thereby exploiting the shift invariance) reduces the dimen-
sion at the price of introducing the counting field

ρ̇(χ, t) =

(
−ΓLfL − ΓRfR +ΓL(1− fL) + ΓR(1− fR)e+iχ

+ΓLfL + ΓRfRe
−iχ −ΓL(1− fL)− ΓR(1− fR)

)
ρ(χ, t) . (3.20)

Formally, this just corresponds to the replacement (1 − fR) → (1 − fR)e+iχ and fR → fRe
−iχ in

the off-diagonal matrix elements of the Liouvillian (which correspond to particle jumps).
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The original density matrix can be recovered by summing over all conditioned density matrices

ρ(t) =
∑
n

ρ(n)(t) , (3.21)

which also shows that the conditioned ones need not be normalized. We can obtain the information
about the tunneled particles by tracing over the system degrees of freedom

Pn(t) = Tr
{
ρ(n)(t)

}
. (3.22)

Unfortunately, obtaining ρ(n)(t) would require to solve an infinite-dimensional system, such that
this is usually not a very practical way.

3.2 Microscopic derivation with virtual detectors

Unfortunately, we do not always have a conserved quantity that may only change when tunneling
across the system-reservoir junction takes place. A counter-example may be the tunneling between
two reservoirs, that is merely modified by the presence of the quantum system (e.g. quantum point
contact monitoring a charge qubit) and is not connected with a particle change in the system. In
such cases, we may not identify a change in the system state with a microcanonical change of the
reservoir state. However, such problems can still be handled with a quantum master equation by
introducing a virtual detector at the level of the interaction Hamiltonian. Suppose that in the
interaction Hamiltonian we can identify terms associated with a change of the tracked obervable
in the reservoir

HI = A+ ⊗B+ + A− ⊗B− +
∑

α 6={+,−}

Aα ⊗Bα , (3.23)

where B+ increases and B− decreases the reservoir particle number. We extend the system Hilbert
space by adding a virtual detector

HS → HS ⊗ 1 , HB → HB

HI → +
[
A+ ⊗D†

]
⊗B+ + [A− ⊗D]⊗B− +

∑
α 6={+,−}

[Aα ⊗ 1]⊗Bα , (3.24)

where D =
∑

n |n〉 〈n+ 1| and D† =
∑

n |n+ 1〉 〈n|. Here |n〉 are the eigenstates of the detector,
and we see that D† |n〉 = |n+ 1〉 and D |n〉 = |n− 1〉. This obviously also implies that DD† =
D†D = 1. Such a detector is ideal in the sense that it does not influence the system dynamics
and it does not have its own energy content (its own Hamiltonian vanishes). Therefore, it will be
called virtual detector here. The detector operators in the interaction Hamiltonian can also be
viewed as bookkeeping operators that simply facilitate the correct identification of terms in the
master equation. We can now formally consider the detector as part of the system and derive the
master equation. Since there is no direct interaction between the original system and the detector,
the eigenbasis of both system and detector is now given by |a, n〉 = |a〉 ⊗ |n〉, and we may derive
e.g. the coarse-graining master equation in the usual way. When we decompose the system density
matrix as

ρ(t) =
∑
n

ρ(n)(t)⊗ |n〉 〈n| , (3.25)
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we see that we can reduce the Lindblad master equation by using that

〈n|DA−ρA+D
† |n〉 = A−ρ

(n+1)A+ ,

〈n|D†A+ρA−D |n〉 = A+ρ
(n−1)A− (3.26)

to a form like in Eq. (3.12). The coarse-graining master equation in Box 9 for example shows that
such conditioned master equations can be readily derived.

3.3 Full Counting Statistics

To obtain the probability of having n tunneled particles into a respective reservoir, we have to sum
over the different system configurations of the corresponding conditional density matrix

Pn(t) = Tr
{
ρ(n)(t)

}
. (3.27)

In view of the identities

Tr {ρ(χ, t)} = Tr
{
eL(χ)tρ0

}
=
∑
n

Pn(t)e+inχ , (3.28)

we see that in order to evaluate moments
〈
nk
〉
, we simply have to take derivatives with respect to

the counting field

〈
nk(t)

〉
=
∑
n

nkPn(t) = (−i∂χ)k
∑
n

Pn(t)e+inχ

∣∣∣∣∣
χ=0

. (3.29)

Based on a conditional master equation, this enables a very convenient calculation of the stationary
current. This is a good motivation to introduce the moment-generating function.

Box 10 (Moment-Generating Function) The moment-generating function is given by

M(χ, t) = Tr
{
eL(χ)tρ0

}
, (3.30)

and moments can be computed from derivatives with respect to the counting field〈
nk(t)

〉
= (−i∂χ)kM(χ, t)

∣∣
χ=0

. (3.31)

Often, the initial condition is set to the steady-state solution ρ0 = ρ̄ with L(0)ρ̄ = 0.

Taking the stationary density matrix L(0)ρ̄ = 0 as initial condition (the stationary current is
independent on the initial occupation of the density matrix), we obtain for the current as the time
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derivative of the first moment

I = 〈ṅ(t)〉

= −i∂χ
d

dt
Tr
{
eL(χ)tρ̄

}∣∣
χ=0

= −i∂χ Tr
{
L(χ)eL(χ)tρ̄

}∣∣
χ=0

= −iTr
{
L′(0)ρ̄+ [L′(0)L(0) + L(0)L′(0)] tρ̄

+
[
L′(0)L2(0) + L(0)L′(0)L(0) + L2(0)L′(0)

] t2
2
ρ̄+ . . .

}
= −iTr {L′(0)ρ̄} , (3.32)

where we have used L(0)ρ̄ = 0 and also Tr {L(0)σ} = 0 for all operators σ (trace conservation).
This is consistent with common definitions of a current entering or leaving the system, since e.g.
for sequential tunneling we have

I = −iTr {L′(0)ρ̄} = Tr {[L+ − L−] ρ̄} . (3.33)

Formally, we see that a stationary occupation times a transition rate yields a current. More
quantitatively, by our initial definition, L+ contained the rates responsible for particles leaving the
system towards the monitored reservoir whereas L− described the inverse process.

Exercise 30 (Stationary SET current) (1 points)
Calculate the stationary current through the SET (3.20).

Sometimes a description in terms of cumulants is more convenient.

Box 11 (Cumulant-Generating Function) The cumulant-generating function is defined as the
logarithm of the moment-generating function

C(χ, t) = lnM(χ, t) = ln Tr
{
eL(χ)tρ0

}
, (3.34)

and all cumulants may be obtained via simple differentiation〈〈
nk
〉〉

= (−i∂χ)k C(χ, t)|χ=0 . (3.35)

Cumulants and Moments are of course related, we just summarize relations for the lowest few
cumulants

〈〈n〉〉 = 〈n〉 ,〈〈
n2
〉〉

=
〈
n2
〉
− 〈n〉2 ,〈〈

n3
〉〉

=
〈
n3
〉
− 3 〈n〉

〈
n2
〉

+ 2 〈n〉3 ,〈〈
n4
〉〉

=
〈
n4
〉
− 4 〈n〉

〈
n3
〉
− 3

〈
n2
〉2

+ 12 〈n〉2
〈
n2
〉
− 6 〈n〉4 . (3.36)
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Obviously, the first two cumulants are just the mean and width of the probability distribution. For
unimodal distributions, the third cumulant (skewness) and the fourth cumulant (kurtosis) describe
the shape of the distribution near its maximum. In contrast to moments, higher cumulants are
inert when a trivial transformation such as a simple shift is performed on a probability distribution.

3.4 Cumulant-Generating Function

The clear advantage of the description by cumulants however lies in the fact that the long-term
evolution of the cumulant-generating function is usually given by the dominant eigenvalue of the
Liouvillian

C(χ, t) ≈ λ(χ)t , (3.37)

where λ(χ) is the (uniqueness assumed) eigenvalue of the Liouvillian that vanishes at zero counting
field λ(0) = 0. For this reason, the dominant eigenvalue is also interpreted as the cumulant-
generating function of the stationary current.

Exercise 31 (current CGF for the SET) (1 points)
Calculate the dominant eigenvalue of the SET Liouvillian (3.20) in the infinite bias limit fL → 1
and fR → 0. What is the value of the current?

We show this by using the decomposition of the Liouvillian in Jordan Block form

L(χ) = Q(χ)LJ(χ)Q−1(χ) , (3.38)

where Q(χ) is a (non-unitary) similarity matrix and LJ(χ) contains the eigenvalues of the Liouvil-
lian on its diagonal – distributed in blocks with a size corresponding to the eigenvalue multiplicity.
We assume that there exists one stationary state ρ̄, i.e., one eigenvalue λ(χ) with λ(0) = 0 and that
all other eigenvalues have a larger negative real part near χ = 0. Then, we use this decomposition
in the matrix exponential to estimate its long-term evolution

M(χ, t) = Tr
{
eL(χ)tρ0

}
= Tr

{
eQ(χ)LJ (χ)Q−1(χ)tρ0

}
= Tr

{
Q(χ)eLJ (χ)tQ−1(χ)ρ0

}

→ Tr

Q(χ)


eλ(χ)·t

0
. . .

0

Q−1(χ)ρ0


= eλ(χ)·tTr

Q(χ)


1

0
. . .

0

Q−1(χ)ρ0

 = eλ(χ)tc(χ) (3.39)

with some polynomial c(χ) depending on the matrix Q(χ). This implies that the cumulant-
generating function

C(χ, t) = lnM(χ, t) = λ(χ)t+ ln c(χ) ≈ λ(χ)t (3.40)

becomes linear in λ(χ) for large times.
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3.5 Energetic Counting

With a similiar theoretical apparatus, it is also possible to count the energetic exchanges between
the system and a monitored reservoir. Most systems that are described by a Markovian master
equation will only allow for discrete changes of their internal energy. If there is only a finite number
of allowed energetic transitions, we may also count the number of such transitions individually,
similiar to the number of particles. For many transitions, this would induce many counting fields,
but the total energy could be recovered from E =

∑
i ωini, such that

P (E, t) =
∑

n1,...,nk

Pn1,...,nk(t)δ(E −
∑
i

ωini) . (3.41)

would yield the probability of energy transfer E at time t. The most evident difference to particle
counting statistics is that while most Markovian models only allow for the exchange of single
particles at a time (a consequence of the usual weak-coupling assumptions), there may be different
energy quanta ω > 0 exchanged with the reservoirs

ρ̇(E) = L0ρ
(E) +

∑
ω

[
L+ωρ

(E−ω) + L−ωρ(E+ω)
]
. (3.42)

Here, L+ω describes processes triggered by the monitored reservoir that increase the system energy
by +ω whereas L−ω decrease the energy by the same amount. Consequently, the summation over
ω involves all allowed transitions within the system. Finally, L0 contains all remaining terms, such
that L = L0 +

∑
ω [L+ω + L−ω] holds. A second difference to particle counting is that – for more

than a single transition frequency ω – the total transferred energy may become continuous. We
therefore perform a continuous Fourier transform

ρ(ξ, t) =

∫
ρ(E)(t)e+iEξdE , (3.43)

which transforms the master equation into

ρ̇(ξ, t) = L0 +
∑
ω

[
L+ωe

+iξω + L−ωe−iξω
]
ρ(ξ, t) = L(ξ)ρ(ξ, t) . (3.44)

Apart from the fact that the counting field ξ has dimension of inverse energy (the counting field ξ
was dimensionless), all techniques from the particle counting statistics may be applied to energy
counting statistics as well.

As a simple phenomenologic example, we consider a three-state system with unidirectional
transport. The system can be empty |0〉 without carrying any energy E0 = 0, it can be occupied
in its left state |L〉 with energy εL and occupied in its right state |R〉 with energy εR. The rate
matrix is in this basis given by

L =

 −ΓL 0 +ΓR
+ΓL −T 0

0 +T −ΓR

 , (3.45)

demonstrating that the system can only be loaded from the left (+ΓL) and unload to the right
(+ΓR), such that transport is uni-directional. Introducing counting fields for particle (χ) and
energy (ξ) transport into the right reservoir, the counting-field-dependent Liouvillian becomes

L(χ, ξ) =

 −ΓL 0 +ΓRe
+iχ+iξεR

+ΓL −T 0
0 +T −ΓR

 , (3.46)
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and the normalized steady state solution is given by

ρ̄ =
1

ΓLΓR + (ΓL + ΓR)T

 ΓRT
ΓLΓR
ΓLT

 . (3.47)

Therefore, we obtain for the matter current

IM = (1, 1, 1)

 0 0 +ΓR
0 0 0
0 0 0

 ρ̄ =
ΓLΓRT

(ΓL + ΓR)T + ΓLΓR
. (3.48)

Similiarly, the energy current becomes

IE = εRIM . (3.49)

Naturally, we observe that these currents vanish when either ΓL, ΓR, or T vanish.

Exercise 32 (Counting Terminal) (1 points)
Introduce counting fields for energy and matter for the rate equation (3.45) when the left reservoir
is monitored and compute both currents.

3.6 Entropy Balance

We now turn our focus to the central quantity in thermodynamics, the entropy. We assume that the
dynamics of our system is described by a time-independent quantum master equation of Lindblad
form. We can even allow for the possibility that the Lindblad generator L(t) is explicitly time-
dependent due to an external driving (the approximations during the derivation in the previous
chapters imply that then this driving must be very slow). Furthermore, we assume that it can be
additively decomposed in the number of reservoirs ν to which the system is coupled (this often
arises in weak-coupling scenarios, but note that counter-examples exist)

ρ̇ = L(t)ρ(t) = L(0)(t)ρ(t) +
∑
ν

L(ν)(t)ρ(t) . (3.50)

Here, L(0)(t)ρ(t)=̂ − i [HS(t), ρ(t)] describes the action of a possibly driven system Hamiltonian
only. We assume that the time-dependent dissipator L(ν)(t) (which may e.g. also include the
effects of Lamb-shift) obeys some detailed balance relations leading to

L(ν)(t)ρ(ν)
eq (t) = 0 , (3.51)

where we have introduced the time-dependent grand-canonical equilibrium state

ρ(ν)
eq (t) =

e−βν [HS(t)−µνNS]

Zν(t)
(3.52)

with inverse temperature βν , chemical potential µν , system Hamiltonian HS(t) and system par-
ticle number operator NS. Apart from the time-dependence, these conditions are fulfilled by the
quantum-optical Lindblad master equation.
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3.6.1 Definitions

When we consider the change of the system energy under Lindblad dynamics, we see that it can
be decomposed as

Ė =
d

dt
Tr {HS(t)ρ(t)}

= Tr
{
ḢSρ

}
+
∑
ν

µνTr
{
NSL(ν)ρ

}
+
∑
ν

Tr
{

(HS(t)− µνNS)L(ν)ρ
}

= Ẇdrv + Ẇchem +
∑
ν

Q̇(ν) , (3.53)

where

Ẇdrv = Tr
{
ḢSρ

}
(3.54)

is the mechanical work performed on the system due to the external driving,

Ẇchem =
∑
ν

µνTr
{
NSL(ν)ρ

}
(3.55)

is the chemical work performed on the system due to the flux of particles from reservoirs ν, and
finally

Q̇(ν) = Tr
{

(HS(t)− µνNS)L(ν)ρ
}
, (3.56)

is the heat entering the system from reservoir ν. We note that at steady state and without driving
we obtain the usual decomposition into energy and matter currents

Q̇(ν) = Tr
{

(HS − µνNS)L(ν)ρ̄
}

= I
(ν)
E − µνI

(ν)
M . (3.57)

Opposed to our previous convention (counting currents entering the reservoir ν positively), here a
current counts positive when it enters the system. That is, we have simply changed the pespective,
which is unproblematic for currents. We can convince ourselves that e.g. for our the SET model
without coherences we have for the energy current entering the system from the left

I
(L)
E = (1, 1)

(
0 0
0 ε

)(
−ΓLfL +ΓL(1− fL)
+ΓLfL −ΓL(1− fL)

)(
1− f̄
f̄

)
= (1, 1)

(
0 0

+εΓLfL −εΓL(1− fL)

)(
1− f̄
f̄

)
= (1, 1)

(
+εΓLfL(1− f̄)
−εΓL(1− fL)f̄

)
= εΓL(fL − f̄)

=
εΓLΓR(fL − fR)

ΓL + ΓR
, (3.58)

which is precisely what we had before for the energy current leaving towards the right terminal,
i.e., at steady state the currents are conserved, and the first law of thermodynamics is obeyed.
The calculation for the matter current is similar I

(L)
E = εI

(L)
M and it is of course also conserved.

These energy and matter currents will affect the dynamics of the entropy of the system, which
can be quantified by the von-Neumann entropy.
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Box 12 (von-Neumann entropy) The von-Neumann entropy of a quantum system described
by the density matrix ρ is given by

S[ρ] = −Tr {ρ ln ρ} , (3.59)

where ρ ln ρ is defined by the power series expansion.

The von-Neumann entropy can alternatively be obtained from the eigenvalues Pi of the density
matrix

S[ρ] = −Tr
{

(UρDU
†) ln(UρDU

†)
}

= −Tr
{
U(ρD ln ρD)U †

}
= −Tr {ρD ln ρD} = −

∑
i

Pi lnPi .(3.60)

It vanishes for a pure state S[|Ψ〉 〈Ψ|] = 0 and is upper bounded by the dimension of the system
Hilbert space N

S[ρ] ≤ lnN . (3.61)

This upper bound is directly found in the diagonal representation. Since the probabilities Pi have
to obey the normalization condition

∑N
i=1 Pi = 1 we use the method of Lagrange multipliers and

maximize S̃[ρ] = S[ρ] + λ(1−
∑

i Pi) instead. This yields

∂piS̃ = − lnPi − 1− λ , ∂λS̃ = 1−
∑
i

Pi . (3.62)

Solving the first equation yields that all probabilities have to be equal to maximize the entropy,
and we can directly use the normalization condition to conclude that Pi = 1/N for maximum
entropy. Direct insertion then yields

Smax = −
∑
i

1

N
ln

1

N
= − ln

1

N
= lnN . (3.63)

Exercise 33 (Lagrange Multipliers) (1 points)
What is the maximum value of the von-Neumann entropy when – beyond the normalization – we
fix a further expectation value

α = 〈A〉 = Tr

{
A
∑
i

Pi |Ψi〉 〈Ψi|

}
=
∑
i

aiPi , ai = 〈Ψi|A |Ψi〉 (3.64)

for an arbitrary operator A?

Alternatively, often the Shannon entropy is used, which involves only the diagonal elements.
For a density matrix ρij it is given by

SSh = −
∑
i

ρii ln ρii . (3.65)
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We note that the diagonal matrix elements need not coincide with the eigenvalues of ρ when the
density matrix is not diagonal. The Shannon entropy depends on the chosen basis, whereas the
von-Neumann entropy is invariant

S[UρU †] = −Tr
{
UρU † lnUρU †

}
= −Tr

{
U(ρ ln ρ)U †

}
= −Tr {ρ ln ρ} = S[ρ] , (3.66)

and we will therefore favor the von-Neumann entropy. Note however, that for diagonal density
matrices, both entropies will coincide.

The time derivative of the von-Neumann entropy can now formally be written as the sum of
the entropy flow entering the system in form of heat from its reservoirs and an intrinsic entropy
production term.

Box 13 (Entropy Production) The entropy production is defined as the difference between the
change of the von-Neumann entropy and the entropy flows that have left the system

Ṡi = Ṡ −
∑
ν

βνQ̇
(ν) . (3.67)

Up to now, these decompositions of energy into work and heat and entropy change into produc-
tion and flow terms are somewhat arbitrary. The only guiding principle in writing them down was
that in well-established cases (e.g. no heat flow but external driving or no driving but steady-state
heat flow) they fall back to the usual thermodynamic definitions. Below, we will show that these
definitions are sensible by showing that for Lindblad dynamics obeying the assumptions previously
discussed one can show that the entropy production is positive.

3.6.2 Positivity of the entropy production

We first consider the time evolution of the von-Neumann entropy

Ṡ = − d

dt
Tr {ρ ln ρ} = −Tr {ρ̇ ln ρ} , (3.68)

where we have used that Tr
{
ρ d
dt

ln ρ
}

= 0, such that the derivative only acts on the first term.

This can be shown by exploiting ρ(t) = UtρD(t)U †t with a time-dependent unitary transformation
UtU

†
t = 1

Tr

{
ρ
d

dt
ln ρ

}
= Tr

{
UρDU

† d

dt
lnUρDU

†
}

= Tr

{
UρDU

† d

dt
U(ln ρD)U †

}
= Tr

{
UρDU

†U̇(ln ρD)U † + UρDU
†U

(
d

dt
ln ρD

)
U † + UρDU

†U(ln ρD)U̇ †
}

= Tr

{
ρDU

†U̇(ln ρD) + ρD

(
d

dt
ln ρD

)
+ ρD(ln ρD)U̇ †U

}
= Tr

{
ρD(ln ρD)

[
U †U̇ + U̇ †U

]}
+
∑
i

Pi
d

dt
lnPi

=
∑
i

Pi
Pi
Ṗi = 0 . (3.69)
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Further inserting the Lindblad generator in Eq. (3.68) one can see directly that the Hamiltonian
driving does not directly contribute to the change of entropy

Tr
{[
L(0)ρ

]
ln ρ
}

= −iTr {[HS(t)ρ− ρHS(t)] ln ρ} = 0 . (3.70)

This is somewhat expected, as – even when HS is time-dependent – the system Hamiltonian only
generates unitary dynamics, which is known to preserve the von-Neumann entropy. Therefore, the
change of the von-Neumann entropy is only determined by the dissipative part

Ṡ = −
∑
ν

Tr
{[
L(ν)ρ

]
ln ρ
}
. (3.71)

Second, we rewrite the second (entropy flow) term in the entropy production (3.67) as

−
∑
ν

βνQ̇
(ν) = −

∑
ν

βνTr
{

(HS(t)− µνNS)L(ν)ρ
}

=
∑
ν

Tr
{[

ln ρ(ν)
eq

] [
L(ν)ρ

]}
(3.72)

with (3.52) defining the reservoir-specific steady state. Here, we need not care about the normal-
ization factor, since its contribution vanishes due to Tr

{
L(ν)ρ

}
= 0 (every dissipator obeys trace

conservation).
Third, combining these manipulations, we can at all times additively decompose the entropy

production rate into reservoir-specific contributions

Ṡi = −
∑
ν

Tr
{[
L(ν)ρ

] [
ln ρ− ln ρ(ν)

eq

]}
. (3.73)

Finally, we will show that the contribution arising from each individual ν term is positive. To
do this, we need to introduce the quantum relative entropy.

Box 14 (Quantum relative entropy) The quantum relative entropy between two density ma-
trices ρ and σ is given by

D(ρ, σ) = Tr {ρ ln ρ} − Tr {ρ lnσ} = Tr {ρ (ln ρ− lnσ)} . (3.74)

It is non-negative D(ρ, σ) ≥ 0 and vanishes if and only if ρ = σ.

Although it is not symmetric D(ρ, σ) 6= D(σ, ρ), it may serve as a distance measure in the
space of density matrices.

We now use that completely positive and trace-preserving maps – in particular the evolution
V generated by Lindblad generators – are contractive, i.e., they decrease the distance between
any two states

D(V A, V B) ≤ D(A,B) . (3.75)

This also holds for more general distances as the (unsymmetric) quantum relative entropy. Choos-

ing A = ρ(t), B = ρ
(ν)
eq (t), and V (ν)(t + ∆t, t) as the propagator associated to a single-reservoir
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evolution ρ̇ = L(ν)(t)ρ from time t to t + ∆t, it follows that V (t + ∆t, t)ρ(t) = ρ(t + ∆t) by
construction and

V (t+ ∆t, t)ρ(ν)
eq (t) = V (t, t)ρ(ν)

eq (t) + L(ν)(t)ρ(ν)
eq (t) +O{∆t2} = ρ(ν)

eq (t) +O{∆t2} , (3.76)

since by definition of ρ
(ν)
eq (t) the first order term vanishes. Consequently, we have

0 ≥ D(V A, V B)−D(A,B)

=
1

∆t

[
D(V (t+ ∆t, t)ρ(t), V (t+ ∆t, t)ρ(ν)

eq (t))−D(ρ(t), ρ(ν)
eq (t))

]
=

1

∆t

[
D(ρ(t+ ∆t), ρ(ν)

eq (t) +O{∆t2})−D(ρ(t), ρ(ν)
eq (t))

]
=

1

∆t

[
Tr {ρ(t+ ∆t) ln ρ(t+ ∆t)} − Tr

{
ρ(t+ ∆t) ln ρ(ν)

eq (t)
}

−Tr {ρ(t) ln ρ(t)}+ Tr
{
ρ(t) ln ρ(ν)

eq (t)
} ]

+O{∆t}

∆t→0−→ d

dt
Tr {ρ ln ρ} − Tr

{
ρ̇ ln ρ(ν)

eq

}
= Tr

{
ρ̇
[
ln ρ− ln ρ(ν)

eq

]}
= Tr

{[
L(ν)ρ

] [
ln ρ− ln ρ(ν)

eq

]}
≤ 0 (3.77)

where we again used the same arguments as below Eq. (3.59). Comparing with Eq. (3.73), we
finally obtain the second law for finite times, in presence of driving and multiple reservoirs

Ṡi ≥ 0 , (3.78)

justifying the definitions made. This is a second law of thermodynamics in a composite non-
equilibrium setup, also valid far from equilibrium. More general formulations of the second law
(going beyond Lindblad master equations) do not predict a positive production rate, but just an
increase of the entropy production with respect to the initial time.

3.6.3 Steady-State Dynamics

We will discuss the simpler case of steady-state dynamics here. Given a finite-dimensional Hilbert
space and ergodic dynamics, the von-Neumann entropy of the system will saturate at some point
Ṡ → 0 and the entropy production rate is given by the heat flows

Ṡi → −
∑
ν

βνQ̇
(ν) = −

∑
ν

βν

[
I

(ν)
E − µνI

(ν)
M

]
≥ 0 , (3.79)

where I
(ν)
E and I

(ν)
M are the energy and matter currents entering the system from reservoir ν,

respectively. Whereas energy and matter conservation imply equalities among the currents at
steady state ∑

ν

I
(ν)
M = 0 ,

∑
ν

I
(ν)
E = 0 , (3.80)

the positivity of entropy production imposes a further constraint among the currents, e.g. for a
two-terminal system

Ṡi = −βL(I
(L)
E − µLI(L)

M )− βR(I
(R)
E − µRI(R)

M )

= (βR − βL)IE + (µLβL − µRβR)IM ≥ 0 , (3.81)
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where we have introduced the currents from left to right IE = +I
(L)
E = −I(R)

E and IM = +I
(L)
M =

−I(R)
M .
We first discuss the case of equal temperatures β = βL = βR. The second law implies that

(µL − µR)IM ≥ 0 , (3.82)

which is nothing but the trivial statement that the current is directed from a lead with large
chemical potential towards the lead with smaller chemical potential.

Next, we consider equal chemical potentials µL = µR = µ but different temperatures. Then,
our setup has to obey

(βR − βL)(IE − µIM) ≥ 0 , (3.83)

where IE−µIM can now be interpreted as the heat transferred from left to right. When βR > βL (i.e.
the left lead is hotter than the right one TL > TR), the second law just implies that IE −µIM ≥ 0,
i.e., heat flows from hot to cold.

Finally, when there is both a thermal and a potential gradient present, it is possible to use
temperature differences to drive a current against a potential bias, i.e. to perform work. This is
the limit of a thermoelectric generator. Conversely, one may apply a thermal gradient to a
system and use it to let the heat flow against the usual direction, e.g. to cool a cold reservoir
(refrigerator) or to heat a hot reservoir (heat pump).

3.7 The double quantum dot

We consider a double quantum dot with internal tunnel coupling T and Coulomb interaction U
that is weakly coupled to two fermionic contacts via the rates ΓL and ΓR, see Fig. 3.2. The

Figure 3.2: A double quantum dot (system) with on-site energies εA/B and internal tunneling
amplitude T and Coulomb interaction U may host at most two electrons. It is weakly tunnel-
coupled to two fermionic contacts via the rates ΓL/R at different thermal equilibria described by
the Fermi distributions fL/R(ω).

corresponding Hamiltonian reads

HS = εAd
†
AdA + εBd

†
BdB + T

(
dAd

†
B + dBd

†
A

)
+ Ud†AdAd

†
BdB ,

HB =
∑
k

εkLc
†
kLckL +

∑
k

εkRc
†
kRckR ,

HI =
∑
k

(
tkLdAc

†
kL + t∗kLckLd

†
A

)
+
∑
k

(
tkRdBc

†
kR + t∗kRckRd

†
B

)
. (3.84)
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In contrast to our previously treated simple rate equation, the internal tunneling T is not a
transition rate but an amplitude, since it occurs at the level of the Hamiltonian. Furthermore,
we note that strictly speaking we do not have a tensor product decomposition in the interaction
Hamiltonian, as the coupling operators anti-commute, e.g.,

{d, ckR} = 0 . (3.85)

We may however use the Jordan Wigner transform, which decomposes the Fermionic operators in
terms of Pauli matrices acting on different spins

dA = σ− ⊗ 1⊗ 1⊗ . . .⊗ 1 , dB = σz ⊗ σ− ⊗ 1⊗ . . .⊗ 1 ,

ckL = σz ⊗ σz ⊗ σz ⊗ . . .⊗ σz︸ ︷︷ ︸
k−1

⊗σ− ⊗ 1⊗ . . .⊗ 1 ,

ckR = σz ⊗ σz ⊗ σz ⊗ . . .⊗ σz︸ ︷︷ ︸
KL

⊗σz ⊗ . . .⊗ σz︸ ︷︷ ︸
k−1

⊗σ− ⊗ 1⊗ . . .⊗ 1 (3.86)

to map to a tensor-product decomposition of the interaction Hamiltonian, where σ± = 1
2

[σx ± iσy].

The remaining operators follow from (σ+)
†

= σ− and vice versa. This decomposition automat-
ically obeys the fermionic anti-commutation relations such as e.g.

{
ck, d

†} = 0 and may there-
fore also be used to create a fermionic operator basis with computer algebra programs (e.g. use
KroneckerProduct in Mathematica).

Exercise 34 (Jordan-Wigner transform) (1 points)
Show that for fermions distributed on N sites, the decomposition

ci = σz ⊗ . . .⊗ σz︸ ︷︷ ︸
i−1

⊗σ− ⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
N−i

preserves the fermionic anti-commutation relations

{ci, cj} = 0 =
{
c†i , c

†
j

}
,

{
ci, c

†
j

}
= δij1 .

Show also that the fermionic Fock space basis c†ici |n1, . . . , nN〉 = ni |n1, . . . , nN〉 obeys
σzi |n1, . . . , nN〉 = (−1)ni+1 |n1, . . . , nN〉.

Inserting the decomposition (3.86) in the Hamiltonian, we may simply use the relations

(σx)2 = (σy)2 = (σz)2 = 1 , σ+σ− =
1

2
[1 + σz] , σ−σ+ =

1

2
[1− σz] ,

σzσ− = −σ− , σ−σz = +σ− , σzσ+ = +σ+ , σ+σz = −σ+ (3.87)
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to obtain a system of interacting spins

HS = εA
1

2
[1 + σzA] + εB

1

2
[1 + σzB] + T

[
σ−Aσ

+
B + σ+

Aσ
−
B

]
+ U

1

2
[1 + σzA]

1

2
[1 + σzB]

HB =
∑
k

εkL
1

2
[1 + σzkL] +

∑
k

εkR
1

2
[1 + σzkR]

HI = σ−Aσ
z
B ⊗

∑
k

tkL

[∏
k′<k

σzk′L

]
σ+
kL + σ+

Aσ
z
B ⊗

∑
k

t∗kL

[∏
k′<k

σzk′L

]
σ−kL

+σ−B ⊗
∑
k

tkR

[∏
k′

σzk′L

][∏
k′′<k

σzk′′R

]
σ+
kR + σ+

B ⊗
∑
k

t∗kR

[∏
k′

σzk′L

][∏
k′′<k

σzk′′R

]
σ−kR

. (3.88)

With this, we could proceed by simply viewing the Hamiltonian as a complicated total system
of non-locally interacting spins. However, the order of operators in the nonlocal Jordan-Wigner
transformation may be chosen as convenient without destroying the fermionic anticommutation
relations. We may therefore also define new fermionic operators on the subspace of the system (first
two sites, with reversed order) and the baths (all remaining sites with original order), respectively

d̃A = σ− ⊗ σz , d̃B = 1⊗ σ− ,
c̃kL = σz ⊗ . . .⊗ σz︸ ︷︷ ︸

k−1

⊗σ− ⊗ 1⊗ . . .⊗ 1 ,

c̃kR = σz ⊗ . . .⊗ σz︸ ︷︷ ︸
KL

⊗σz ⊗ . . .⊗ σz︸ ︷︷ ︸
k−1

⊗σ− ⊗ 1⊗ . . .⊗ 1 . (3.89)

These new operators obey fermionic anti-commutation relations in system and bath separately
(e.g. {d̃A, d̃B} = 0 and {c̃kL, c̃k′L} = 0), but act on different Hilbert spaces, such that system and
bath operators do commute by construction (e.g. [d̃A, c̃kL] = 0). In the new operator basis, the
Hamiltonian appears as

HS =
[
εAd̃

†
Ad̃A + εBd̃

†
Bd̃B + T

(
d̃Ad̃

†
B + d̃Bd̃

†
A

)
+ Ud̃†Ad̃Ad̃

†
Bd̃B

]
⊗ 1 ,

HB = 1⊗

[∑
k

εkLc̃
†
kLc̃kL +

∑
k

εkRc̃
†
kRc̃kR

]
,

HI = d̃A ⊗
∑
k

tkLc̃
†
kL + d̃†A ⊗

∑
k

t∗kLc̃kL + d̃B ⊗
∑
k

tkRc̃
†
kR + d̃†B ⊗

∑
k

t∗kRc̃kR , (3.90)

which is the same (for this and some more special cases) as if we had ignored the fermionic nature
of the annihilation operators from the beginning. We do now proceed by calculating the Fourier
transforms of the bath correlation functions

γ12(ω) = ΓL(−ω)fL(−ω) , γ21(ω) = ΓL(+ω)[1− fL(+ω)] ,

γ34(ω) = ΓR(−ω)fR(−ω) , γ43(ω) = ΓR(+ω)[1− fR(+ω)] (3.91)

with the continuum tunneling rates Γα(ω) = 2π
∑

k |tkα|
2δ(ω− εkα) and Fermi functions fα(εkα) =〈

c†kαckα

〉
=
[
eβα(εkα−µα) + 1

]−1
.
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Exercise 35 (DQD bath correlation functions) (1 points)
Calculate the Fourier transforms (3.91) of the bath correlation functions for the double quantum
dot, assuming that the reservoirs are in a thermal equilibrium state with inverse temperatures βα
and chemical potential µα.

Next, we diagonalize the system Hamiltonian (in the Fock space basis)

E0 = 0 , |v0〉 = |00〉 ,

E− = ε−
√

∆2 + T 2 , |v−〉 ∝
[(

∆ +
√

∆2 + T 2
)
|10〉+ T |01〉

]
,

E+ = ε+
√

∆2 + T 2 , |v+〉 ∝
[(

∆−
√

∆2 + T 2
)
|10〉+ T |01〉

]
,

E2 = 2ε+ U , |v2〉 = |11〉 , (3.92)

where ∆ = (εB − εA)/2 and ε = (εA + εB)/2 and |01〉 = −d̃†B |00〉, |10〉 = d̃†A |00〉, and |11〉 =
d̃†Bd̃

†
A |00〉. We have not symmetrized the coupling operators but to obtain the BMS limit, we may

alternatively use Eqns. (2.58) and (2.59) when τ →∞ . Specifically, when we have no degeneracies
in the system Hamiltonian (∆2 + T 2 > 0), the master equation in the energy eigenbasis (where
a, b ∈ {0,−,+, 2}) becomes a rate equation (2.43), where for non-hermitian coupling operators the
transition rates from b to a are given by

γab,ab =
∑
αβ

γαβ(Eb − Ea) 〈a|Aβ |b〉 〈a|A†α |b〉
∗ . (3.93)

We may calculate the Liouvillians for the interaction with the left and right contact separately

γab,ab = γLab,ab + γRab,ab , (3.94)

since we are constrained to second order perturbation theory in the tunneling amplitudes. Since
we have d̃A = A†2 = A1 = d̃A and d̃B = A†4 = A2 = d̃B, we obtain for the left-associated dampening
coefficients

γLab,ab = γ12(Eb − Ea)|〈a|A2 |b〉|2 + γ21(Eb − Ea)|〈a|A1 |b〉|2 ,
γRab,ab = γ34(Eb − Ea)|〈a|A4 |b〉|2 + γ43(Eb − Ea)|〈a|A3 |b〉|2 . (3.95)

In the wideband (flatband) limit ΓL/R(ω) = ΓL/R, we obtain for the nonvanishing transition rates
in the energy eigenbasis

γL0−,0− = ΓLγ+[1− fL(ε−
√

∆2 + T 2)] , γR0−,0− = ΓRγ−[1− fR(ε−
√

∆2 + T 2)] ,

γL0+,0+ = ΓLγ−[1− fL(ε+
√

∆2 + T 2)] , γR0+,0+ = ΓRγ+[1− fR(ε+
√

∆2 + T 2)] ,

γL−2,−2 = ΓLγ−[1− fL(ε+ U +
√

∆2 + T 2)] , γR−2,−2 = ΓRγ+[1− fR(ε+ U +
√

∆2 + T 2)] ,

γL+2,+2 = ΓLγ+[1− fL(ε+ U −
√

∆2 + T 2)] , γR+2,+2 = ΓRγ−[1− fR(ε+ U −
√

∆2 + T 2)] ,

γL−0,−0 = ΓLγ+fL(ε−
√

∆2 + T 2) , γR−0,−0 = ΓRγ−fR(ε−
√

∆2 + T 2) ,

γL+0,+0 = ΓLγ−fL(ε+
√

∆2 + T 2) , γR+0,+0 = ΓRγ+fR(ε+
√

∆2 + T 2) ,

γL2−,2− = ΓLγ−fL(ε+ U +
√

∆2 + T 2) , γR2−,2− = ΓRγ+fR(ε+ U +
√

∆2 + T 2) ,

γL2+,2+ = ΓLγ+fL(ε+ U −
√

∆2 + T 2) , γR2+,2+ = ΓRγ−fR(ε+ U −
√

∆2 + T 2) , (3.96)
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with the dimensionless coefficients

γ± =
1

2

[
1± ∆√

∆2 + T 2

]
(3.97)

arising from the matrix elements of the system coupling operators. This rate equation can also be
visualized with a network, see Fig. 3.3. We note that although both reservoirs drive all transitions,

Figure 3.3: Configuration space of a serial
double quantum dot coupled to two leads.
Due to the hybridization of the two levels,
electrons may jump directly from the left
contact to right-localized modes and vice
versa, such that in principle all transitios are
driven by both contacts. However, the rel-
ative strength of the couplings is different,
such that the two Liouillians have a different
structure. In the Coulomb-blockade limit,
transitions to the doubly occupied state are
forbidden (dotted lines), such that the sys-
tem dimension can be reduced.

their relative strength is different, and we do not have a simple situation as discussed previously
in Eq. (3.6). Consequently, the stationary state of the rate equation cannot be written as some
grand-canonical equilibrium state, which is most conveniently shown by disproving the relations
ρ̄−−/ρ̄00 = e−β(E−−E0−µ), ρ̄++/ρ̄00 = e−β(E+−E0−µ) and ρ̄++/ρ̄−− = e−β(E+−E−).

As the simplest example of the resulting rate equation, we study the high-bias and Coulomb-
blockade limit fL/R(ε+U±

√
∆2 + T 2)→ 0 and fL(ε±

√
∆2 + T 2)→ 1 and fR(ε±

√
∆2 + T 2)→ 0

when ∆ → 0 (such that γ± → 1/2). This removes any dependence on the internal tunneling
amplitude T . Consequently, derived quantities such as e.g. the current will not depend on T
either and we would obtain a current even when T → 0 (where we have a disconnected structure).
However, precisely in this limit (i.e. ∆ → 0 and T → 0), the two levels E− and E+ become
energetically degenerate, and a simple rate equation description is not applicable. The take-home
message of this failure is that one should not use plug and play formulas without learning about
their limits. Therefore, keeping in mind that T 6= 0, the resulting Liouvillian reads

L =
1

2


−2ΓL ΓR ΓR 0

ΓL −ΓR 0 ΓL + ΓR
ΓL 0 −ΓR ΓL + ΓR
0 0 0 −2(ΓL + ΓR)

 , (3.98)

where it becomes visible that the doubly occupied state will simply decay and may therefore –
since we are interested in the long-term dynamics – be eliminated completely

LCBHB =
1

2

 −2ΓL ΓR ΓR
ΓL −ΓR 0
ΓL 0 −ΓR

 . (3.99)
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Introducing counting fields for matter (χ) and energy (ξ) entering the right junction we obtain

LCBHB(χ, ξ) =
1

2

 −2ΓL ΓRe
+iχ+iξE− ΓRe

+iχ+iξE+

ΓL −ΓR 0
ΓL 0 −ΓR

 . (3.100)

Exercise 36 (Stationary DQD currents) (1 points)
Calculate the stationary currents entering the right reservoir with the help of Eq.(3.100).

At finite bias voltages, it becomes of course harder to calculate steady states and stationary
currents. However, for low temperatures, the Fermi functions will behave similiar to step functions,
and the transport window becomes sharp. Then, by enlarging the bias voltage, the transport
window is opened, and the currents will exhibit steps when a new transport channel is inside the
transport window, see Fig. 3.4. A further obvious observation is that at zero bias voltage, we have
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Figure 3.4: Plot of matter (solid black) and
energy (dashed red) currents. At sufficiently
low temperatures, the steps in the currents oc-
cur for positive bias voltage at µL = V/2 ∈
{E− − E0, E+ − E0, E2 − E+, E2 − E−}. The
inset displays the configuration of these tran-
sition energies relative to left (blue) and right
(green) Fermi functions taken at V = 10T .
Then, only the lowest transition energy (arrow)
is inside the transport window, such that trans-
port is dominated by transitions between |−〉
and |0〉. Other parameters have been chosen as
µL = −µR = V/2, ΓL = ΓR = Γ, εA = 4T ,
εB = 6T ,U = 5T , and βT = 10.

vanishing currents. This must happen only at equal temperatures. The entropy production in this
case is fully determined by the matter current Ṡi = β(µL − µR)IM , where IM denotes the current
from left to right. Identifying P = (µL − µR)IM with the power dissipated by the device, the
entropy production just becomes Ṡi = βP .

3.8 Phonon-Assisted Tunneling

We consider here a three-terminal system, comprised as before of two quantum dots. The left dot
is tunnel-coupled to the left lead, the right dot to the right, but in addition, tunneling between
the dots is now triggered by a third (bosonic) reservoir that does not change the particle content.
That is, without the bosonic reservoir (e.g. phonons or photons) the model would not support a
steady state matter current – which is in contrast to the previous model

The system is described by the Hamiltonian

HS = εAd
†
AdA + εBd

†
BdB + Ud†AdAd

†
BdB (3.101)
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Figure 3.5: Sketch of two quantum dots that
are separately tunnel-coupled to their adja-
cent reservoir in the conventional way by
rates ΓL and ΓR. The mere Coulomb in-
teraction U only allows for the exchange of
energy between the dots, but with phonons
present (rounded terminals), tunneling be-
tween A andB becomes possible (dotted and
dashed). The device may act as a thermo-
electric generator converting thermal gradi-
ents into power.

with on-site energies εA < εB and Coulomb interaction U . Since there is no internal tunneling,
its energy eigenstates coincide with the localized basis |nA, nB〉 with the dot occupations nA, nB ∈
{0, 1}. This structure makes it particularly simple to derive a master equation in rate equation
representation. The jumps between states are triggered by the electronic tunneling Hamiltonians
and the electron-phonon interaction

HI =
∑
k

(
tkLdAc

†
kL + t∗kLckLd

†
A

)
+
∑
k

(
tkRdBc

†
kR + t∗kRckRd

†
B

)
+
(
dAd

†
B + dBd

†
A

)
⊗
∑
q

(
hqaq + h∗qa

†
q

)
, (3.102)

where ckα are fermionic and aq bosonic annihilation operators. The three reservoirs

HB =
∑
k

εkLc
†
kLckL +

∑
k

εkRc
†
kRckR +

∑
q

ωqa
†
qqq (3.103)

are assumed to remain in separate thermal equilibrium states, such that the reservoir density
matrix is assumed to be a product of the single density matrices. This automatically implies that
the expectation value of linear combinations of the coupling operators vanishes. In the weak-
coupling limit, the rate matrix will be additively decomposed into contributions resulting from
the electronic (L,R) and bosonic (B) reservoirs L = LL + LR + LB From our results with the
single-electron transistor, we may readily reproduce the rates for the electronic jumps. Ordering
the basis as ρ00,00, ρ10,10, ρ01,01, and ρ11,11 and using for simplicity the wide-band limit Γα(ω) ≈ Γα
these read

LL = ΓL


−fL(εA) 1− fL(εA) 0 0
+fL(εA) −[1− fL(εA)] 0 0

0 0 −fL(εA + U) 1− fL(εA + U)
0 0 +fL(εA + U) −[1− fL(εA + U)]



LR = ΓR


−fR(εB) 0 1− fR(εB) 0

0 −fR(εB + U) 0 1− fR(εB + U)
+fR(εB) 0 −[1− fR(εB)] 0

0 +fR(εB + U) 0 −[1− fR(εB + U)]

 , (3.104)

where the electronic tunneling rates are as usual obtained via (in the wide-band limit) Γα ≈
Γα(ω) = 2π

∑
k |tkα|

2δ(ω − εkα) from the microscopic tunneling amplitudes tkα. We note that the
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Fermi functions are evaluated at the energy difference of the jump to which they refer. Although
energy may be transferred between the left and right junctions without the presence of phonons,
it is not possible to transfer charges.

For the spin-boson example, we have also already calculated the correlation function for the
phonons for a spin-boson model in Sec. 2.2.4. Since the reservoir coupling operator is identical, we
may use our result from Eq. (2.73).

γ(ω) = Γ(+ω)Θ(+ω)[1 + nB(+ω)] + Γ(−ω)Θ(−ω)nB(−ω) , (3.105)

where Γ(ω) = 2π
∑

k |hk|
2δ(ω−ωk) was the bosonic emission or absorption rate and nB(ω) denoted

the Bose-Einstein distribution function. For consistency, we just note that the KMS condition is
obeyed. With this, we may readily evaluate the rates due to the phonon reservoirs, i.e., we have
with Γ = Γ(εB − εA)

LB = Γ


0 0 0 0
0 −nB(εB − εA) 1 + nB(εB − εA) 0
0 +nB(εB − εA) −[1 + nB(εB − εA)] 0
0 0 0 0

 . (3.106)

The rate matrices in Eqs. (3.104) and (3.106) can be used to extract the full electron-phonon
counting statistics after all jumps have been identified. We have a three terminal system, where
the phonon terminal only allows for the exchange of energy, i.e., in total we can calculate five
non-vanishing currents. With the conservation laws on matter and energy currents, we can at
steady state eliminate two of these, and the entropy production becomes

Ṡi = −βphI
B
E − βL(ILE − µLILM)− βR(IRE − µRIRM)

= −βphI
B
E − βL(ILE − µLILM) + βR(ILE + IBE − µRILM)

= (βR − βph)IBE + (βR − βL)ILE + (βLµL − βRµR)ILM , (3.107)

which has the characteristic affinity-flux form. In usual electronic setups, the electronic tempera-
tures will be the same βel = βL = βR, such that the entropy production further reduces to

Ṡi = (βel − βph)IBE + βel(µL − µR)ILM ≥ 0 , (3.108)

where we can identify the term (µL − µR)ILM as a power consumed or produced by the device.
Furthermore, we note that the device obeys the tight-coupling property: Every electron traversing
the system from left to right must absorb energy εB−εA from the phonon reservoir IBE = (εB−εA)ILM .
Therefore, the entropy production can also be written as

Ṡi = [(βel − βph)(εB − εA) + βel(µL − µR)] ILM ≥ 0 . (3.109)

We note that the prefactor of the matter current vanishes at

V ∗ = µ∗L − µ∗R =

(
Tel

Tph

− 1

)
(εB − εA) . (3.110)

Since the prefactor switches sign at this voltage, the matter current must vanish at this voltage, too
– otherwise the entropy production would not be positive. Without calculation, we have therefore
found that at bias voltage V ∗ the current must vanish.
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For simplicity, we decide to count matter at the left junction (χ) and energy transfers at the
bosonic junction (ξ). To keep a compact description, we introduce the abbreviations

nB = nB(εB − εA) , fL = fL(εA) , fR = fR(εB) ,

f̄L = fL(εA + U) , f̄R = fR(εB + U) , Γ = Γ(εB − εA) . (3.111)

With the counting fields, the complete system then becomes

L = ΓL


−fL (1− fL)e−iχ 0 0

+fLe
+iχ −[1− fL] 0 0

0 0 −f̄L (1− f̄L)e−iχ

0 0 +f̄Le
+iχ −(1− f̄L)



+Γ


0 0 0 0
0 −nB (1 + nB)e−i(εB−εA)ξ 0
0 +nBe

+i(εB−εA)ξ −(1 + nB) 0
0 0 0 0



+ΓR


−fR 0 1− fR 0

0 −f̄R 0 1− f̄R
+fR 0 −(1− fR) 0

0 +f̄R 0 −(1− f̄R)

 . (3.112)

Noting that the total entropy production is positive does not imply that all contributions are
separately positive. Fig. 3.6 displays the current as a function of the bias voltage for different
electronic and phonon temperature configurations. It is visible that at zero bias, the matter
current does not vanish when electron and phonon temperatures are not chosen equal.

3.8.1 Thermoelectric performance

We concentrate on the simple case discussed before and use βL = βR = βel and βph = βB. In
regions where the current runs against the bias, the power

P = −(µL − µR)ILM (3.113)

becomes positive, and we can define an efficiency via

η =
−(µL − µR)ILM

Q̇in

Θ(P ) , (3.114)

where Q̇in is the heat entering the system from the hot reservoir. The purpose of the Heaviside
function is just to avoid misinterpretations of the efficiency.

Consequently, when the phonon temperature is larger than the electron temperature Tph > Tel,
the input heat is given by the positive energy flow from the hot phonon bath into the system, such
that – due to the tight-coupling property – the efficiency becomes trivially dependent on the bias
voltage

ηTph>Tel
=

P

IBE
Θ(P ) = − V

εB − εA
Θ(P ) . (3.115)

At first sight, one might think that this efficiency could become larger than one. It should be kept
in mind however that it is only valid in regimes where the power (3.113) is positive, which limits
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Figure 3.6: Electronic matter current in units of ΓL = ΓR = Γ versus dimensionless bias voltage
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the applicability of these efficiencies to voltages within V = 0 and V = V ∗ from Eq. (3.110). The
maximum efficiency is reached at V = V ∗ and reads

ηTph>Tel
< 1− Tel

Tph

= ηCa , (3.116)

and is thus upper-bounded by Carnot efficiency

ηCa = 1− Tcold

Thot

. (3.117)

In the opposite case, where Tph < Tel, the input heat is given by the sum of the energy currents
entering from the hot electronic leads Q̇in = Q̇L + Q̇R = ILE + IRE + P = −IBE + P , such that the
efficiency becomes

ηTph<Tel
=

P

−IBE + P
=

(µL − µR)

(εB − εA) + (µL − µR)
=

1

1 + εB−εA
µL−µR

, (3.118)

which also trivially depends on the bias voltage. Inserting the maximum bias voltage with positive
power in Eq. (3.110) we obtain the maximum efficiency

ηTph<Tel
<

1

1 + 1
Tel
Tph
−1

= 1− Tph

Tel

, (3.119)

which is also just the Carnot efficiency.

Unfortunately, Carnot efficiencies are reached at vanishing current, i.e., at zero power. At
these parameters, a thermoelectric device is useless. It is therefore more practical to consider the
efficiency at maximum power. However, since the currents depend in a highly nonlinear fashion on
all parameters (coupling constants, temperatures, chemical potentials, and system parameters),
this becomes a numerical optimization problem – unless one restricts the analysis to the linear
response regime.

3.9 Fluctuation Theorems

The probability distribution Pn(t) is given by the inverse Fourier transform of the moment-
generating function

Pn(t) =
1

2π

+π∫
−π

M(χ, t)e−inχdχ =
1

2π

+π∫
−π

eC(χ,t)−inχdχ . (3.120)

Accordingly, a symmetry in the cumulant-generating function (or moment-generating function) of
the form

C(−χ, t) = C(+χ+ iα, t) (3.121)
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leads to a symmetry of the probabilities

P+n(t)

P−n(t)
=

1
2π

∫ +π

−π e
C(χ,t)−inχdχ

1
2π

∫ +π

−π e
C(χ,t)+inχdχ

=

∫ +π

−π e
C(χ,t)−inχdχ∫ +π

−π e
C(−χ,t)−inχdχ

=

∫ +π

−π e
C(χ,t)−inχdχ∫ +π

−π e
C(χ+iα,t)−inχdχ

=

∫ +π

−π e
C(χ,t)−inχdχ∫ +π+iα

−π+iα
eC(χ,t)−in[χ−iα]dχ

=

∫ +π

−π e
C(χ,t)−inχdχ

e−nα
∫ +π

−π e
C(χ,t)−inχdχ

= e+nα , (3.122)

where we have used in the last step that the counting field always enters as a function of e±iχ.
This automatically implies that C(−π + iσ, t) = C(+π + iσ, t) for all real numbers σ, such that
we can add two further integration paths from −π to −π + iα and from +π + iα to +π to the
integral in the denominator. The value of the cumulant-generating function along these paths
is the same, such that due to the different integral orientation there is no net change. Finally,
using analyticity of the integrand, we deform the integration contour in the denominator, leaving
two identical integrals in numerator and denominator. Note that the system may be very far
from thermodynamic equilibrium but still obey a symmetry of the form (3.121), which leads to a
fluctuation theorem of the form (3.122) being valid far from equilibrium.

As example, we consider the SET (which is always in thermal equilibrium). The characteristic
polynomial D(χ) = |L(χ)− λ1| of the Liouvillian (3.20) and therefore also all eigenvalues obeys
the symmetry

D(−χ) = D
(

+χ+ i ln

[
fL(1− fR)

(1− fL)fR

])
= D (χ+ i [(βR − βL) ε+ βLµL − βRµR]) . (3.123)

Exercise 37 (Eigenvalue Symmetry) (1 points)
Compute the characteristic polynomial of the Liouvillian (3.20) and confirm the symmetry (3.123).

which leads to the fluctuation theorem

lim
t→∞

P+n(t)

P−n(t)
= en[(βR−βL)ε+βLµL−βRµR] . (3.124)

We note that the exponent does not depend on the microscopic details of the model (ε, Γα) but
only on the thermodynamic quantities. We would obtain the same result for a DQD coupled to
two terminals. For equal temperatures, this becomes

lim
t→∞

P+n(t)

P−n(t)
= enβV , (3.125)

which directly demonstrates that the average current

I =
d

dt
〈n(t)〉 =

d

dt

+∞∑
n=−∞

nPn(t) =
∞∑
n=1

n [P+n(t)− P−n(t)] =
∞∑
n=1

nPn(t)
[
1− e−nβV

]
(3.126)
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always follows the voltage. We can interpret the exponent in Eq. (3.124) in terms of the entropy
that has been produced: The quantity nε describes the energy that has traversed the SET for large
times, and consequently, the term in the exponent approximates the entropy production, which is
for large times simply proportional to the number of particles that have travelled from left to right

∆Si ≈ (βR − βL)nε+ (βLµL − βRµR)n . (3.127)

Therefore, we can interpret the fluctuation theorem also as a stochastic manifestation of the second
law

P (+∆Si)

P (−∆Si)
= e+∆Si . (3.128)

Here, trajectories with a negative entropy production ∆Si are not forbidden. They are just less
likely to occur than their positive-production counterparts, such that – on average – the second
law is always obeyed.

The SET has the property of tight coupling between enery and matter currents: Every
electron carries the same energy. For more general systems, where this property is not present,
one still obtains a fluctuation theorem for the entropy production. Then, the combined counting
statistics of energy and matter currents is necessary to obtain it. Furthermore, one will for an
n-terminal system need 2n counting fields to quantify the entropy production. In the long-term
limit, one can use conservation laws, such that the maximum number of counting fields is given
by 2n− 2, which can be further reduced when one has further symmetries (like tight-coupling).

Exercise 38 (Fluctuation Theorem) (1 points)
Calculate the long-term fluctuation theorem for Eq. (3.112) in the Coulomb-blockade regime f̄α →
0, when only matter transfer from left to right is counted. To do so, first reduce the dimension of
the system (Coulomb blockade). Then, introduce a matter counting field at the junction of your
choice and try to find a symmetry of the characteristic polynomial.
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Chapter 4

Direct bath coupling :
Non-Equilibrium Case II

Another nonequilibrium situation may be generated by a multi-component bath with components
interacting directly (i.e., even without the presence of the system) via a small interface. However,
the interaction may be modified by the presence of the quantum system and may also back-act on
the quantum system itself. A prototypical example for such a bath is a quantum point contact:
It consists of two leads that are connected by a tiny contact. The two leads are held at different
potentials and through the tiny contact charges may tunnel from one lead to the other. The
tunneling process is however highly sensitive to the presence of nearby charges, in the Hamiltonian
this is modeled by a capacitive change of the tunneling amplitudes. When already the baseline
tunneling amplitudes (in a low transparency QPC) are small, we may apply the master equation
formalism without great efforts, as will be demonstrated at two examples.

4.1 Monitored SET

High-precision tests of counting statistics have been performed with a quantum point contact that
is capacitively coupled to a single-electron transistor. The Hamiltonian of the system depicted in
Fig. 4.1 reads

Figure 4.1: Sketch of a quantum point contact (in fact, a two component bath with the components
held at different chemical potential) monitoring a single electron transistor. The tunneling through
the quantum point contact is modified when the SET is occupied.

73
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HS = εd†d ,

HB =
∑
k

εkLc
†
kLckL +

∑
k

εkLc
†
kRckR +

∑
k

εkLγ
†
kLγkL +

∑
k

εkLγ
†
kRγkR ,

HI =

[∑
k

tkLdc
†
kL +

∑
k

tkRdc
†
kR + h.c.

]
+

[∑
kk′

(
tkk′ + d†dτkk′

)
γkLγ

†
k′R + h.c.

]
, (4.1)

where ε denotes the dot level, ckα annihilate electrons on SET lead α and γkα are the annihilation
operators for the QPC lead α. The QPC baseline tunneling amplitude is given by tkk′ and describes
the scattering of and electron from mode k in the left lead to mode k′ in the right QPC contact.
When the nearby SET is occupied it is modified to tkk′ + τkk′ , where τkk′ represents the change of
the tunneling amplitude.

We will derive a master equation for the dynamics of the SET due to the interaction with the
QPC and the two SET contacts. In addition, we are interested not only in the charge counting
statistics of the SET but also the QPC. The Liouvillian for the SET-contact interaction is well
known and has been stated previously (we insert counting fields at the right lead to count charges
traversing the SET from left to right)

LSET(χ) =

(
−ΓLfL − ΓRfR +ΓL(1− fL) + ΓR(1− fR)e+iχ

+ΓLfL + ΓRfRe
−iχ −ΓL(1− fL)− ΓR(1− fR)

)
. (4.2)

We will therefore derive the dissipator for the SET-QPC interaction separately. To keep track
of the tunneled QPC electrons, we insert a virtual detector operator in the respective tunneling
Hamiltonian

HQPC
I =

∑
kk′

(
tkk′1 + d†dτkk′

)
B†γkLγ

†
k′R +

∑
kk′

(
t∗kk′1 + d†dτ ∗kk′

)
Bγk′Rγ

†
kL

= 1⊗B† ⊗
∑
kk′

tkk′γkLγ
†
k′R + 1⊗B ⊗

∑
kk′

t∗kk′γk′Rγ
†
kL

+d†d⊗B† ⊗
∑
kk′

τkk′γkLγ
†
k′R + d†d⊗B ⊗

∑
kk′

τ ∗kk′γk′Rγ
†
kL . (4.3)

Note that we have implicitly performed the mapping to a tensor product representation of the
fermionic operators, which is unproblematic here as between SET and QPC no particle exchange
takes place and the electrons in the QPC and the SET may be treated as different particle types.
To simplify the system, we assume that the change of tunneling amplitudes affects all modes in
the same manner, i.e., τkk′ = τ̃ tkk′ , which enables us to combine some coupling operators

HQPC
I =

[
1 + τ̃ d†d

]
⊗B† ⊗

∑
kk′

tkk′γkLγ
†
k′R +

[
1 + τ̃ ∗d†d

]
⊗B ⊗

∑
kk′

t∗kk′γk′Rγ
†
kL . (4.4)

The evident advantage of this approximation is that only two correlation functions have to be
computed. We can now straightforwardly (since the baseline tunneling term is not included in the
bath Hamiltonian) map to the interaction picture

B1(τ) =
∑
kk′

tkk′γkLγ
†
k′Re

−i(εkL−εk′R)τ , B2(τ) =
∑
kk′

t∗kk′γk′Rγ
†
kLe

+i(εkL−εk′R)τ . (4.5)
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For the first bath correlation function we obtain

C12(τ) =
∑
kk′

∑
``′

tkk′t
∗
``′e
−i(εkL−εk′R)τ

〈
γkLγ

†
k′Rγ`′Rγ

†
`L

〉
=

∑
kk′

|tkk′|2e−i(εkL−εk′R)τ [1− fL(εkL)] fR(εk′R)

=
1

2π

∫ ∫
T (ω, ω′) [1− fL(ω)] fR(ω′)e−i(ω−ω′)τdωdω′ , (4.6)

where we have introduced T (ω, ω′) = 2π
∑

kk′ |tkk′ |
2δ(ω − εkL)δ(ω − εk′R). Note that in contrast

to previous tunneling rates, this quantity is dimensionless. The integral factorizes when T (ω, ω′)
factorizes (or when it is flat T (ω, ω′) = t). In this case, the correlation function C12(τ) is expressed
as a product in the time domain, such that its Fourier transform will be given by a convolution
integral

γ12(Ω) =

∫
C12(τ)e+iΩτdτ

= t

∫
dωdω′ [1− fL(ω)] fR(ω′)δ(ω − ω′ − Ω)

= t

∫
[1− fL(ω)] fR(ω − Ω)dω . (4.7)

For the other correlation function, we have

γ21(Ω) = t

∫
fL(ω) [1− fR(ω + Ω)] dω . (4.8)

Exercise 39 (Correlation functions for the QPC) (1 points)
Show the validity of Eqns. (4.8).

The structure of the Fermi functions demonstrates that the shift Ω can be included in the
chemical potentials. Therefore, we consider integrals of the type

I =

∫
f1(ω) [1− f2(ω)] dω . (4.9)

At zero temperature, these should behave as I ≈ (µ1 − µ2)Θ(µ1 − µ2), where Θ(x) denotes the
Heaviside-Θ function, which follows from the structure of the integrand, see Fig. 4.2. For finite
temperatures, the value of the integral can also be calculated, for simplicity we constrain ourselves
to the (experimentally relevant) case of equal temperatures (β1 = β2 = β), for which we obtain

I =

∫
1

(eβ(µ2−ω) + 1) (e−β(µ1−ω) + 1)
dω

= lim
δ→∞

∫
1

(eβ(µ2−ω) + 1) (e−β(µ1−ω) + 1)

δ2

δ2 + ω2
dω , (4.10)
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Figure 4.2: Integrand in Eq. (4.9). At zero
temperature at both contacts, we obtain a
product of two step functions and the area
under the curve is given by the difference
µ1 − µ2 as soon as µ1 > µ2 (and zero other-
wise).

where we have introduced the Lorentzian-shaped regulator to enforce convergence. By identifying
the poles of the integrand

ω∗± = ±iδ ,

ω∗1,n = µ1 +
π

β
(2n+ 1)

ω∗2,n = µ2 +
π

β
(2n+ 1) (4.11)

where n ∈ {0,±1,±2,±3, . . . we can solve the integral by using the residue theorem, see also
Fig. 4.3 for the integration contour. Finally, we obtain for the integral

Figure 4.3: Poles and integration contour for
Eq. (4.9) in the complex plane. The integral
along the real axis (blue line) closed by an
arc (red curve) in the upper complex plane,
along which (due to the regulator) the inte-
grand vanishes sufficiently fast.

I = 2πi lim
δ→∞

{
Res f1(ω) [1− f2(ω)]

δ2

δ2 + ω2

∣∣∣∣
ω=+iδ

+
∞∑
n=0

Res f1(ω) [1− f2(ω)]
δ2

δ2 + ω2

∣∣∣∣
ω=µ1+π

β
(2n+1)

+
∞∑
n=0

Res f1(ω) [1− f2(ω)]
δ2

δ2 + ω2

∣∣∣∣
ω=µ2+π

β
(2n+1)

}
=

µ1 − µ2

1− e−β(µ1−µ2)
, (4.12)

which automatically obeys the simple zero-temperature (β → ∞) limit. With the replacements
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µ1 → µR + Ω and µ2 → µL, we obtain for the first bath correlation function

γ12(Ω) = t
Ω− V

1− e−β(Ω−V )
, (4.13)

where V = µL − µR is the QPC bias voltage. Likewise, with the replacements µ1 → µL and
µ2 → µR − Ω, the second bath correlation function becomes

γ21(Ω) = t
Ω + V

1− e−β(Ω+V )
. (4.14)

Now we can calculate the transition rates in our system (containing the virtual detector and the
quantum dot) for a non-degenerate system spectrum. However, now the detector is part of our
system. Therefore, the system state is not only characterized by the number of charges on the
SET dot a ∈ {0, 1} but also by the number of charges n that have tunneled through the QPC and
have thereby changed the detector state

ρ̇(a,n)(a,n) =
∑
b,m

γ(a,n)(b,m),(a,n)(b,m)ρ(b,m)(b,m) −

[∑
b,m

γ(b,m)(a,n),(b,m)(a,n)

]
ρ(a,n)(a,n) . (4.15)

Shortening the notation by omitting the double-indices we may also write

ρ̇(n)
aa =

∑
b,m

γ(a,n),(b,m)ρ
(m)
bb −

[∑
b,m

γ(b,m),(a,n)

]
ρ(n)
aa , (4.16)

where ρ
(n)
aa = ρ(a,n),(a,n) and γ(a,n),(b,m) = γ(a,n)(a,n),(b,m)(b,m). It is evident that the coupling operators

A1 = (1 + τ̃ d†d) ⊗ B† and A2 = (1 + τ̃ ∗d†d) ⊗ B only allow for sequential tunneling through the
QPC at lowest order (i.e., m = n ± 1) and do not induce transitions between different dot states
(i.e., a = b), such that the only non-vanishing contributions may arise for

γ(0,n)(0,n+1) = γ12(0) 〈0, n|A2 |0, n+ 1〉 〈0, n|A†1 |0, n+ 1〉∗ = γ12(0) ,

γ(0,n)(0,n−1) = γ21(0) 〈0, n|A1 |0, n− 1〉 〈0, n|A†2 |0, n− 1〉∗ = γ21(0) ,

γ(1,n)(1,n+1) = γ12(0) 〈1, n|A2 |1, n+ 1〉 〈1, n|A†1 |1, n+ 1〉∗ = γ12(0)|1 + τ̃ |2 ,
γ(1,n)(1,n−1) = γ21(0) 〈1, n|A1 |1, n− 1〉 〈1, n|A†2 |1, n− 1〉∗ = γ21(0)|1 + τ̃ |2 . (4.17)

The remaining terms just account for the normalization.

Exercise 40 (Normalization terms) (1 points)
Compute the remaining rates∑

m

γ(0,m)(0,m),(0,n)(0,n) , and
∑
m

γ(1,m)(1,m),(1,n)(1,n)

explicitly.
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Adopting the notation of conditional master equations, this leads to the connected system

ρ̇
(n)
00 = γ12(0)ρ

(n+1)
00 + γ21(0)ρ

(n−1)
00 − [γ12(0) + γ21(0)] ρ

(n)
00

ρ̇
(n)
11 = |1 + τ̃ |2γ12(0)ρ

(n+1)
11 + |1 + τ̃ |2γ21(0)ρ

(n−1)
11 − |1 + τ̃ |2 [γ12(0) + γ21(0)] ρ

(n)
11 , (4.18)

such that after Fourier transformation with the counting field ξ for the QPC, we obtain the
following dissipator

LQPC(ξ) =

( [
γ21

(
e+iξ − 1

)
+ γ12

(
e−iξ − 1

)]
0

0 |1 + τ̃ |2
[
γ21

(
e+iξ − 1

)
+ γ12

(
e−iξ − 1

)] ) ,

(4.19)

which could not have been deduced directly from a Liouvillian for the SET alone. More closely
analyzing the Fourier transforms of the bath correlation functions

γ21 = γ21(0) = t
V

1− e−βV
,

γ12 = γ12(0) = t
V

e+βV − 1
(4.20)

we see that for sufficiently large QPC bias voltages V →∞, transport becomes unidirectional: One
contribution becomes linear in the voltage γ21 → tV and the other one is exponentially suppressed
γ12 → 0. Despite the unusual form of the tunneling rates we see that they obey the usual detailed
balance relations

γ21

γ12

= e+βV . (4.21)

The sum of both Liouvillians (4.2) and (4.19) constitutes the total dissipator

L(χ, ξ) = LSET(χ) + LQPC(ξ) , (4.22)

which can be used to calculate the probability distributions for tunneling through both transport
channels (QPC and SET).

Exercise 41 (QPC current) (1 points)
Show that the stationary state of the SET is unaffected by the additional QPC dissipator and
calculate the stationary current through the QPC for Liouvillian (4.22).

When we consider the case {ΓL,ΓR} � {tV, |1 + τ̃ |tV }, we approach a bistable system, where
for a nearly stationary SET the QPC transmits many charges. Then, the QPC current measured
at finite times will be large when the SET dot is empty and reduced otherwise. In this case,
the counting statistics approaches the case of telegraph noise. When the dot is empty or filled
throughout respectively, the current can easily be determined as

I0 = [γ21(0)− γ12(0)] , I1 = |1 + τ̃ |2 [γ21(0)− γ12(0)] . (4.23)
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For finite time intervals ∆t, the number of electrons tunneling through the QPC ∆n is determined
by the probability distribution

P∆n(∆t) =
1

2π

+π∫
−π

Tr
{
eL(0,ξ)∆t−i∆nξρ(t)

}
dξ , (4.24)

where ρ(t) represents the initial density matrix. This quantity can e.g. be evaluated numerically.
When ∆t is not too large (such that the stationary state is not really reached) and not too small
(such that there are sufficiently many particles tunneling through the QPC to meaningfully define a
current), a continuous measurement of the QPC current maps to a fixed-point iteration as follows:
Measuring a certain particle number corresponds to a projection, i.e., the system-detector density
matrix is projected to a certain measurement outcome which occurs with the probability P∆n(∆t)

ρ =
∑
n

ρ(n) ⊗ |n〉 〈n| m→ ρ(m)

Tr {ρ(m)}
. (4.25)

It is now essential to use the density matrix after the measurement as the initial state for the
next iteration. This ensures that e.g. after measuring a large current it is in the next step more
likely to measure a large current than a low current. Consequently, the ratio of measured particles
divided by measurement time gives a current estimate I(t) ≈ ∆n

∆t
for the time interval. Such

current trajectories are used to track the full counting statistics through quantum point contacts,
see Fig. 4.4 In this way, the QPC acts as a detector for the counting statistics of the SET circuit.
Finally, we note that for an SET, a QPC only acts as a reliable detector when the SET transport
is unidirectional (large bias).

4.2 Monitored charge qubit

A quantum point contact may also be used to monitor a nearby charge qubit, see Fig. 4.5. The
QPC performs a measurement of the electronic position, since its current is highly sensitive on
it. This corresponds to a σx measurement performed on the qubit. However, the presence of a
detector does of course also lead to a back-action on the probed system. Here, we will derive a
master equation for the system to quantify this back-action.

The Hamiltonian of the charge qubit is given by

HCQB = εAd
†
AdA + εBd

†
BdB + T

(
dAd

†
B + dBd

†
A

)
, (4.26)

where we can safely neglect Coulomb interaction, since to form a charge qubit, the number of
electrons on this double quantum dot is fixed to one. The matrix representation is therefore just
two-dimensional in the |nA, nB〉 ∈ {|10〉 , |01〉} basis and can be expressed by Pauli matrices

HCQB =

(
εA T
T εB

)
=
εA + εB

2
1 +

εA − εB
2

σz + Tσx ≡ ε1 + ∆σz + Tσx , (4.27)

i.e., we may identify d†AdA = 1
2

(1 + σz) and d†BdB = 1
2

(1− σz). The tunneling part of the QPC
Hamiltonian reads

HI = d†AdA ⊗
∑
kk′

tAkk′γkLγ
†
k′R + d†BdB ⊗

∑
kk′

tBkk′γkLγ
†
k′R + h.c. , (4.28)
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Figure 4.4: Numerical simulation of the time-resolved QPC current for a fluctuating dot occu-
pation. At infinite SET bias, the QPC current allows to reconstruct the full counting statis-
tics of the SET, since each current blip from low (red line) to high (green line) current corre-
sponds to an electron leaving the SET to its right junction. Parameters: ΓL∆t = ΓR∆t = 0.01,
γ12(0) = |1 + τ̃ |2γ12(0) = 0, γ21(0) = 100.0, |1 + τ̃ |2γ21(0) = 50.0, fL = 1.0, fR = 0.0. The right
panel shows the corresponding probability distribution Pn(∆t) versus n = I∆t, where the blue
curve is sampled from the left panel and the black curve is the theoretical limit for infinitely long
times.

where t
A/B
kk′ represents the tunneling amplitudes when the electron is localized on dots A and B,

respectively. After representing the charge qubit in terms of Pauli matrices, the full Hamiltonian
reads

H = ε1 + ∆σz + Tσx

+
1

2
[1 + σz]⊗

[∑
kk′

tAkk′γkLγ
†
k′R +

∑
kk′

tA∗kk′γk′Rγ
†
kL

]

+
1

2
[1− σz]⊗

[∑
kk′

tBkk′γkLγ
†
k′R +

∑
kk′

tB∗kk′γk′Rγ
†
kL

]
+
∑
k

εkLγ
†
kLγkL +

∑
k

εkRγ
†
kRγkR . (4.29)

To reduce the number of correlation functions we again assume that all tunneling amplitudes are
modified equally tAkk′ = τ̃Atkk′ and tBkk′ = τ̃Btkk′ with baseline tunneling amplitudes tkk′ and real
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A

B

Figure 4.5: Sketch of a quantum point contact monitoring a double quantum dot with a single
electron loaded (charge qubit). The current through the quantum point contact is modified by the
position of the charge qubit electron, i.e., a measurement in the σz basis is performed.

constants τA and τB. Then, only a single correlation function needs to be calculated

HI =

[
τ̃A
2

(1 + σz) +
τ̃B
2

(1− σz)
]
⊗

[∑
kk′

tkk′γkLγ
†
k′R +

∑
kk′

t∗kk′γk′Rγ
†
kL

]
, (4.30)

which becomes explicitly

C(τ) =

〈∑
kk′``′

[
tkk′γkLγ

†
k′Re

−i(εkL−εk′R)τ + t∗kk′γk′Rγ
†
kLe

+i(εkL−εk′R)τ
] [
t``′γ`Lγ

†
`′R + t∗``′γ`′Rγ

†
`L

]〉
=

∑
kk′

|tkk′|2
[
e−i(εkL−εk′R)τ

〈
γkLγ

†
k′Rγk′Rγ

†
kL

〉
+ e+i(εkL−εk′R)τ

〈
γk′Rγ

†
kLγkLγ

†
k′R

〉]
=

1

2π

∫
dωdω′T (ω, ω′)

[
e−i(ω−ω′)τ [1− fL(ω)]fR(ω′) + e+i(ω−ω′)τfL(ω)[1− fR(ω′)]

]
(4.31)

where we have in the last step replaced the summation by a continuous integration with T (ω, ω′) =
2π
∑

kk′ |tkk′|
2δ(ω − εkL)δ(ω′ − εk′R). We directly conclude for the Fourier transform of the bath

correlation function

γ(Ω) =

∫
dωdω′T (ω, ω′) [δ(Ω− ω + ω′)[1− fL(ω)]fR(ω′) + δ(Ω + ω − ω′)fL(ω)[1− fR(ω′)]]

=

∫
dω [T (ω, ω − Ω)[1− fL(ω)]fR(ω − Ω) + T (ω, ω + Ω)fL(ω)[1− fR(ω + Ω)]] . (4.32)

In what follows, we will consider the wideband limit T (ω, ω′) = 1 (the weak-coupling limit enters
the τ̃A/B parameters), such that we may directly use the result – compare Eqn. (4.12) – from the
previous section

γ(Ω) =
Ω + V

1− e−β(Ω+V )
+

Ω− V
1− e−β(Ω−V )

, (4.33)

where V = µL−µR denotes the bias voltage of the QPC. Since we are not interested in its counting
statistics here, we need not introduce any virtual detectors. The derivation of the master equation
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in the system energy eigenbasis requires diagonalization of the system Hamiltonian first – compare
Eq. (2.69)

E− = ε−
√

∆2 + T 2 , |−〉 =
∆−

√
∆2 + T 2 |0〉+ T |1〉√

T 2 +
(
∆−

√
∆2 + T 2

)2

E+ = ε+
√

∆2 + T 2 , |+〉 =
∆ +

√
∆2 + T 2 |0〉+ T |1〉√

T 2 +
(
∆ +

√
∆2 + T 2

)2
. (4.34)

Following the Born-, Markov-, and secular approximations – compare definition 8 – we obtain a
Lindblad Master equation for the qubit

ρ̇ = −i [HS +HLS, ρ] +
∑
abcd

γab,cd

[
|a〉 〈b| ρ (|c〉 〈d|)† − 1

2

{
(|c〉 〈d|)† |a〉 〈b| , ρ

}]
, (4.35)

where the summation only goes over the two energy eigenstates and HLS denotes the frequency
renormalization. Since the two eigenvalues of our system are non-degenerate, the Lamb-shift
Hamiltonian is diagonal in the system energy eigenbasis and does not affect the dynamics of the
populations. In particular, we have for the populations the rate equation(

ρ̇−−
ρ̇++

)
=

(
−γ+−,+− +γ−+,−+

+γ+−,+− −γ−+,−+

)(
ρ−−
ρ++

)
. (4.36)

The required dampening coefficients read

γ−+,−+ = γ(E+ − E−)|〈−|A |+〉|2 = γ(+2
√

∆2 + T 2)
T 2

4(∆2 + T 2)
(τ̃A − τ̃B)2 ,

γ+−,+− = γ(E− − E+)|〈+|A |−〉|2 = γ(−2
√

∆2 + T 2)
T 2

4(∆2 + T 2)
(τ̃A − τ̃B)2 . (4.37)

Exercise 42 (Qubit Dissipation) (1 points)
Show the validity of Eqns. (4.37).

This shows that when the QPC current is not dependent on the qubit state τ̃A = τ̃B, the dissipa-
tion on the qubit vanishes completely, which is consistent with our initial interaction Hamiltonian.
In addition, in the pure dephasing limit T → 0, we do not have any dissipative back-action of the
measurement device on the qubit. Equation (4.36) obviously also preserves the trace of the density
matrix. The stationary density matrix is therefore defined by

ρ̄++

ρ̄−−
=
γ+−,+−

γ−+,−+

=
γ(−2

√
∆2 + T 2)

γ(+2
√

∆2 + T 2)
. (4.38)

When the QPC bias voltage vanishes (at equilibrium), we have

γ(−2
√

∆2 + T 2)

γ(+2
√

∆2 + T 2)
→ e−β2

√
∆2+T 2

= e−β(E+−E−) , (4.39)
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i.e., the qubit thermalizes with the temperature of the QPC. When the QPC bias voltage is large,
the qubit is driven away from this thermal state.

The evolution of coherences decouples from the diagonal elements of the density matrix. The
hermiticity of the density matrix allows to consider only one coherence

ρ̇−+ = −i (E− + ∆E− − E+ −∆E+) ρ−+

+

[
γ−−,++ −

1

2
(γ−−,−− + γ++,++ + γ−+,−+ + γ+−,+−)

]
ρ−+ , (4.40)

where ∆E± corresponds to the energy renormalization due to the Lamb-shift, which induces a
frequency renormalization of the qubit. The real part of the above equation is responsible for the
dampening of the coherence, its calculation requires the evaluation of all remaining nonvanishing
dampening coefficients

γ−+,−+ + γ+−,+− =
[
γ(+2

√
∆2 + T 2) + γ(−2

√
∆2 + T 2)

] T 2

4(T 2 + ∆2)
(τ̃A − τ̃B)2 ,

γ−−,−− + γ++,++ − 2γ−−,++ = γ(0)
∆2

T 2 + ∆2
(τ̃A − τ̃B)2 . (4.41)

Using the decomposition of the dampening, we may now calculate the decoherence rate σ

σ = (γ−+,−+ + γ+−,+−) + (γ−−,−− + γ++,++ − 2γ−−,++)

=
(τ̃A − τ̃B)2

4

T 2

∆2 + T 2

{(
V + 2

√
∆2 + T 2

)
coth

[
β

2

(
V + 2

√
∆2 + T 2

)]
+
(
V − 2

√
∆2 + T 2

)
coth

[
β

2

(
V − 2

√
∆2 + T 2

)]}
+ (τ̃A − τ̃B)2 ∆2

∆2 + T 2
V coth

[
βV

2

]
, (4.42)

which vanishes as reasonably expected when we set τ̃A = τ̃B. Noting that x coth(x) ≥ 1 does not
only prove its positivity (i.e., the coherences always decay) but also enables one to obtain a rough
lower bound

σ ≥ (τ̃A − τ̃B)2

β

T 2 + 2∆2

T 2 + ∆2
(4.43)

on the dephasing rate. This lower bound is valid when the QPC voltage is rather small. For large
voltages |V | �

√
∆2 + T 2, the dephasing rate is given by

σ ≈ (τ̃A − τ̃B)2 T
2 + 2∆2

T 2 + ∆2
|V | (4.44)

and thus is limited by the voltage rather than the temperature.
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Chapter 5

Controlled systems:
Non-Equilibrium Case III

Time-dependent equations of the form

ρ̇ = L(t)ρ(t) (5.1)

are notoriously difficult to solve unless L(t) fulfills special properties.

• One such special case is e.g. the case of commuting superoperators, where the solution can
be obtained from the exponential of an integral

[L(t),L(t′)] = 0 =⇒ ρ(t) = exp

(
−i

∫ t

0

L(t′)dt′
)
ρ0 . (5.2)

• Another special case is one with a very slow time-dependence and a unique stationary state
L(t)ρ̄t = 0, where the time-dependent density matrix can be assumed to adiabatically follow
the stationary state ρ(t) ≈ ρ̄t.

• For fast time-dependencies, there exists the analytically solvable case of a train of δ-kicks

L(t) = L0 +
∞∑
i=1

`iδ(t− ti) , (5.3)

where the solution reads (tn < t < tn+1)

ρ(t) = eL0(t−tn)
[
e`neL0(tn−tn−1)

]
× . . .×

[
e`2eL0(t2−t1)

] [
e`1eL0(t1)

]
ρ0 , (5.4)

which can be considerably simplified using e.g. Baker-Campbell-Haussdorff relations when
the kicks `i = ` and the timesteps tn − tn−1 = ∆t are identical.

• For periodic time-dependencies, Floquet theory may be applicable.

• Finally, a very simple case arises for piecewise-constant time-dependencies. This allows to
map the problem to ordinary differential equations with constant coefficients, which are
evolved a certain amount of time. After an instantaneous switch of the coefficients, one
simply has initial conditions taken from the final state of the last evolution period, which
can be evolved further and so on. Since it does not require an extension of the theoretical
framework, we will consider this case in the following.

85
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5.1 Electronic pump

We consider a system with the simplest possible internal structure, which has just the two states
empty and filled. A representative of such a system is the single-electron transistor. The tunneling
of electrons through such a transistor is stochastic and thereby in some sense uncontrolled. This
implies that e.g. the current fluctuations through such a device (noise) can not be suppressed
completely.

5.1.1 Time-dependent tunneling rates

We consider piecewise-constant time-dependencies of the tunneling rates ΓL(t) and ΓR(t) with an
otherwise arbitrary protocol

L(χ, t) =

(
−ΓL(t)fL − ΓR(t)fR +ΓL(t)(1− fL) + ΓR(t)(1− fR)e+iχ

+ΓL(t)fL + ΓR(t)fRe
−iχ −ΓL(t)(1− fL)− ΓR(t)(1− fR)

)
. (5.5)

The situation is also depicted in Fig. 5.1.

Figure 5.1: Time-dependent tunneling rates
which follow a piecewise constant protocol.
Dot level and left and right Fermi functions
are assumed constant.

Let the tunneling rates during the i-th time interval be denoted by ΓiL and ΓiR and the cor-
responding constant Liouvillian during this time interval by Li(χ). The density matrix after the
time interval ∆t is now given by

ρi+1 = eLi(0)∆tρi , (5.6)

such that it has no longer the form of a master equation but becomes a fixed-point iteration. In
what follows, we will without loss of generality assume fL ≤ fR, such that the source lead is right
and the drain lead is left. Utilizing previous results, the stationary state of the Liouvillian Li is
given by

f̄i =
ΓiLfL + ΓiRfR

ΓiL + ΓiR
(5.7)

and thereby (ΓiL/R ≥ 0) obeys fL ≤ f̄i ≤ fR. This implies that after a few transient iterations, the
density vector will hover around within the transport window

fL ≤ ni =
〈
d†d
〉
i
≤ fR ∀ i ≥ i∗ . (5.8)

The occupations will therefore follow the iteration equation(
1− ni+1

ni+1

)
= eLi(0)∆t

(
1− ni
ni

)
. (5.9)
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To calculate the number of particles tunneling into the source reservoir, we consider the moment-
generating function

Mi(χ,∆t) = Tr

{
eLi(χ)∆t

(
1− ni
ni

)}
(5.10)

and calculate the first moment

〈n〉i = (−i)∂χMi(χ,∆t)|χ=0

=
1

(ΓiL + ΓiR)2

[
− (ΓiR)2(fR − ni)

(
1− e−(ΓiL+ΓiR)∆t

)
+ΓiLΓiR

(
(ni − fL)

(
1− e−(ΓiL+ΓiR)∆t

)
− (fR − fL)(ΓiL + ΓiR)∆t

) ]
≤ 0 . (5.11)

Exercise 43 (Pumping Failure) (1 points)
Show that under the assumption fL ≤ ni ≤ fR – and of course (ΓiL + ΓiR)∆t > 0 – the average
number of electrons travelling from left to right in Eq. (5.11) is always negative.

It follows that the average current always points from source to drain (in our case, since
fR > fL, from right to left), regardless of the actual protocol ΓαL/R chosen. Since any general

time-dependence Γα(t) can be approximated by piecewise-constant ones, we conclude that with
simply modifying the tunneling rates, it is not possible to revert the direction of the current.
From a thermodynamic perspective, this is reasonable, since by changing the rates Γα(t) we do
not inject energy into the system, and thus should not expect to get anything out of it. Note for
later reference however that this implies that the driving does not depend on whether the dot is
occupied or not, i.e., the rates are modified unconditionally (open-loop control).

5.1.2 With performing work

To revert the direction of transport, one could modify the Fermi functions e.g. by changing the
chemical potentials or temperatures in the contacts. However, this first possibility may for fast
driving destroy the thermal equilibrium in the contacts, such that the whole approach might not
be applicable. Second, this approach would simply exchange the roles of source and drain, and a
pump that manages to pump water from a well into a bucket by lifting the complete lake faces
poor economic perspectives.

Consequently, we consider changing the dot level ε(t) to change the value of the Fermi functions.
Intuitively, it is quite straightforward to arrive at a protocol ε(t) and Γα(t) that should lift electrons
from left to right and thereby pumps electrons from low to high chemical potentials, see Fig. 5.2.
The Liouvillians for the first and second half cycles read

L1(χ) =

(
−Γmax

L fL(εmin)− Γmin
R fR(εmin) +Γmax

L [1− fL(εmin)] + Γmin
R [1− fR(εmin)]e+iχ

+Γmax
L fL(εmin) + Γmin

R fR(εmin)e−iχ −Γmax
L [1− fL(εmin)]− Γmin

R [1− fR(εmin)]

)
,

L2(χ) =

(
−Γmin

L fL(εmax)− Γmax
R fR(εmax) +Γmin

L [1− fL(εmax)] + Γmax
R [1− fR(εmax)]e+iχ

+Γmin
L fL(εmax) + Γmax

R fR(εmax)e−iχ −Γmin
L [1− fL(εmax)]− Γmax

R [1− fR(εmax)]

)
,

(5.12)
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Figure 5.2: Here, tunneling rates and the dot
level also follow a piecewise constant protocol,
which admits only two possible values (top left
and right) and is periodic (see left panel). The
state of the contacts is assumed as stationary.
For small pumping cycle times T , the protocol
is expected to pump electrons from the left to-
wards the right contact and thereby lifts elec-
trons to a higher chemical potential.

respectively. The evolution of the density vector now follows the fixed point iteration scheme

ρ(t+ T ) = P2P1ρ(t) = eL2(0)T/2eL1(0)T/2ρ(t) . (5.13)

After a period of transient evolution, the density vector at the end of the pump cycle will approach
a value where ρ(t + T ) ≈ ρ(t) = ρ̄. This value is the stationary density matrix in a stroboscopic
sense and is defined by the eigenvalue equation

eL2(0)T/2eL1(0)T/2ρ̄ = ρ̄ (5.14)

with Tr {ρ̄} = 1. Once this stationary state has been determined, we can easily define the moment-
generating functions for the pumping period in the (stroboscopically) stationary regime

M1(χ, T/2) = Tr
{
eL1(χ)T/2ρ̄

}
, M2(χ, T/2) = Tr

{
eL2(χ)T/2eL1(0)T/2ρ̄

}
, (5.15)

where M1 describes the statistics in the first half cycle and M2 in the second half cycle and the
moments can be extracted in the usual way. The distribution for the total number of particles
tunneling during the complete pumping cycle n = n1 + n2 is given by

Pn(T ) =
∑

n1,n2 : n1+n2=n

Pn1(T/2)Pn2(T/2) =
∑
n1,n2

δn,n1+n2Pn1(T/2)Pn2(T/2) . (5.16)

Then, the first moment may be calculated by simply adding the first moments of the particles
tunneling through both half-cycles

〈n〉 =
∑
n

nPn =
∑
n

n
∑
n1,n2

δn,n1+n2Pn1(T/2)Pn2(T/2) =
∑
n1,n2

(n1 + n2)Pn1(T/2)Pn2(T/2)

= 〈n1〉+ 〈n2〉 . (5.17)
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In the following, we will constrain ourselves for simplicity to symmetric tunneling rates Γmin
L =

Γmin
R = Γmin and Γmax

L = Γmax
R = Γmax. In this case, we obtain the simple expression for the average

number of particles during one pumping cycle

〈n〉 =
ΓmaxΓmin

Γmax + Γmin

T

2

[
fL(εmax)− fR(εmax) + fL(εmin)− fR(εmin)

]
+

Γmax − Γmin

(Γmax + Γmin)2

[
Γmax

(
fL(εmin)− fR(εmax)

)
+ Γmin

(
fR(εmin)− fL(εmax)

)]
×

× tanh

[
T

4

(
Γmin + Γmax

)]
. (5.18)

The first term (which dominates for slow pumping, i.e., large T ) is negative when fL(ω) < fR(ω).
It is simply given by the average of the two SET currents one would obtain for the two half cycles.
The second term however is present when Γmax > Γmin and may be positive when the dot level
is changed strongly enough souch that fL(εmin) > fR(εmax) and fR(εmin) > fL(εmax). For large
differences in the tunneling rates and small pumping times T it may even dominate the first term,
such that the net particle number may be positive even though the bias would favor the opposite
current direction, see Fig. 5.3. The second cumulant can be similarly calculated〈

n2
〉
− 〈n〉2 =

〈
n2

1

〉
− 〈n1〉2 +

〈
n2

2

〉
− 〈n2〉2 . (5.19)

Exercise 44 (Second Cumulant for joint distributions) (1 points)
Show the validity of the above equation.

When the dot level is shifted to very low and very large values (large pumping power), the bias
is negligible (alternatively, we may also consider an unbiased situation from the beginning). In
this case, we can assume fL(εmin) = fR(εmin) = f(εmin) and fL(εmax) = fR(εmax) = f(εmax). Then,
the second term dominates always and the particle number simplifies to

〈n〉 =
[
f(εmin)− f(εmax)

] Γmax − Γmin

Γmax + Γmin
tanh

[
T

4

(
Γmin + Γmax

)]
. (5.20)

This becomes maximal for large pumping time and large power consumption (f(εmin)− f(εmax) =
1). In this idealized limit, we easily obtain for the Fano factor for large cycle times T

FT =
〈n2〉 − 〈n〉2

|〈n〉|
T→∞→ 2ΓmaxΓmin

(Γmax + Γmin)2 , (5.21)

which demonstrates that the pump works efficient and noiseless when Γmax � Γmin.
At infinite bias fL(ω) = and fR(ω) = 0, the pump does not transport electrons against any

potential or thermal gradient but can still be used to control the statistics of the tunneled electrons.
For example, it is possible to reduce the noise to zero also in this limit when Γmin → 0.

5.2 Piecewise-Constant feedback control

Closed-loop (or feedback) control means that the system is monitored (either continuously or at
certain times) and that the result of these measurements is fed back by changing some parameter of
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Figure 5.3: Average number of tunneled particles during one pump cycle. Parameters have been
chosen as Γmax = 1, Γmin = 0.1, fL(εmin) = 0.9, fR(εmin) = 0.95, fL(εmax) = 0, fR(εmax) = 0.05,
such that for slow pumping (large T ), the current I = 〈n〉 /T must become negative. The shaded
region characterizes the width of the distribution, and the Fano factor demonstrates that around
the maximum pump current, the signal-to-noise ratio is most favorable.

the system. Under measurement with outcome m (an index characterizing the possible outcomes),
the density matrix transforms as

ρ
m→ MmρM

†
m

Tr
{
M †

mMmρ
} , (5.22)

and the probability at which this outcome occurs is given by Tr
{
M †

mMmρ
}

= Tr
{
MmρM

†
m

}
. This

can also be written in superoperator notation (Mmρ=̂MmρM
†
m)

ρ
m→ Mmρ

Tr {Mmρ}
. (5.23)

Let us assume that conditioned on the measurement result m at time t, we apply a propagator
for the time interval ∆t. Then, a measurement result m at time t provided, the density matrix at
time t+ ∆t will be given by

ρ(m)(t+ ∆t) = eL
(m)∆t Mmρ

Tr {Mmρ}
. (5.24)

However, to obtain an effective description of the density matrix evolution, we have to average
over all measurement outcomes – where we have to weight each outcome by the corresponding
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probability

ρ(t+ ∆t) =
∑
m

Tr {Mmρ(t)} eL(m)∆t Mmρ

Tr {Mmρ}
=
∑
m

eM
(m)∆tMmρ(t) . (5.25)

Note that this is an iteration scheme and not a conventional master equation. More generally –
not constraining the conditioned dynamics to Lindblad evolutions – one could also write

ρ(t+ ∆t) =
∑
m

K(m)(∆t)Mmρ(t) , (5.26)

where K(m)(∆t)ρ=̂
∑

αK
(m)
α (∆t)ρK

(m)†
α (∆t) with

∑
αK

(m)†
α K

(m)
α = 1 is a conditioned Kraus map.

Furthermore, the conditioned Liouvillian L(m) or the Kraus map K(m) may well depend on the time
t (at which the measurement is performed) as long as it is constant during the interval [t, t+ ∆t].

Expanding now the exponential of the Liouvillian in the limit of a continuous feedback control
scheme ∆t→ 0, we may under the condition that∑

m

Mm = 1 (5.27)

obtain an effective Liouvillian under feedback control

Lfbρ = lim
∆t→0

ρ(t+ ∆t)− ρ(t)

∆t
→ Lfb =

∑
m

LmMm . (5.28)

We note that the above condition
∑

mMm = 1 will only hold in specific cases and only for
particular subspaces. When it does not hold, an effective Liouvillian under feedback control does
not exist, and the evolution is described rather by an iteration of the form (5.25) or (5.26).

5.3 Maxwell’s demon

Maxwell invented his famous demon as a thought experiment to demonstrate that thermodynamics
is a macroscopic effective theory: An intelligent being (the demon) living in a box is measuring
the speed of molecules of some gas in the box. An initial thermal distribution of molecules implies
that the molecules have different velocities. The demon measures the velocities and inserts an
impermeable wall whenever the the molecule is too fast or lets it pass into another part of the box
when it is slow. As time progresses, this would lead to a sorting of hot and cold molecules, and
the temperature difference could be exploited to perform work.

This is nothing but a feedback (closed-loop) control scheme: The demon performs a mea-
surement (is the molecule slow or fast) and then uses the information to perform an appropriate
control action on the system (inserting a wall or not). Classically, the insertion of a wall requires
in the idealized case no work, such that only information is used to create a temperature gradient.
However, the Landauer principle states that with each bit of information erased, heat of at least
kBT ln(2) is dissipated into the environment. To remain functionable, the demon must at some
point start to delete the information, which leads to the dissipation of heat. The dissipated heat
will exceed the energy obtainable from the thermal gradient.

An analog of a Maxwell demon may be implemented in an electronic context: There, an
experimentalist takes the role of the demon. The box is replaced by the SET (including the
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contacts), on which by a nearby QPC a measurement of the dot state (simply empty or filled) is
performed. Depending on the measurement outcome, the tunneling rates are modified in time in
a piecewise constant manner: When there is no electron on the dot, the left tunneling rate ΓL is
increased (low barrier) and the right tunneling rate ΓR is decreased (high barrier). The opposite
is done when there is an electron on the dot, see Fig. 5.4. Thus, the only difference in comparison
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Figure 5.4: Sketch of the feedback scheme: For a filled dot (low QPC current), the left tunneling
rate is minimal and the right tunneling rate is maximal and vice-versa for an empty dot. The dot
level itself is not changed.

to Sec. 5.1.1 is that now information of the system state is used to modify the tunneling
rates. Very simple considerations already demonstrate that with this scheme, it will be possible
to transport electrons against an existing bias only with time-dependent tunneling rates. When
one junction is completely decoupled Γmin

L/R → 0, this will completely rectify the transport from left

to right also against the bias (if the bias is finite). In the following, we will address the statistics
of this device.

The first step is to identify an effective evolution equation for the density matrix accounting for
measurement and control. A measurement of a low QPC current will imply – compare Eq. (4.25)
– that the system is most likely filled, whereas a large QPC current indicates an empty SET dot.
In the idealized limit of no measurement errors, this simply corresponds to a projection

ME = |0〉 〈0| , MF = |1〉 〈1| (5.29)

onto the empty and filled SET dot states, respectively. In the full space (ordering the density
matrix as (ρ00, ρ11, ρ01, ρ10)T these have superoperator representations (definingMσρ=̂MσρM

†
σ) as

ME =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , MF =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , (5.30)

and we see that ME +MF 6= 1. However, since due to the common block structure of the
individual dissipators and the measurement superoperators we can reduce the dynamics to the
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populations only, where with

M̄E =

(
1 0
0 0

)
, M̄F =

(
0 0
0 1

)
(5.31)

we indeed have M̄E + M̄F = 1. Therefore, for a continuous measurement and feedback control
loop, the effective population Liouvillian under feedback control becomes with Eq. (5.28)

Leff = L(E)M̄E + L(F )M̄F (5.32)

Note that this can be performed with and without counting fields. Taking into account the diagonal
structure of the projection superoperators, this simply implies that the effective Liouvillian under
feedback has the first column from the Liouvillian conditioned on an empty dot and the second
column from the Liouvillian conditioned on the filled dot

Leff(χL, χR) =

(
−ΓELfL − ΓERfR +ΓFL(1− fL)e+iχL + ΓFR(1− fR)e+iχR

+ΓELfLe
−iχL + ΓERfRe

−iχR −ΓFL(1− fL)− ΓFR(1− fR)

)
. (5.33)

Evidently, it still obeys trace conservation but now the tunneling rates in the two columns are
different ones.

Exercise 45 (Current at zero bias) (1 points)
Calculate the feedback-current at zero bias fL = fR = f in dependence on f . What happens at zero
temperatures, where f → {0, 1}?

The effective Liouvillian describes the average evolution of trajectories under continuous mon-
itoring and feedback. The validity of the effective description can be easily checked by calculating
Monte-Carlo solutions as follows:

Starting e.g. with a filled dot, the probability to jump out e.g. to the right lead during the
small time interval ∆t reads P

(F )
out,R = ΓFR(1−fR)∆t. Similarly, we can write down the probabilities

to jump out to the left lead and also the probabilities to jump onto an empty dot from either the
left or right contact

P
(F )
out,R = ΓFR(1− fR)∆t , P

(F )
out,L = ΓFL(1− fL)∆t ,

P
(E)
in,R = ΓERfR∆t , P

(E)
in,L = ΓELfL∆t . (5.34)

Naturally, these jump probabilities also uniquely determine the change of the particle number on
either contact. The remaining probability is simply the one that no jump occurs during ∆t. A
Monte-Carlo simulation is obtained by drawing a random number and choosing one out of three
possible outcomes for empty (jumping in from left contact, from right contact, or remaining empty)
and for a filled (jumping out to left contact, to right contact, or remaining filled) dot. Repeating
the procedure several times yields a single trajectory for n(t), nL(t), and nR(t). The ensemble
average of many such trajectories agree perfectly with the solution

〈n〉t = Tr
{
d†deLeff(0,0)tρ0

}
,

〈nL〉t = (−i∂χ) Tr
{
eLeff(χ,0)tρ0

}∣∣
χ=0

,

〈nR〉t = (−i∂χ) Tr
{
eLeff(0,χ)tρ0

}∣∣
χ=0

(5.35)
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of the effective feedback master equation, see Fig. 5.5. To compare with the case without feedback,
we parametrize the change of tunneling rates by dimensionless constants

ΓEL = eδ
E
LΓL , ΓER = eδ

E
RΓR , ΓFL = eδ

F
LΓL , ΓFR = eδ

F
RΓR , (5.36)

where δβα → 0 reproduces the case without feedback and δβα > 0(< 0) increases (decreases) the
tunneling rate to contact α conditioned on dot state β. The general current can directly be
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Figure 5.5: Comparison of a single (thin red curve with jumps, same realization in all panels) and
the average of 100 (medium thickness, green) and 10000 (bold smooth curve, turquoise) trajectories
with the solution from the effective feedback master equation (thin black) for the dot occupation
(top), the number of particles on the left (middle), and the number of particles on the right
(bottom). The average of the trajectories converges to the effective feedback master equation
result. The reference curve without feedback (dashed orange) may be obtained by using vanishing
feedback parameters and demonstrates that the direction of the current may actually be reversed
via sufficiently strong feedback. Parameters: ΓL = ΓR ≡ Γ, fL = 0.45, fR = 0.55, δEL = δFR = 1.0,
δER = δFL = −10.0, and Γ∆t = 0.01.

calculated as

I =
fL(1− fR)ΓELΓFR − (1− fL)fRΓFLΓER

ΓELfL + ΓFL(1− fL) + ΓERfR + ΓFR(1− fR)
, (5.37)

which reduces to the conventional current without feedback when Γβα → Γα. For finite feedback
strength however, this will generally induce a non-vanishing current at zero bias, see Fig. 5.6.
In our idealized setup, this current is only generated by the information on whether the dot is
occupied or empty – hence the interpretation as a Maxwell demon. When the contacts are held at
equal temperatures βL = βR = β, this raises the question for the maximum power

P = −IV (5.38)
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Figure 5.6: Current voltage characteristics
for finite feedback strength δ = 1 (red curve)
and without feedback δ = 0 (black curve).
For finite feedback, the current may point
in the other direction than the voltage lead-
ing to a positive power P = −IV (shaded
region) generated by the device.

generated by the device.
In what follows, we will consider symmetric feedback characterized by a single parameter

δEL = δFR = −δFL = −δER = +δ , (5.39)

where δ > 0 favors transport from left to right and δ < 0 transport from right to left and also
symmetric tunneling rates Γ = ΓL = ΓR. With these assumptions, it is easy to see that for large
feedback strengths δ � 1, the current simply becomes

I → Γeδ
fL(1− fR)

fL + (1− fR)
. (5.40)

To determine the maximum power, we would have to maximize with respect to left and right
chemical potentials µL and µR, the lead temperature β and the dot level ε. However, as these
parameters only enter implicitly in the Fermi functions, it is more favorable to use that for equal
temperatures

β(µL − µR) = βV = ln

[
fL(1− fR)

(1− fL)fR

]
, (5.41)

such that we can equally maximize

P = −IV =
1

β
(−IβV )→ Γeδ

β

[
− fL(1− fR)

fL + (1− fR)
ln

(
fL(1− fR)

(1− fL)fR

)]
. (5.42)

The term in square brackets can now be maximized numerically with respect to the parameters
fL and fR in the range 0 ≤ fL/R ≤ 1, such that one obtains for the maximum power at strong
feedback

P ≤ kBTΓeδ0.2785 at fL = 0.2178 fR = 0.7822 . (5.43)

The average work performed between two QPC measurement points at t and t + ∆t is therefore
given by

W ≤ kBTΓeδ∆t0.2785 . (5.44)
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However, to perform feedback efficiently, it is required that the QPC sampling rate is fast enough
that all state changes of the SET are faithfully detected (no tunneling charges are missed). This
requires that Γeδ∆t < 1. Therefore, we can refine the upper bound for the average work

W ≤ kBT0.2785 . (5.45)

This has to be contrasted with the Landauer principle, which states that for each deleted bit in
the demons brain (each QPC data point enconding high current or low current) heat of

Q ≥ kBT ln(2) ≈ kBT0.6931 (5.46)

is dissipated. These rough estimates indicate that the second law does not appear to be violated.
The conventional fluctuation theorem for the SET at equal temperatures

P+n(t)

P−n(t)
= enβV (5.47)

is modified in presence of feedback. However, since the Liouvillian still contains the counting
fields in the conventional way, simply the factor in the exponential, not the dependence on the
number of tunneled electrons n is changed. To evaluate the FT, we identify symmetries in the
moment-generating function (or alternatively the eigenvalues of the Liouvillian)

λ(−χ) = λ

(
+χ+ i ln

[
ΓELΓFR
ΓFLΓER

fL(1− fR)

(1− fL)fR

])
= λ

(
+χ+ i ln

[
e+4δ fL(1− fR)

(1− fL)fR

])
= λ

(
+χ+ i ln

[
e+4δeβV

])
= λ(+χ+ i(4δ + βV )) . (5.48)

From this symmetry of the cumulant-generating function we obtain for the fluctuation theorem
under feedback

lim
t→∞

P+n(t)

P−n(t)
= en(βV+4δ) = enβ(V−V ∗) , (5.49)

where V ∗ = −4δ/β denotes the voltage at which the current (under feedback) vanishes.
In the exponential, we do no longer have the conventional entropy production that is in the

long-term limit essentially given by the heat transfer. Instead, the modification indicates that the
second law must be modified by the information that is used to implement the control loop.

Exercise 46 (Vanishing feedback current) (1 points)
Show for equal temperatures that the feedback current vanishes when V = V ∗ = −4δ/β.

The fact that the estimates concerning the second law are rather vague result from the missing
physical implementation of the control loop. In our model, it could be anything, even represented
by a human being pressing a button whenever the QPC current changes. The entropy produced
by such a humanoid implementation of the control loop would by far exceed the local entropy
reduction manifested by a current running against the bias. Below, we discuss an all-inclusive
implementation of the control loop, where we can answer these things quantitatively.
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5.4 An all-inclusive description of Maxwell’s demon

Consider a single-electron transistor as before now capacitively interacting with another quantum
dot, which is coupled to its own reservoir as depicted in Fig. 5.7. The system Hamiltonian of this

]

Figure 5.7: Sketch of an SET (bottom cir-
cuit) that is capacitively coupled via the
Coulomb interaction U to another quantum
dot. The additional quantum dot is tunnel-
coupled to its own reservoir with Fermi func-
tion fD. Since the associated stationary
matter current vanishes, only energy can be
transferred across this junction (dotted line).

three-terminal system reads

HS = εdc
†
dcd + εsc

†
scs + Uc†dcdc

†
scs , (5.50)

where εs and εd denote the on-site energies of the SET dot and the demon dot, respectively, whereas
U denotes the Coulomb interaction between the two dots. The system dot is tunnel-coupled to
left and right leads, whereas the demon dot is tunnel-coupled to its junction only

HI =
∑
k

(
tkLcsc

†
kL + t∗kLckLc

†
s

)
+
∑
k

(
tkRcsc

†
kR + t∗kRckRc

†
s

)
+
∑
k

(
tkdcdc

†
kd + t∗kdckLc

†
d

)
. (5.51)

Furthermore, all the junctions are modeled as non-interacting fermions

HB =
∑

ν∈{L,R,d}

∑
k

εkνc
†
kνckν . (5.52)

Treating the tunneling amplitudes perturbatively and fixing the reservoirs at thermal equi-
librium states we derive the standard quantum-optical master equation, compare also Def. 8.
Importantly, we do not apply the popular wide-band limit here (which would mean to approxi-
mate Γν(ω) ≈ Γν). In the energy eigenbasis of HS – further-on denoted by |ρσ〉 where ρ ∈ {E,F}
describes the systems dot state and σ ∈ {0, 1} denotes the state of the demon dot (both either
empty or filled, respectively) – the populations obey a simple rate equation defined by Eq. (2.43).
Denoting the populations by pρσ = 〈ρσ| ρ |ρσ〉, the rate equation Ṗ = LP in the ordered ba-
sis P = (p0E, p1E, p0F , p1F )T decomposes into the contributions due to the different reservoirs
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L = LD + LL + LR, which read

LD =


−ΓDfD +ΓD(1− fD) 0 0
+ΓDfD −ΓD(1− fD) 0 0

0 0 −ΓUDf
U
D +ΓUD(1− fUD )

0 0 +ΓUDf
U
D −ΓUD(1− fUD )

 ,

Lα =


−Γαfα 0 +Γα(1− fα) 0

0 −ΓUαf
U
α 0 +ΓUα (1− fUα )

+Γαfα 0 −Γα(1− fα) 0
0 +ΓUαf

U
α 0 −ΓUα (1− fUα )

 , α ∈ {L,R} , (5.53)

where we have used the abbreviations Γα = Γα(εs) and ΓUα = Γα(εs + U) for α ∈ {L,R} and
ΓD = ΓD(εd) and ΓUD = ΓD(εd + U) for the tunneling rates and similarly for the Fermi functions
fα = fα(εs), f

U
α = fα(εs + U), fD = fD(εd), and fUD = fD(εd + U), respectively. We note that

all contributions separately obey local-detailed balance relations. Closer inspection of the rates in
Eq. (5.53) reveals that these rates could have been guessed without any microscopic derivation.
For example, the transition rate from state |1E〉 to state |0E〉 is just given by the bare tunneling
rate for the demon junction ΓD multiplied by the probability to find a free space in the terminal at
transition frequency εd. Similarly, the transition rate from state |1F 〉 to state |0F 〉 corresponds to
an electron jumping out of the demon dot to its junction, this time, however, transporting energy
of εd +U . We have ordered our basis such that the upper left block of LD describes the dynamics
of the demon dot conditioned on an empty system dot, whereas the lower block accounts for the
dynamics conditioned on a filled system.

As a whole, the system respects the second law of thermodynamics. We demonstrate this by
analyzing the entropy production by means of the Full Counting Statistics. In order to avoid
having to trace six counting fields, we note that the system obeys three conservation laws, since
the two dots may only exchange energy but not matter

I
(L)
M + I

(R)
M = 0 , I

(D)
M = 0 , I

(L)
E + I

(R)
E + I

(D)
E = 0 , (5.54)

where I
(ν)
E and I

(ν)
M denote energy and matter currents to terminal ν, respectively. Therefore,

three counting fields should in general suffice to completely track the entropy production in the
long-term limit. For simplicity however, we compute the entropy production for the more realistic
case of equal temperatures at the left and right SET junction β = βL = βR. Technically, this is
conveniently performed by balancing with the entropy flow and using the conservation laws

Ṡi = −Ṡe = −
∑
ν

β(ν)(I
(ν)
E − µ

(ν)I
(ν)
M )

= −β(I
(L)
E − µLI(L)

M + I
(R)
E − µRI(R)

M )− βDI(D)
E

= (β − βD)I
(D)
E − β(µL − µR)I

(R)
M . (5.55)

Thus, we conclude that for equal temperatures left and right it should even suffice to track e.g.
only the energy transferred to the demon junction and the particles to the right lead. Therefore,
we introduce counting fields for the demon (ξ) and for the particles transferred to the left junctions
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(χ), and the counting-field dependent rate equation becomes

LD(ξ) =


−ΓDfD +ΓD(1− fD)e+iξεd 0 0

+ΓDfDe
−iξεd −ΓD(1− fD) 0 0

0 0 −ΓUDf
U
D +ΓUD(1− fUD )e+iξ(εd+U)

0 0 +ΓUDf
U
De
−iξ(εd+U) −ΓUD(1− fUD )

 ,

LR(χ) =


−ΓRfR 0 +ΓR(1− fR)e+iχ 0

0 −ΓURf
U
R 0 +ΓUR(1− fUR )e+iχ

+ΓRfRe
−iχ 0 −ΓR(1− fR) 0

0 +ΓURf
U
R e
−iχ 0 −ΓUR(1− fUR )

 . (5.56)

These counting fields can now be used to reconstruct the statistics of energy and matter transfer.
The currents can be obtained by performing suitable derivatives of the rate matrix. For example,

the energy current to the demon is given by I
(D)
E = −iTr

{
∂ξL(ξ, 0)|ξ=0 ρ̄

}
, where ρ̄ is the steady

state L(0, 0)ρ̄ = 0.
To test the fluctuation theorem, we calculate the characteristic polynomial

D(ξ, χ) = |L(ξ, χ)− λ1|
= (L11 − λ)(L22 − λ)(L33 − λ)(L44 − λ)

−(L11 − λ)(L22 − λ)L34(ξ)L43(ξ)− (L11 − λ)(L33 − λ)L24(χ)L42(χ)

−(L22 − λ)(L44 − λ)L13(χ)L31(χ)− (L33 − λ)(L44 − λ)L12(ξ)L21(ξ)

+L12(ξ)L21(ξ)L34(ξ)L43(ξ) + L13(χ)L31(χ)L24(χ)L42(χ)

−L12(ξ)L24(χ)L31(χ)L43(ξ)− L13(χ)L21(ξ)L34(ξ)L42(χ)

= (L11 − λ)(L22 − λ)(L33 − λ)(L44 − λ)

−(L11 − λ)(L22 − λ)L34(0)L43(0)− (L11 − λ)(L33 − λ)L24(χ)L42(χ)

−(L22 − λ)(L44 − λ)L13(χ)L31(χ)− (L33 − λ)(L44 − λ)L12(0)L21(0)

+L12(0)L21(0)L34(0)L43(0) + L13(χ)L31(χ)L24(χ)L42(χ)

−L12(ξ)L24(χ)L31(χ)L43(ξ)− L13(χ)L21(ξ)L34(ξ)L42(χ) , (5.57)

where Lij simply denote the matrix elements of the rate matrix L. We note the symmetries

L13(−χ) =
1− fL
fL

L31

(
+χ+ i ln

fL(1− fR)

(1− fL)fR

)
=

1− fL
fL

L31 (+χ+ iβ(µL − µR)) ,

L24(−χ) =
1− fUL
fUL

L42

(
+χ+ i ln

fUL (1− fUR )

(1− fUL )fUR

)
=

1− fUL
fUL

L42 (+χ+ iβ(µL − µR)) ,

L12(−ξ) = L21

(
+ξ +

i

εd
ln

1− fD
fD

)
= L21

(
+ξ +

i

εd
βD(εd − µD)

)
,

L34(−ξ) = L43

(
+ξ +

i

εd + U
ln

1− fUD
fUD

)
= L43

(
+ξ +

i

εd + U
βD(εd + U − µD)

)
, (5.58)

which can be used to show that the full characteristic polynomial obeys the symmetry

D(−ξ,−χ) = D(ξ + i(βD − β)/U, χ+ iβ(µL − µR)) . (5.59)

This symmetry implies – when monitoring the energy current to the demon eD and the number of
electrons transferred to the right junction nR – for the corresponding probability distribution the
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fluctuation theorem

lim
t→∞

P+∆nS ,+∆eD

P−∆nS ,−∆eD

= e(βD−β)∆eD+β(µL−µR)∆nS . (5.60)

Instead of determining the continuous energy emission distribution, we could alternatively have
counted the discrete number of electrons entering the demon dot at energy εD and leaving it at
energy εD+U . Since this process leads to a net energy extraction of energy U from the system, the
corresponding matter current is tightly coupled to the energy current across the demon junction,
i.e., their number would be related to the energy via ∆eD = nDU . Comparing the value in the
exponent of Eq. (5.60) with the average expectation value of the entropy production in Eq. (5.55),
we can also – roughly speaking – interpret the fluctuation theorem as the ratio of probabilities for
trajectories with a positive and negative entropy production.

In addition, we identify P = (µL − µR)I
(R)
M = −(µL − µR)I

(L)
M as the power generated by the

device, which – when the current flows against the bias – may yield a negative contribution βP
to the overall entropy production. In these parameter regimes however, the negative contribution
β(µL − µR)I

(R)
M must be over-balanced by the second term (β − βD)I

(D)
E , which clearly requires –

when the demon reservoir is colder than the SET reservoirs βD > βS – that the energy current
flows out of the demon I

(D)
E < 0. As a whole, the system therefore just converts a thermal

gradient between the two subsystems into power: A fraction of the heat coming from the hot SET
leads is converted into power, and the remaining fraction is dissipated as heat at the cold demon
junction. The corresponding efficiency for this conversion can be constructed from the output
power P = −(µL − µR)I

(L)
M and the input heat Q̇L + Q̇R = −I(D)

E − (µL − µR)I
(L)
M = Q̇diss + P ,

where Q̇diss = −I(D)
E is the heat dissipated into the demon reservoir. Using that Ṡi ≥ 0 we find

that the efficiency – which of course is only useful in parameter regimes where the power is positive
β(µL − µR)I

(R)
M > 0 – is upper-bounded by Carnot efficiency

η =
P

Q̇diss + P
≤ 1− TD

T
= ηCarnot . (5.61)

For practical applications a large efficiency is not always sufficient. For example, a maximum
efficiency at zero power output would be quite useless. Therefore, it has become common standard
to first maximize the power output of the device and then compute the corresponding efficiency
at maximum power. Due to the nonlinearity of the underlying equations, this may be a difficult
numerical optimization problem. To reduce the number of parameters, we assume that fUD = 1−fD
(which is the case when εD = µD − U/2) and fUL = 1 − fR as well as fUR = 1 − fL (which for
βL = βR = β is satisfied when εS = 1/2(µL + µR) − U/2), see also the left panel of Fig. 5.8.
Furthermore, we parametrize the modification of the tunneling rates by a single parameter via

ΓL = Γ
e+δ

cosh(δ)
, ΓUL = Γ

e−δ

cosh(δ)

ΓR = Γ
e−δ

cosh(δ)
, ΓUR = Γ

e+δ

cosh(δ)
(5.62)

to favor transport in a particular direction. We have inserted the normalization by cosh(δ) to keep
the tunneling rates finite as the feedback strength δ is increased. Trivially, at δ = 0 we recover
symmetric unperturbed tunneling rates and when δ → ∞, transport will be completely rectified.
The matter current from left to right in the limit where the demon dot is much faster than the
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SET (ΓD →∞ and ΓUD →∞) becomes

I
(L)
M =

Γ

2
[fL − fR + tanh(δ) (fL + fR − 2fD)] . (5.63)

Similarly, we obtain for the energy current to the demon

I
(D)
E =

ΓU

2
[fL + fR − 2fD + (fL − fR) tanh(δ)] , (5.64)

which determines the dissipated heat. These can be converted into an efficiency solely expressed
by Fermi functions when we use that

β(µL − µR) = ln

(
fL(1− fR)

(1− fL)fR

)
,

βU = ln

(
fR(1− fUR )

(1− fR)fUR

)
→ ln

(
fRfL

(1− fR)(1− fL)

)
, (5.65)

which can be used to write the efficiency of heat to power conversion as

η =
P

Q̇diss + P
=

1

1 + βQ̇diss

βP

=
1

1 +
ln
(

fRfL
(1−fR)(1−fL)

)
(fL+fR−2fD+(fL−fR) tanh(δ))

ln
(
fL(1−fR)

(1−fL)fR

)
(fL−fR+(fL+fR−2fD) tanh(δ))

, (5.66)

which is also illustrated in Fig. 5.8.
Beyond these average considerations, the qualitative action of the device may also be under-

stood at the level of single trajectories, see Fig. 5.9. It should be noted that at the trajectory level,
all possible trajectories are still allowed, even though ones with positive total entropy production
must on average dominate. As a whole, the system thereby merely converts a temperature gradient
(cold demon, hot system) into useful power (current times voltage).

5.4.1 Local View: A Feedback-Controlled Device

An experimentalist having access only to the SET circuit would measure a positive generated
power, conserved particle currents I

(L)
M + I

(R)
M = 0, but possibly a slight mismatch of left and

right energy currents I
(L)
E + I

(R)
E = −I(D)

E 6= 0. This mismatch could not fully account for the

generated power, since for any efficiency η > 1/2 in Fig. 5.9 we have
∣∣∣I(D)
E

∣∣∣ < P . Therefore, the

experimentalist would conclude that his description of the system by energy and matter flows is
not complete and he might suspect Maxwell’s demon at work. Here, we will make the reduced
dynamics of the SET dot alone more explicit by deriving a reduced rate equation.

We can evidently write the rate equation defined by Eqs. (5.53) as Ṗρσ = Lρσ,ρ′σ′Pρ′σ′ , where
ρ and σ label the demon and system degrees of freedom, respectively. If we discard the dynamics
of the demon dot by tracing over its degrees of freedom Pσ =

∑
ρ Pρσ, we formally arrive at a

non-Markovian evolution equation for the populations of the SET dot.

Ṗσ =
∑
σ′

∑
ρρ′

Lρσ,ρ′σ′Pρ′σ′ =
∑
σ′

[∑
ρρ′

Lρσ,ρ′σ′
Pρ′σ′

Pσ′

]
Pσ′ . (5.67)

Here, we may identify
Pρ′σ′

Pσ′
as the conditional probability of the demon being in state ρ′ provided

the system is in state σ′.
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Figure 5.8:
Left: Sketch of the assumed configurations of chemical potentials, which imply at βL = βR
relations between the Fermi functions.
Right: Plot of current (solid black, in units of Γ), dimensionless power βV I (dashed red, in
units of Γ), and efficiency η (dash-dotted blue) versus dimensionless bias voltage. At equilibrated
bias (origin), the efficiency vanishes by construction, whereas it reaches Carnot efficiency (dotted
green) at the new equilibrium, i.e., at zero power. At maximum power however, the efficiency still
closely approaches the Carnot efficiency. Parameters: δ = 100, tunneling rates parametrized as
in Eq. (5.62), fD = 0.9 = 1 − fUD , βεS = −0.05 = −β(εS + U), such that the Carnot efficiency
becomes ηCarnot = 1− (βU)/(βDU) ≈ 0.977244.



5.4. AN ALL-INCLUSIVE DESCRIPTION OF MAXWELL’S DEMON 103

1

2

3

4

1
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SET

Figure 5.9: Level sketch of the setup. Shaded re-
gions represent occupied levels in the leads with
chemical potentials and temperatures indicated.
Central horizontal lines represent transition en-
ergies of system and demon dot, respectively.
When the other dot is occupied, the bare transi-
tion frequency of every system is shifted by the
Coulomb interaction U . The shown trajectory
then becomes likely in the suggested Maxwell-
demon mode: Initially, the SET is empty and
the demon dot is filled. When ΓUR � ΓUL , the
SET dot is most likely first filled from the left
lead, which shifts the transition frequency of the
demon (1). When the bare tunneling rates of the
demon are much larger than that of the SET, the
demon dot will rapidly equilibrate by expelling
the electron to its associated reservoir (2) before
a further electronic jump at the SET may oc-
cur. At the new transition frequency, the SET
electron is more likely to escape first to the left
than to the right when ΓL � ΓR (3). Now, the
demon dot will equilibrate again by filling with
an electron (4) thus restoring the initial state.
In essence, an electron is transferred against the
bias through the SET circuit while in the demon
system an electron enters at energy εd and leaves
at energy εd + U leading to a net transfer of U
from the demon into its reservoir.
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However, direct inspection of the rates suggests that when we assume the limit where the bare
rates of the demon system are much larger than the SET tunneling rates, these conditional proba-
bilities will assume their conditioned stationary values much faster than the SET dynamics. In this
limit, the dynamics is mainly dominated by transitions between just two mesostates instead of the
original four states. These mesostates are associated to either a filled or an empty system quantum
dot, respectively. We may hence arrive again at a Markovian description by approximating

Pρ′σ′

Pσ′
→ P̄ρ′σ′

P̄σ′
, (5.68)

which yields the coarse-grained rate matrix

Wσσ′ =
∑
ρρ′

Lρσ,ρ′σ′
P̄ρ′σ′

P̄σ′
. (5.69)

For the model at hand, the stationary conditional probabilities become in the limit where
Γ

(U)
D � Γ

(U)
L/R

P0|E =
P̄0E

P̄E
= 1− fD , P1|E =

P̄1E

P̄E
= fD ,

P0|F =
P̄0F

P̄F
= 1− fUD , P1|F =

P̄1F

P̄F
= fUD , (5.70)

and just describe the fact that – due to the time-scale separation – the demon dot immediately
reaches a thermal stationary state that depends on the occupation of the SET dot. The temper-
ature and chemical potential of the demon reservoir determine if and how well the demon dot –
which can be envisaged as the demon’s memory capable of storing just one bit – captures the actual
state of the system dot. For example, for high demon temperatures it will be roughly independent
on the system dots occupation as fD ≈ fUD ≈ 1/2. At very low demon temperatures however, and
if the chemical potential of the demon dot is adjusted such that εd− µD < 0 and εd +U − µD > 0,
the demon dot will nearly accurately (more formally when βDU � 1) track the system occupation,
since fD → 1 and fUD → 0. Then, the demon dot will immediately fill when the SET dot is emptied
and its electron will leave when the SET dot is filled. It thereby faithfully detects the state of
the SET. In the presented model, the demon temperature thereby acts as a source of error in the
demon’s measurement of the system’s state. In addition, the model at hand allows to investigate
the detector backaction on the probed system, which is often neglected. Here, this backaction is
essential, and we will now investigate it by analyzing the reduced dynamics in detail.

The coarse-grained probabilities PE and PF of finding the SET dot empty or filled, respectively,
obey the rate equation dynamics

L =

(
−LFE +LEF
+LFE −LEF

)
(5.71)

with the coarse-grained rates

LEF = L0E,0F
P̄0F

P̄F
+ L1E,1F

P̄1F

P̄F
= (1− fUD ) [ΓL(1− fL) + ΓR(1− fR)] + fUD

[
ΓUL(1− fUL ) + ΓUR(1− fUR )

]
,

LFE = L0F,0E
P̄0E

P̄E
+ L1F,1E

P̄1E

P̄E
= (1− fD) [ΓLfL + ΓRfR] + fD

[
ΓULf

U
L + ΓURf

U
R

]
. (5.72)
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We note that a naive experimenter – not aware of the demon interacting with the SET circuit –
would attribute the rates in the coarse-grained dynamics to just two reservoirs: L = LL +LR with
the rates L(α)

EF = (1− fUD )Γα(1− fα) + fUDΓUα (1− fUα ) and L(α)
FE = (1− fD)Γαfα + fDΓUαf

U
α . Thus,

when the SET is not sensitive to the demon state ΓUL/R ≈ ΓL/R and fUL/R ≈ fL/R, local detailed
balance is restored, and we recover the conventional SET rate equation.

We note that the matter current

I
(ν)
M = L

(ν)
EF P̄F − L

(ν)
FEP̄E (5.73)

is conserved I
(L)
M = −I(R)

M , such that the entropy production becomes

Ṡi =
∑

ν∈{L,R}

L
(ν)
EF P̄F ln

(
L(ν)
EF P̄F

L(ν)
FEP̄E

)
+ L(ν)

FEP̄E ln

(
L(ν)
FEP̄E

L(ν)
EF P̄F

)

=
∑

ν∈{L,R}

(
L

(ν)
EF P̄F − L

(ν)
FEP̄E

)
ln

(
L(ν)
EF P̄F

L(ν)
FEP̄E

)

= I
(L)
M ln

(
L(L)
EFL

(R)
FE

L(L)
FEL

(R)
EF

)
= I

(L)
M A , (5.74)

and is thus representable in a simple flux-affinity form. Similarly, we note that if we would count
particle transfers from the left to the right reservoir, the following fluctuation theorem would hold

P+n

P−n
= enA , (5.75)

and the fact that these fluctuations could in principle be resolved demonstrates that the affinity
in the entropy production is a meaningful and measurable quantity. Without the demon dot, the
conventional affinity of the SET would simply be given by

A0 = ln

(
(1− fL)fR
fL(1− fR)

)
= βL(ε− µL)− βR(ε− µR) , (5.76)

and ignoring the physical implementation of the demon, we can interpret the modification of the
entropy production due to the demon as an additional information current that is tightly coupled
to the particle current

Ṡi = I
(L)
M A0 + I

(L)
M (A−A0) = Ṡ

(0)
i + I . (5.77)

When the demon temperature is lowered such that βDU � 1 and its chemical potential is
adjusted such that fD → 1 and fUD → 0, the affinity becomes

A = ln

(
ΓL(1− fL)ΓURf

U
R

ΓULf
U
L ΓR(1− fR)

)
= ln

(
ΓLΓUR
ΓULΓR

)
+ ln

(
fLf

U
R

fUL fR

)
+A0 . (5.78)

The last term on the right-hand side is simply the affinity without the demon dot. The first two
terms quantify the modification of the affinity. The pure limit of a Maxwell demon is reached,
when the energetic backaction of the demon on the SET is negligible, i.e., when fUL ≈ fL and
fUR ≈ fR, which requires comparably large SET temperatures βL/RU � 1. Of course, to obtain
any nontrivial effect, it is still necessary to keep non-flat tunneling rates ΓUL/R 6= ΓL/R, and in this

case one recovers the case discussed in the previous section – identifying ΓEα with Γα and ΓFα with
ΓUα .
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5.5 Qubit stabilization

Qubits – any quantum-mechanical two-level system that can be prepared in a superposition of its
two states |0〉 and |1〉 – are at the heart of quantum computers with great technological promises.
The major obstacle to be overcome to build a quantum computer is decoherence: Qubits prepared
in pure superposition states (as required for performing quantum computation) tend to decay into
a statistical mixture when coupled to a destabilizing reservoir (of which there is an abundance in
the real world). Here, we will approach the decoherence with a quantum master equation and use
feedback control to act against the decay of coherences.

The system is described by

HS =
Ω

2
σz , H1

B =
∑
k

ω1
k(b

1
k)
†b1
k , H2

B =
∑
k

ω2
k(b

2
k)
†b2
k

H1
I = σz ⊗

∑
k

[
h1
kb

1
k + (h1

k)
∗(b1

k)
†] , H2

I = σx ⊗
∑
k

[
h2
kb

2
k + (h2

k)
∗(b2

k)
†] , (5.79)

where σα represent the Pauli matrices and bk bosonic annihilation operators. We assume that
the two bosonic baths are independent, such that we can calculate the dissipators separately. We
have already calculated the Fourier-transform of the bath correlation function for such coupling
operators. When we analytically continue the spectral coupling density to negative frequencies as
J(−ω) = −J(+ω), it can also be written as

γ(ω) = J(ω) [1 + n(ω)] . (5.80)

Since it obeys the KMS condition we may expect thermalization of the qubits density matrix with
the bath temperature. Note that due to the divergence of n(ω) at ω → 0, it is favorable to use an
Ohmic spectral density such as e.g.

J(ω) = J0ωe
−ω/ωc , (5.81)

which grants an existing limit γ(0). For the two interaction Hamiltonians chosen, we can make
the corresponding coefficients explicit

coefficient A: pure dephasing A = σz B: dissipation A = σx

γ00,00 +γ(0) 0
γ00,11 −γ(0) 0
γ11,00 −γ(0) 0
γ11,11 +γ(0) 0
γ01,01 0 γ(+Ω)
γ10,10 0 γ(−Ω)

σ00
σ(0)
2i

σ(−Ω)
2i

σ11
σ(0)
2i

σ(+Ω)
2i

and rewrite the corresponding Liouvillian in the ordering ρ00, ρ11, ρ01, ρ10 as a superoperator (fur-
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ther abbreviating γ0/± = γ(0/± Ω), Σ = σ00 − σ11)

LA =


0 0 0 0
0 0 0 0
0 0 −2γ0 − iΩ 0
0 0 0 −2γ0 + iΩ



LB =


−γ− +γ+ 0 0
+γ− −γ+ 0 0

0 0 −γ−+γ+

2
− i(Ω + Σ) 0

0 0 0 −γ−+γ+

2
+ i(Ω + Σ)

 . (5.82)

Both Liouvillians lead to a decay of coherences with a rate (we assume Ω > 0)

γA = 2γ0 = 2 lim
ω→0

J(ω) [1 + n(ω)] = 2
J0

β
= 2J0kBT ,

γB =
γ− + γ+

2
=

1

2
[J(Ω)[1 + n(Ω)] + J(−Ω)[1 + n(−Ω)]] =

1

2
[J(Ω)[1 + n(Ω)] + J(Ω)n(Ω)]

=
1

2
J(Ω) coth

[
Ω

2kBT

]
, (5.83)

which both scale proportional to T for large bath temperatures. Therefore, the application of
either Liouvillian or a superposition of both will in the high-temperature limit simply lead to
rapid decoherence. The same can be expected from a turnstyle (open-loop control), where the
Liouvillians act one at a time following a pre-defined protocol.

The situation changes however, when measurement results are used to determine which Liou-
villian is acting. We choose to act with Liouvillian LA throughout and to turn on Liouvillian LB in
addition – multiplied by a dimensionless feedback parameter α ≥ 0 – when a certain measurement
result is obtained. Given a measurement with just two outcomes, the effective propagator is then
given by

W(∆t) = eLA∆tM1 + e(LA+αLB)∆tM2 , (5.84)

whereMi are the superoperators corresponding to the action of the measurement operators MiρM
†
i

on the density matrix. First, to obtain any nontrivial effect (coupling between coherences and
populations), the measurement superoperators should not have the same block structure as the
Liouvillians. Therefore, we consider a projective measurement of the σx expectation value

M1 =
1

2
[1 + σx] , M2 =

1

2
[1− σx] . (5.85)

These projection operators obviously fulfil the completeness relation M †
1M1 + M †

2M2 = 1. The
superoperators corresponding to MiρM

†
i are also orthogonal projectors

M1 =
1

4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 , M2 =
1

4


1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

 . (5.86)
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Exercise 47 (Measurement superoperators) (1 points)
Show the correspondence between Mi and Mi in the above equations.

However, they are not complete in this higher-dimensional space M1 +M2 6= 1. Since the
measurement superoperators do not have the same block structure as the Liouvillians, we cannot
expect a simple rate equation description to hold anymore.

Without feedback (α = 0), it is easy to see that the measurements still have an effect in contrast
to an evolution without measurements

1

2


1 1 0 0
1 1 0 0
0 0 e−(2γ0+iΩ)∆t e−(2γ0+iΩ)∆t

0 0 e−(2γ0−iΩ)∆t e−(2γ0−iΩ)∆t

 = eLA∆t (M1 +M2) 6=

eLA∆t =


1 0 0 0
0 1 0 0
0 0 e−(2γ0+iΩ)∆t 0
0 0 0 e−(2γ0−iΩ)∆t

 . (5.87)

This may have significant consequences – even without dissipation (γ0 = 0) and without feedback
(α = 0): The repeated application of the propagator for measurement without feedback (γ0 = 0
and α = 0) yields

[
eLA∆t (M1 +M2)

]n
=

1

2


1 1 0 0
1 1 0 0
0 0 e−iΩ∆t cosn−1(Ω∆t) e−iΩ∆t cosn−1(Ω∆t)
0 0 e+iΩ∆t cosn−1(Ω∆t) e+iΩ∆t cosn−1(Ω∆t)

 . (5.88)

Exercise 48 (Repeated measurements) (1 points)
Show the validity of the above equation.

In contrast, without the measurements we have for repeated application of the propagator
simply [

eLA∆t
]n

= eLAn∆t . (5.89)

When we now consider the limit n → ∞ and ∆t → 0 but n∆t = t remaining finite, it becomes
obvious that the no-measurement propagator for γ0 = 0 simply describes coherent evolution. In
contrast, when the measurement frequency becomes large enough, the measurement propagator in
Eq. (5.87) approaches

[
eLA∆t (M1 +M2)

]n
=

1

2


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 (5.90)
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and thereby freezes the eigenstates of the measurement superoperators, e.g. ρ̄ = 1
2

[|0〉+ |1〉] [〈0|+ 〈1|].
This effect is known as Quantum-Zeno effect (a watched pot never boils) and occurs when measure-
ment operators and system Hamiltonian do not commute and the evolution between measurements
is unitary (here γ0 = 0). When the evolution between measurements is an open one (γ0 > 0), the
Quantum-Zeno effect cannot be used to stabilize the coherences, which becomes evident from the
propagator in Eq. (5.87).

With feedback (α > 0) however, the effective propagator W(∆t) does not have the Block
structure anymore. It can be used to obtain a fixed-point iteration for the density matrix

ρ(t+ ∆t) =W(∆t)ρ(t) . (5.91)

Here, we cannot even for small ∆t approximate the evolution by another effective Liouvillian, since
lim

∆t→0
W(∆t) 6= 1. Instead, one can analyze the eigenvector of W(∆t) with eigenvalue 1 as the (in

a stroboscopic sense) stationary state. It is more convenient however to consider the expectation
values of 〈σi〉t that fully characterize the density matrix via

ρ00 =
1 + 〈σz〉

2
, ρ11 =

1− 〈σz〉
2

, ρ01 =
〈σx〉 − i 〈σy〉

2
, ρ10 =

〈σx〉+ i 〈σy〉
2

. (5.92)

Note that decoherence therefore implies vanishing expectation values of 〈σx〉 → 0 and 〈σy〉 → 0 in
our setup. Converting the iteration equation for the density matrix into an iteration equation for
the expectation values of Pauli matrices we obtain

〈σx〉t+∆t =
e−2γ0∆t

2

{
(1 + 〈σx〉t) cos (Ω∆t)− (1− 〈σx〉t) e

−(γ−+γ+)α∆t/2 cos [(Ω + α(Ω + Σ)) ∆t]
}

〈σy〉t+∆t =
e−2γ0∆t

2

{
(1 + 〈σx〉t) sin (Ω∆t)− (1− 〈σx〉t) e

−(γ−+γ+)α∆t/2 sin [(Ω + α(Ω + Σ)) ∆t]
}

〈σz〉t+∆t =
(γ+ − γ−) (1− 〈σx〉t)

2(γ− + γ+)

(
1− e−(γ−+γ+)α∆t

)
, (5.93)

which (surprisingly) follow just the expectation values 〈σx〉t on the r.h.s. The first of the above
equations can be expanded for small ∆t to yield

〈σx〉t+∆t − 〈σx〉t
∆t

= −1

4
[8γ0 + α (γ− + γ+)] 〈σx〉t +

1

4
α (γ− + γ+) +O{∆t} . (5.94)

When ∆t→ 0, this becomes a differential equation with the stationary state

〈σ̄x〉 =
α(γ− + γ+)

8γ0 + α(γ− + γ+)
, (5.95)

which approaches 1 for large values of α. Taking into account the large-temperature expansions
for the dampening coefficients

γ0 = J0kBT , γ− + γ+ ≈ 2J0e
−Ω/ωckBT , (5.96)

we see that this stabilization effect also holds at large temperatures – a sufficiently strong (and
perfect) feedback provided. An initially coherent superposition is thus not only stabilized, but
also emerges when the scheme is initialized in a completely mixed state. Also for finite ∆t, the
fixed-point iteration yields sensible evolution for the expectation values of the Pauli matrices, see
Fig. 5.10.
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Figure 5.10: Expectation values of the Pauli matrices for finite feedback strength α = 10 and
finite stepsize ∆t (spacing given by symbols). For large ∆t, the fixed point is nearly completely
mixed. For small ∆t, the curve for 〈σx〉t approaches the differential equation limit (solid line),
but the curve for 〈σy〉t approaches 0. For γ− = γ+, the iteration for 〈σz〉t vanishes throughout.
Parameters: γ− = γ+ = γ0 = Γ, Ω∆t =∈ {1, 0.1}, and Σ∆t ∈ {0.5, 0.05}.

5.6 Relaxation Dynamics

So far, control has only affected the interaction (e.g. tunneling rates) or the system (projective
measurements or time-dependent system parameters). A direct change of the reservoir parameters
would normally be hard to describe (and to achieve experimentally), since here fast changes would
usually drive the reservoir out of equilibrium. A third possibility that is usually not explored is to
force the reservoirs into a maximum entropy state subject to the side constraint of varying energy
and matter content. In our master equation, this would simply mean that the reservoir inverse
temperature βα and chemical potential µα are allowed to be time-dependent and are consistently
calculated from the energy and matter currents between system and reservoir α.

For a thermal reservoir state, the total particle number in the reservoir α is represented as

Nα =
∑
k

〈
c†kαckα

〉
=
∑
k

f(ωkα) =

∫
Dα(ω)fα(ω)dω , (5.97)

where fα(ω) (depending implicitly on inverse temperature βα and chemical potential µα) can be
a Fermi or Bose distribution – depending on the type of the reservoir. Furthermore, Dα(ω) =∑

k δ(ω − ωkα) is the spectral density of the reservoir. In an analogous fashion we can obtain the
energy contained in the reservoir

Eα =

∫
Dα(ω)ωfα(ω)dω . (5.98)



5.6. RELAXATION DYNAMICS 111

Total conservation of charge and energy implies that given charge and energy currents into the
reservoir

Ṅα = −I(α)
M =

∂Nα

∂µα
µ̇α +

∂Nα

∂βα

dβα
dTα

Ṫα ,

Ėα = −I(α)
E =

∂Eα
∂µα

µ̇α +
∂Eα
∂βα

dβα
dTα

Ṫα (5.99)

one can calculate the change of reservoir charge and energy. Here however, we will be interested in
the change of reservoir temperature and chemical potential, for which we can obtain a differential
equation by solving the above equations for µ̇α and Ṫα. For example, in case of fermions, we can
first solve for

∂Nα

∂µα
=

∫
Dα(ω)fα(ω)[1− fα(ω)]dωβα = I1βα ,

∂Nα

∂βα
= −

∫
Dα(ω)fα(ω)[1− fα(ω)](ω − µα)dω = −I2 ,

∂Eα
∂µα

=

∫
Dα(ω)ωfα(ω)[1− fα(ω)]dωβα = (I2 + µαI1)βα ,

∂Eα
∂βα

= −
∫
Dα(ω)ωfα(ω)[1− fα(ω)](ω − µα)dω = −I3 − µαI2 . (5.100)

Here, we have defined three integrals

I1 =

∫
Dα(ω)f(ω)[1− fα(ω)]dω , I2 =

∫
Dα(ω)(ω − µα)fα(ω)[1− fα(ω)]dω ,

I3 =

∫
Dα(ω)(ω − µα)2fα(ω)[1− fα(ω)]dω , (5.101)

which in the wide-band limit Dα(ω) = Dα can be solved exactly

I1 =
Dα

βα
= DαTα , I2 = 0 , I3 =

π2

3

Dα

β3
α

=
π2

3
DαT

3
α . (5.102)

Exercise 49 (Fermi integrals) Show validity of Eq. (5.102). You might want to use that∫ ∞
0

ln2(x)

(x+ 1)2
=
π2

3
. (5.103)

From these, we obtain a simple relation between currents and thermodynamic parameters(
−I(α)

M

−I(α)
E

)
= Dα

(
1 0

µ π2

3
Tα

)(
µ̇α
Ṫα

)
. (5.104)

We can directly invert the matrix containing the heat and charge capacities to solve for the first
derivatives (

µ̇α
Ṫα

)
=

1

Dα

(
1 0

− 3
π2

µα
Tα

3
π2

1
Tα

)(
−I(α)

M

−I(α)
E

)
. (5.105)



112 CHAPTER 5. CONTROLLED SYSTEMS: NON-EQUILIBRIUM CASE III

Figure 5.11: Temporal evolution of the bias volt-
age V (t) (black) and the temperature difference
TL−TR (red) for different ratios of channel ener-
gies ε2 = αε = ε1 (solid, dashed, and dash-dotted,
respectively). After an initial evolution phase the
system reaches a pseudo-equilibrium that is per-
sistent only for ε1 = ε2 (solid curves). Whenever
the channel energies are different, the pseudo-
equilibrium eventually relaxes to thermal equilib-
rium. During the pseudo-equilibrium phase (in-
termediate plateaus), part of the initial tempera-
ture gradient has been converted into a voltage.
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Although we have represented this using a matrix, we stress that the resulting ODE is highly
nonlinear, since the currents may themselves depend in a highly nonlinear fashion on the reservoir
temperature. Any reasonable two-terminal setup should realistically obey particle conservation
IRM + ILM = 0 and also energy conservation IRE + ILE = 0. This will in general lead to conserved
quantities respected by the system of coupled differential equations.

A useful example is the single-electron transistor that has been treated previously. Here, we
have two reservoirs with temperatures TL, TR and chemical potentials µL and µR, respecively.
When these are connected via a single quantum dot, the current (counting positive if directed
from left to right) reads

JM = γ [fL(ε)− fR(ε)] , JE = εJM , (5.106)

where γ encodes details of the coupling strength to the respective reservoirs into a single factor
and where ε was the on-site energy of the quantum dot. The so-called tight-coupling property
JE = εJM follows from the fact that a single quantum dot only has a single transition frequency ε.
This can be compared with a more complicated structure, e.g. two quantum dots connecting the
two reservoirs in parallel without direct interaction. Then, the currents have the structure

JM = γ1 [fL(ε1)− fR(ε1)] + γ2 [fL(ε2)− fR(ε2)] ,

JE = ε1γ1 [fL(ε1)− fR(ε1)] + ε2γ2 [fL(ε2)− fR(ε2)] . (5.107)

These do not exhibit the tight-coupling property JE 6= εJM – unless the εi are equal. Nevertheless,
also here global equilibrium µL = µR and βL = βR will evidently lead to vanishing currents and
therefore to fixed points. Now, by initializing the system e.g. with a temperature gradient in the
absence of a charge gradient it is possible to generate (at least temporally) a voltage, i.e., to extract
work. The temporal evolution of such a system is depicted in Fig. 5.11. It is visible that in the tight-
coupling limit, it is possible to convert e.g. an initial temperature gradient into work (a persistent
voltage). However, it should realistically be kept in mind that the tight-coupling property is never
exactly fulfilled and relaxation into final equilibrium may thus be expected. Nevertheless, even
these more realistic systems show a distinct timescale separation between initial charge separation
and discharging of the system.
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