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This is my first lecture on solid state physics, and the script should therefore be considered
as being in construction. It will be extended and modified throughout the course and it would
therefore be wise not to print it in the beginning but rather for later reference. The script
represents an excerpt of other lecture notes and books. Figures – if not otherwise noted – are
originals, though. A significant portion of the material treated has been taken from lecture
notes of Tobias Brandes. The lecture script will be made available online at http://www1.

itp.tu-berlin.de/schaller/lectures.html.
Corrections and suggestions for improvements should be addressed to me

gernot.schaller@tu-berlin.de. Special thanks go to Dr. Javier Cerrillo and Philipp Stammer for
turned-in corrections.

The lecture will take place on Thursdays 10:15–11:45 and Fridays 8:30–10:00. In addition to
the lecture, students should attend the seminar on Tuesdays 14:15–16:00 in EW 114. To earn
the credit points, students should turn in the regular homework assignments in the seminar
and score at least 60% there.

some useful literature for the lecture:

• lecture script: http://www1.itp.tu-berlin.de/schaller/lectures.html

• G. Czycholl, Theoretische Festkörperphysik, Springer, Heidelberg (2008)

• C. Kittel, Quantum Theory of Solids, Wiley, (1987)

• Ashcroft/Mermin, Solid State Physics, Holt Saunders (1981)

• Haken: Quantenfeldtheorie des Festkörpers, Teubner

• Ibach, Lüth: Festkörperphysik, Springer

• Kittel: Quantentheorie der Festkörper, Oldenbourg

• Scherz: Quantenmechanik, Teubner

The tentative content of the lecture includes

• crystal structures

• phonons

• free electrons

• interacting electrons

• electron-phonon interactions

• superconductivity

• magnetism

http://www1.itp.tu-berlin.de/schaller/lectures.html
http://www1.itp.tu-berlin.de/schaller/lectures.html
http://www1.itp.tu-berlin.de/schaller/lectures.html
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Chapter 1

Crystals

In this chapter, we mainly follow Ref. [3].
Crystals can be seen as extremely large molecules. Whereas the number of constituents in

normal molecules can range up to a few thousand atoms e.g. in case of amino acids, crystals
extend into the macroscopic regime and can thus contain in the order of 1023 atoms. To
understand the phenomena occurring in crystals, it is often enough to understand the electron-
electron interactions only, as the positions of the atoms are roughly fixed. We only have to
take care of the atomic displacements from their equilibrium positions, leading to the concept
of phonons. The regularity present in many crystals is helpful in the theoretical treatment. We
will start as usual from this phenomenologic perspective and will therefore consider the presence
of a lattice structure as given. From this perspective, we will first review possible classification
schemes for lattices and crystal systems. Roughly speaking, crystal systems are defined by
point symmetries such as rotation, whereas lattices are defined by translational invariance.

1.1 Definitions

Most lattices in solid state systems can be described with the help of crystals.

Box 1 (crystal lattice/elementary cell) A crystal lattice consists of abstract points Rn

that are fully defined by integer combinations of d linearly independent basis vectors

Rn =
d∑
i=1

niai , ni ∈ Z , n = (n1, . . . , nd) . (1.1)

The basis vectors ai span the conventional elementary cell, which by periodic continuation
covers the full space.

From this it follows that such lattices need to obey some translational invariance: When
shifted along the basis vectors, the lattice must look the same. They are infinitely large and
are therefore rather a theoretical construct. Beyond the translation, crystals also obey further
discrete rotational symmetries, which allows one to classify them.

We note that the definition of a crystal lattice does not imply that the basis vectors are
orthonormal and neither is the choice of a basis unique. Given the basis vectors, we can compute
for d = 2 and d = 3 the volume of the elementary cell via

V (2)
ec = |a1 × a2| ,
V (3)

ec = |a1 · (a2 × a3)| . (1.2)

3
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However, when we think about realistic systems, the lattice points need not always coincide
with the physical positions of all atoms. For example, some lattices may be constructed from
atoms of different species and thereby loose the translational invariance. To account for this, a
Bravais lattice 1 can be constructed from a crystal lattice by adding additional lattice points
to the elementary cell. These additional points can either lie in the center of the elementary
cell (body-centered), in the centers of the surfaces of the elementary cell (face-centered), or in
the centers of two opposing surfaces of the elementary cell (base-centered). Thus, for every
crystal lattice (defined by symmetry), one has at least one Bravais lattice. In the following, we
will exemplify this in two and three dimensions (as the one-dimensional case is rather trivial).

1.1.1 Crystals in 2 dimensions

In two dimensions d = 2, there are four crystal systems and five Bravais lattices. In particular,
we have the crystal systems:

1. The quadratic system, which is characterized by a1 ·a2 = 0 and |ai| = a. The quadratic
system has a four-fold rotational symmetry, a mirror symmetry along two axes, and the
inversion r → −r as symmetry operations that leave it invariant. The corresponding
Bravais lattice is defined by ni ∈ Z and a1 = aex and a2 = aey. Its elementary cell has
again the shape of a square.

2. The rectangular system, where one can choose a1 ·a2 = 0 but basis vectors of different
lengths. It is only invariant with respect to a mirror symmetry with respect to two axes
and inversion. The Bravais lattice is defined as before, just with two lattice constants
accounting for the two directions, and the elementary cell is a rectangle. Alternatively, we
can also choose the basis vectors having the same lengths but then they are not orthogonal
to each other, see the second column in Fig. 1.1. In this case, the elementary cells become
parallelograms.

3. The hexagonal system, defined by basis vectors of equal length but enclosing a 120
degree angle a1 · a2 = 1/2. It has a six-fold rotational symmetry, a mirror symmetry
along three axes, and the inversion. Its elementary cells are rhombuses.

4. The oblique system, where the angle between the basis vectors is not rectangular and
also their length is different. Here, inversion is the only remaining symmetry operation,
and the elementary cells are parallelograms.

These crystal systems and Bravais lattices are also visualized in Fig. 1.1.
When analyzing these lattice structures a bit, one may come to the conclusion that the body-

centered rectangular lattice could also simply be considered a special oblique system. However,
since it has all the symmetries of the rectangular crystal system, it is usually considered an
own class.

1.1.2 Crystals in 3 dimensions

In three dimensions, there are seven crystal systems and 14 Bravais lattices:

1. The cubic system now includes three Bravais lattices: The simple cubic lattice (sc),
the body-centered cubic lattice (bcc), and the face-centered cubic lattice (fcc). The
conventional elementary cell is a cube.

1Auguste Bravais (1811–1863) did research on crystal physics and optics.
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Figure 1.1: Visualization of the four different crystal systems quadratic, rectangular, hexagonal,
and oblique (from left to right) [adapted from Wikipedia https://commons.wikimedia.org/

w/index.php?curid=3912829]. The rectangular system can be classified with orthogonal basis
vectors of different length a, b or non-orthogonal basis vectors of equal length c, d, and it has
two Bravais lattices (primitive, top, and body-centered, bottom).

2. The tetragonal system has a square base but its height is different from the base
lattice constant. All angles remain rectangular. It has two Bravais lattices: The simple
tetragonal one and the body-centered tetragonal lattice.

3. The orthorhombic system can have different lattice constants, but all angles still re-
main rectangular. It has four different Bravais lattices, simple, base-centered, body-
centered, and face-centered.

4. The monoclinic system has a rectangular base and two Bravais lattices: simple and
base-centered.

5. The rhombohedral system has equal lattice constants and equal angles and only one
Bravais lattice.

6. The hexagonal system is formed by piling hexagonal 2d lattices on top of each other.

7. The triclinic system.

An overview of these lattices and crystal systems is visualized in Fig. 1.2. Again, we see that
a crystal system can have multiple Bravais lattices that however obey the same symmetry oper-
ations. For example, all lattices of the cubic crystal system have four-fold rotational symmetries
around three different axes (passing throught the centers of the cube faces), three-fold rota-
tional symmetries around four different axes (body diagonals), two-fold rotational symmetries
around 6 axes (diagonals through opposing edge centers) and inversion symmetry.

The classification into crystal groups is important because many reasonable Hamilton op-
erators have the same symmetry as the crystal. This means that they will commute with the

https://commons.wikimedia.org/w/index.php?curid=3912829
https://commons.wikimedia.org/w/index.php?curid=3912829
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Figure 1.2: Visualization of the seven different crystal systems cubic, tetragonal, orthorombic,
monoclinic, rhombohedral, hexagonal, triclinic (from left to right) [adapted from Wikipedia].
For many crystal systems there exist different Bravais lattices but all of them obey the sym-
metries of the crystal system.

corresponding symmetry operations, and just by finding the correct lattice classification one
may therefore identify conserved quantities.

1.1.3 The cubic crystal system

Due to its simple structure and widespread application, we will here only discuss the cubic
crystal system in greater detail.

• Each lattice point in the simple-cubic lattice has six next neighbours (each at distance
a). A suitable choice of basis vectors is then

a1 = a

 1
0
0

 , a2 = a

 0
1
0

 , a3 = a

 0
0
1

 , V (sc)
ec = a3 . (1.3)

Thus, the conventional elementary cell is associated with each node of the simple cubic
lattice. For this Bravais lattice, the conventional elementary cell is also the smallest one
that is needed to cover the full space.

• For a face-centered cubic lattice we have 12 next neighbours (at distance a/
√

2). We could
now take the basis vectors of the simple cubic lattice in Eq. (1.3). These would span the
conventional elementary cell, which however is not the smallest one. Alternatively, we
can choose the connection to three of the the next neighbours to define the basis vectors
spanning the primitive elementary cell (which is the smallest possible one)

a1 =
a

2

 1
1
0

 , a2 =
a

2

 1
0
1

 , a3 =
a

2

 0
1
1

 , V (fcc)
pec =

a3

4
. (1.4)

The corresponding primitive elementary cell has the shape of a diamond and by periodi-
cally continuing it, the complete space is covered.

• Finally, for a body-centered cubic one has 8 next neighbours (at distance
√

3a/2), and
we to find the primitive elementary cell we can form a basis by choosing the connection
to three of them

a1 =
a

2

 1
1
1

 , a2 =
a

2

 1
−1
1

 , a3 =
a

2

 −1
1
1

 , V (bcc)
pec =

a3

2
. (1.5)
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Figure 1.3: Visualization of the Wigner-Seitz
construction for two different (left and right) 2d
body-centered rectangular lattices. Connection
lines to next neighbors and perpendicular lines
are shown with black and green dashed lines,
respectively, and the resulting Wigner-Seitz cell
is shown with bold lines.

Thus, an elementary cell is associated with each node of the simple cubic lattice.

It is visible that the volume of the primitive elementary cells for the fcc and bcc lattices is much
smaller than for the sc lattice, where one has one elementary cell per lattice node. However,
one has to keep in mind that the lattice nodes in fcc and bcc lattices take part in many different
elementary cells. For example, for an fcc lattice the cube corners belong to 8 elementary cells
each and the points on the cube faces belong to two elementary cells. Therefore, in total we
have 8 ∗ 1/8 + 6 ∗ 1/2 = 4 lattice nodes per elementary cell, which yields the same ratio as for
the simple cubic lattice.

We have seen that by identifying the next neighbours, one can find alternative bases and
alternative elementary cells. A further way to find an elementary cell is the Wigner-Seitz 2

construction:

Box 2 (Wigner-Seitz cell) The Wigner-Seitz cell around one lattice point is the smallest
volume enclosed by the perpendicular planes placed at half-distance of the connection lines to
all neighbours. It is a primitive elementary cell.

Typically, one will of course start with the next neighbours in this construction, then add
the next-to-next neighbours and so on until the enclosed volume does no longer become smaller,
as depicted in Fig. 1.3. Again, the Wigner-Seitz cell is also an elementary cell in the sense that
by periodic continuation of it the full space is covered. In addition, we see that by construction
each of these particular elementary cells contains exactly one lattice node.

We see that if we would apply this construction to non-periodic structures, it is equivalent
to a Voronoi 3 tessellation.

1.2 Realistic crystal structures

So far, we have defined all lattices as abstract nodes. When we talk about realistic solid bodies,
these nodes can often be identified with the physical position of atoms or ions. However, this is
not always the case. As a counterexample, consider e.g. a crystal made of amino acids, where
we put a specific amino acid at each lattice node in the same orientation. Now, besides the
lattice classification, the position of the atoms is given by

Rnµ = Rn +Rµ , (1.6)

where Rn denotes the lattice node as in Eq. (1.1) and Rµ is constrained (normally to the
elementary cell). This now allows one to describe the most general lattice structures.

We will just summarize a few popular lattices here:

2E.P. Wigner (1902–1995) was a theoretical physicist who won the Nobel price in 1963 and F. Seitz was one
of his co-workers.

3Georgi Feodosjewitsch Voronoi (1868–1908) was a russian-ukrainian mathematician.
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Figure 1.4: Crystal of sodium chloride – NaCl
(adapted from Wikipedia). The sodium atoms
(purple) are put on an fcc lattice (shown are just
two faces with black lines), the chloride atoms
are displaced: The arrow points to a Cl atom
(not shown) at the center of the cube. The
species can also be exchanged. If sodium and
chloride were identical, we would have a simple
cubic lattice with half the lattice constant.

• salt (NaCl) crystallizes in an fcc structure, where one has Na atoms at the original fcc
lattice, and additionally Cl atoms displaced at 1/2a1 + 1/2a2 + 1/2a3, see Fig. 1.4. If
both atoms were identical, one would obtain an sc lattice with half the lattice constant.

• The structure of CsCl is simple cubic. At the corners of the cube one has Cs atoms, but
at 1/2a1 + 1/2a2 + 1/2a3 one has an additional Cl atom. If these atoms were identical,
one would end up with an bcc lattice.

• Many elements condense in a hexagonally closed packed structure, e.g. Mg, Zn, Cd. This
lattice structure is special in the sense that it usses the smallest volume per atom.

1.3 The reciprocal lattice

In the end, we want to apply these lattice classifications e.g. by performing Fourier transforms.
For this, it is useful to introduce the reciprocal lattice

Box 3 (Reciprocal lattice) For every Bravais lattice with basis vectors ai and primitive ele-
mentary cell volume Vpec = |a1 · (a2 × a3)| one can define a reciprocal lattice via the new basis
vectors

b1 =
2π

Vpec

(a2 × a3) , b2 =
2π

Vpec

(a3 × a1) , b3 =
2π

Vpec

(a1 × a2) . (1.7)

Each lattice point of the reciprocal lattice is then defined by integer multiples of the reciprocal
basis vectors

Gk = k1b1 + k2b2 + k3b3 , k = (k1, k2, k3) . (1.8)

In two dimensions, these definitions apply with a3 = ez.

From this definition, it follows that the basis vectors of the reciprocal lattice are orthogonal
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to the original Bravais lattice

|ai · bj| = 2πδij . (1.9)

This also implies that products of original and reciprocal lattice vectors are always an integer
multiple of 2π

Rn ·Gk =
∑
i

niai ·
∑
j

kjbj = ±2π
∑
i

niki . (1.10)

We can even invert this statement: Given that the product of a vector G with all lattice vectors
Rn is an integer multiple of 2π, we can conclude that G must specify a point of the reciprocal
lattice.

Furthermore, one can show that the volume of the reciprocal elementary cell becomes the
inverse of the primitive elementary cell volume (exercise)

Vrec = |b1 · (b2 × b3)| = (2π)3

Vpec

. (1.11)

For the reciprocal lattice one can use the same classification schemes as for the original one.
For example, the reciprocal lattice of the simple cubic lattice is obviously also simple cubic, the
reciprocal of the fcc is bcc and vice-versa and the reciprocal of the reciprocal is the original.
In particular, we can again define special elementary cells in the reciprocal lattice such as the
Brillouin 4 zone.

Box 4 (Brillouin zone) The first Brillouin zone is defined as the Wigner-Seitz cell of the
reciprocal lattice.

Just to practice a bit, we will discuss the reciprocal lattice for the cubic crystal system, cf.
Sec. 1.1.3, in more detail.

• For the simple cubic lattice we can infer from Eq. (1.3) the reciprocal lattice basis vectors

b1 =
2π

a

 1
0
0

 , b2 =
2π

a

 0
1
0

 , b3 =
2π

a

 0
0
1

 . (1.12)

Thus, the reciprocal lattice of the simple cubic lattice is again simple cubic.

• For the reciprocal lattice of a face-centered cubic we get from Eq. (1.4) the basis vectors

b1 =
2π

a

 −1
−1
+1

 , b2 =
2π

a

 −1
+1
−1

 , b3 =
2π

a

 +1
−1
−1

 . (1.13)

By comparing with Eq.(1.5) we conclude that the reciprocal lattice of the face-centered
cubic is a body-centered cubic lattice (we had chosen a different elementary cell, but these
three vectors also point to three next neighbours of a body-centered cubic lattice).

4L. Brillouin (1889–1969) was a french physicist, also known for the WKB method.
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• Finally, for a body-centered cubic lattice (1.5) one obtains a face-centered cubic basis

b1 =
2π

a

 −1
−1
0

 , b2 =
2π

a

 0
+1
−1

 , b3 =
2π

a

 +1
0
−1

 . (1.14)

These point to three different next neighbours in a face-centered cubic crystal. This must
be expected from our previous result as the reciprocal lattice of the reciprocal lattice is
the original lattice.

1.4 Periodic Functions

In a lattice, many functions such as e.g. the potential felt by the electrons inherit the underlying
periodicity. This can be exploited in computing their Fourier transform with the help of the
reciprocal lattice. To avoid ambiguities, we will in the following assume that we have ordered
our basis vectors such that Vec = a1 · (a2 × a3) > 0, and similar for the reciprocal lattice, such
that we have

aibj = +2πδij . (1.15)

First, let us recall that when in one dimension one has a periodic function with period X,
it is clear that we can represent this function as a discrete Fourier series

f(x+X) = f(x) =⇒ f(x) =
∑
k

fke
ikx , fk =

1

X

∫ X

0

f(x)e−ikxdx . (1.16)

Here, k runs over discrete values determined by the periodicity: From eikX !
= 1 we can conclude

that

k =
2πn

X
, n ∈ Z . (1.17)

In one dimension, the X can be interpreted as the volume of the (only possible) elementary
cell.

In complete analogy we can write for the lattice periodicity

f(r) = f(r +R) , (1.18)

where R is some vector of the real lattice. This implies that the function is representable by a
similar Fourier series

f(r) =
∑
G

fGe
+iG·r , (1.19)

where G runs through different discrete values. The expansion coefficients are given by an
integral over the primitive elementary cell (periodicity implies that it suffices to consider just
one)

fG =
1

Vec

∫
ec

f(r)e−iG·rd3r . (1.20)

Here, the periodicity condition implies

e+iG·R = 1 , (1.21)

such that eventually we conclude that G ·R = 2πn. This has to hold whenever R is a lattice
vector, and consequently G must be a vector of the reciprocal lattice.
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Box 5 (basis on the elementary cell) The functions 1√
Vec
e+iG·r form a basis on the ele-

mentary cell of the real lattice over the square-integrable functions, where G passes through all
points of the reciprocal lattice. We have the relations

δG,G′ =
1

Vec

∫
ec

e+i(G−G′
)·rd3r ,

∑
G

e+iG·r = Vec

∑
R

δ(r −R) . (1.22)

These definitions essentially tell us how to represent lattice-periodic functions with a discrete
Fourier series.

The first (orthogonality) relation can be seen by representing the real vector in the elemen-
tary cell as r =

∑
i αiai, where 0 ≤ αi ≤ 1 as the vector should be inside the elementary cell,

and the reciprocal lattice vector as G =
∑

i βibi with βi ∈ Z. Inserting and using Eq. (1.10)
eventually shows the orthogonality:

1

Vec

∫
ec

e+i
∑
j ∆βjbj

∑
i αiaid3r =

1

Vec

∫
ec

e+i
∑
j 2π∆βjαjd3r =

3∏
j=1

∫ 1

0

dαje
2πi(∆βj)αj

=

{
1 : ∆βj = 0 ∀j
0 : else

(1.23)

To see the second (completeness) relation, we start from an arbitrary function f̃(r), which
need not have any periodicity. However, we can define for each lattice point R the function

fR(r) as the periodic continuation of the function f̃(r) from an elementary cell EC(R) asso-
ciated to R (e.g. the Wigner-Seitz cell) to the complete space, i.e.,

fR(r) =

{
f̃(r) : r ∈ EC(R)

f̃(r −R′) : r −R′ ∈ EC(R)
. (1.24)

Here, R′ is a lattice vector that needs to be subtracted such that r − R′ is again in the

elementary cell. By construction, fR(r) is then periodic over the full lattice and has a Fourier
expansion. Then, we can partition an integral over the complete space into integrals over
individual elementary cells (e.g. Wigner-Seitz-cells) associated to each lattice node∫
f̃(r)

∑
G

e+iGrd3r =
∑
R

∑
G

∫
EC(R)

f̃(R+ r′)e+iG(R+r′)d3r′ =
∑
R

∑
G

∫
EC(R)

fR(r′)e+iGr′d3r′

=
∑
R

∑
G

Vecf
R
−G = Vec

∑
R

fR(0) = Vec

∑
R

f̃(R) . (1.25)

In the second line, we have used Eq. (1.20) and Eq. (1.19) at r = 0. Since the above relation
has to hold for arbitrary functions, we have thus also shown the completeness relation.

Further, we note that an equivalent orthogonality relation holds for the reciprocal lattice.

Example: X-ray diffraction

As an example, we can treat the diffraction of X-rays. Assuming that in a crystal we have a
lattice-periodic potential V (r) = V (r+R) we can ask for the probability for an incoming wave
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with momentum k to be scattered into the outgoing momentum k′. To lowest order, we can
use Fermis golden rule, which requires to compute the matrix element

〈k′|V (r) |k〉 =
1

Vec

∫
e−ik′rV (r)e+ikrd3r =

1

Vec

∫ ∑
G

VGe
+i(k+G−k′

)rd3r

=
∑
G

VGδk′−k,G . (1.26)

This means that for these kinds of processes we will have to obey the selection rule that in-
and outgoing wave vectors must be related by a reciprocal lattice vector

k′ = k +G . (1.27)

That is, by considering the patterns created by diffracted X-rays we can conclude the reciprocal
lattice and from that the real lattice structure of the diffracting crystal.

We will discuss this with the help of a simple example: Suppose the basis vectors a1 and
a2 parametrize one plane of the real lattice. Then, a corresponding reciprocal lattice vector
perpendicular to that plane can be written as G = nb3 with integer n, and it has to obey

a3 ·G = a3G cos(θ′) = dG = 2πn . (1.28)

Here, d = a3 cos(θ′) is the perpendicular distance between the lattice planes spanned by a1

and a2. We can therefore conclude that G = 2πn
d

with integer n. Furthermore, for the case of

elastic scattering, where k2 = k′2, the selection rule can be written as

+2k ·G+G2 = 0 = +2kG cosα +G2 . (1.29)

Here, α is the angle between G and k. Now inserting that the modulus of the photon wave
vector is given by k = 2π/λ with wavelength λ, we write this as

0 = +2d cos(α) + nλ , (1.30)

and upon using that cos(α) = cos(π/2 + θ) = − sin(θ), where θ is now the angle between the
plane and the incoming wave vector k, this implies the Bragg 5 reflection condition

2d sin(θ) = nλ . (1.31)

By rotating the crystal or the incoming light, one can maximize sin(θ) → 1, which allows one
to infer the plane distance d. The whole setup is illustrated in Fig. 1.5.

5The british physicist W. H. Bragg (1862–1942) and his son W. L. Bragg (1890–1971) earned the Nobel price
for this method.
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Figure 1.5: Visualization of the Bragg reflection
scheme. An incoming wave k is reflected into k′,
and elastic scattering allows to determine the
plane distance d.
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Chapter 2

Phonons

2.1 The many-body Hamiltonian

For the energy scales at which solid crystals exist as such, we can safely treat nuclei as elemen-
tary objects. Then, the many-body Hamiltonian in a solid crystal contains the kinetic terms of
electrons and nuclei, the electron-electron, nucleus-nucleus, and the electron-nuclei interactions.
For example, for a crystal composed of Ne electrons and Nn identical nuclei with charge Z the
Hamiltonian would read

H =
Ne∑
k=1

p2
k

2m
+

Nn∑
K=1

P 2
K

2M
+
∑
k<q

e2

|rk − rq|
+
∑
K<Q

e2Z2

|RK −RQ|
−
∑
k,Q

e2Z

|rk −RQ|
. (2.1)

Here, m and M denote the electron and nucleus masses, respectively, p and P their momenta,
and rk and RK their positions. We have used the convention that small indices label electrons
and capital ones the nuclei. Furthermore, when the whole system is electrically neutral, we can
safely assume that

∑Nn
K=1 ZK = Ne. However, one should be aware that the ”nuclei” may not

be naked, i.e., they might actually be ions that consist of the actual nuclei and tightly bound
electrons. Then, Z and Ne have to be adapted accordingly.

To see which of the terms in the Hamiltonian are most relevant, it is useful to write the full
Hamiltonian in a dimensionless form. We can use the Bohr radius as a natural length scale

a0 =
~2

me2
= 0.5× 10−10m (2.2)

and the Rydberg as a natural energy scale

E0 =
me4

~2
=
e2

a0

= 2Ry = 27.2eV . (2.3)

Dividing by the energy scale, we see that by introducing the dimensionless positions r = a0x
and R = a0X, the dimensionless Hamiltonian can be written as

H

E0

= − ~2

2m

1

E0a2
0

∑
k

∇2
xk −

~2

2M

1

E0a2
0

∑
k

∇2

Xk

+
e2

a0E0

[∑
k<q

1

|xk − xq|
+
∑
K<Q

Z2

|XK −XQ|
−
∑
k,Q

Z

|xk −XQ|

]

= −1

2

Ne∑
k=1

∇2
xk −

m

M

1

2

Nn∑
K=1

∇2

XK
+
∑
k<q

1

|xk − xq|
+
∑
K<Q

Z2

|XK −XQ|
−
∑
k,Q

Z

|xk −XQ|
,

(2.4)

15
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where we have used that E0a
2
0 = ~2

m
and E0a0 = e2.

We see that the kinetic term for the nuclei is suppressed by a factor of m/M . Already the
proton is 1800 times as heavy as an electron, and depending on the element, for typical solid
crystals this factor is in the order of 10−4 . . . 10−5. The huge difference in electron and nucleus
masses allows one to treat the nuclei to lowest order just as fixed, i.e., pinned to the lattice
positions, which can be seen as a phenomenologic ingredient to the model.

2.2 Born-Oppenheimer approximation

The previous considerations tell us that it should be safe to neglect the kinetic part of the
nucleus contribution, but we cannot neglect all nucleus contributions. For example, if we
would neglect the attractive electron-nucleus interaction, the whole crystal would fall apart.
Treating the kinetic part of the nuclei as the perturbation, i.e., we split H = H0 +H1 with

H0 = Te(p̂) + Vee(r̂) + Vnn(R̂) + Ven(r̂, R̂) , H1 = Tn(P̂ ) . (2.5)

Here, r and R are the position operators for the electrons and nuclei, respectively and similar
for p and P .

In general, we would like to solve the time-independent Schrödinger equation[
Te(p̂) + Vee(r̂) + Vnn(R̂) + Ven(r̂, R̂) + Tn(P̂ )

]
Ψ(r,R) = EΨ(r,R) (2.6)

for the full wave function Ψ(r,R) and the energy E. Motivated by the observation that in
the unperturbed problem described by H0, the positions of the ions are stationary, we use the
product ansatz

Ψ(r,R) = χ(R)φ(r,R) . (2.7)

Here, χ can be interpreted as a wave function of the nuclei and φ the electronic part, which
implicitly depends on the nuclei positions. We demand that the electronic part is a solution of
the simplified electronic Schrödinger equation

[Te(p̂) + Vee(r̂) + Vnn(R) + Ven(r̂,R)]φ(r,R) = E0(R)φ(r,R) . (2.8)

Here, the positions of the nuclei just enter as classical variables R, and also the energies E0(R)
depend parametrically on them. We see that Vnn(R) is just a constant, which leads to a trivial
shift of the energies (we will keep it here).

Using this in the full problem

Hχ(R)φ(r,R) =
[
Te(p̂) + Vee(r̂) + Vnn(R̂) + Ven(r̂, R̂) + Tn(P̂ )

]
χ(R)φ(r,R)

= [Te(p̂) + Vee(r̂) + Vnn(R) + Ven(r̂,R)]χ(R)φ(r,R)

+
[
Vnn(R̂)− Vnn(R) + Ven(r̂, R̂)− Ven(r̂,R) + Tn(P̂ )

]
χ(R)φ(r,R)

=
[
E0(R) + Vnn(R̂)− Vnn(R) + Ven(r̂, R̂)− Ven(r̂,R) + Tn(P̂ )

]
χ(R)φ(r,R)

= φ(r,R)
[
E0(R) + Vnn(R̂)− Vnn(R) + Tn(P̂ )

]
χ(R)

+
[
Ven(r̂, R̂)− Ven(r̂,R)

]
φ(r,R)χ(R) = Eφ(r,R)χ(R) . (2.9)

When we now neglect the underlined term, we can divide by the electronic wavefunction and
obtain a Schrödinger equation for the nuclei only[

E0(R) + Vnn(R̂)− Vnn(R) + Tn(P̂ )
]
χ(R) = Eχ(R) . (2.10)
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We see that the trivial shift of the electronic energies due to the Vnn(R) term will always cancel.
To summarize, the Born 1- Oppenheimer 2 approximation consists of first solving the elec-

tronic Schrödinger equation (2.8) as if the nuclei were fixed. Then, the eigenvalues E0(R) of
the electronic solution pose an effective potential in the eq. (2.10) for the nuclei. In practice,
one will find that this approach leads to quantized eigenvalues for electronic and nuclei degrees
of freedom, i.e., one will have to solve the two equations

[Te(p̂) + Vee(r̂) + Vnn(R) + Ven(r̂,R)]φα(r,R) = Eα(R)φα(r,R) ,[
Eα(R) + Vnn(R̂)− Vnn(R) + Tn(P̂ )

]
χβα(R) = Eβαχβα(R) . (2.11)

Example: Coupled Oscillators

As a lightweight example for illustration, we can consider the Hamiltonian of two coupled
oscillators

H =
P 2

2M
+

p2

2m
+
K

2
X2 +

k

2
(x−X)2 . (2.12)

As is indicated by the letters, the capital quantities denote the heavy oscillator and the small
letters the little one, and x, X, p, and P are operators. Due to its low dimensionality, the
problem can be solved exactly with a mode transformation, which only has to preserve the
commutation relations

[x, p] = i = [X,P ] , [x, P ] = [X, p] = 0 . (2.13)

For the model at hand, this is quite simple to find. First, we write

p = p̃
√
m, x =

x̃√
m
,

P = P̃
√
M , X =

X̃√
M

. (2.14)

This clearly leaves the commutation relations invariant. The idea behind this is to make
the kinetic terms appear like identical particles. With the new coordinates, the Hamiltonian
becomes

H =
P̃ 2

2
+
p̃2

2
+

K

2M
X̃2 +

k

2

(
x̃

1√
m
− X̃ 1√

M

)2

=
(
P̃ , p̃

) 1

2

(
1 0
0 1

)(
P̃
p̃

)
+
(
X̃, x̃

) 1

2

(
K+k
M

− k√
mM

− k√
mM

k
m

)(
X̃
x̃

)
. (2.15)

Second, we now choose an orthogonal transformation (which also preserves the commutation
relations)(

X̃
x̃

)
=

(
cosφ sinφ
− sinφ cosφ

)(
x1

x2

)
,

(
P̃
p̃

)
=

(
cosφ sinφ
− sinφ cosφ

)(
p1

p2

)
(2.16)

and choose φ such that the Hamiltonian decouples. Since the transformation is orthogonal, the
kinetic term formally does not change, and the particular choice

tan 2φ =
2k
√
mM

kM − (k +K)m
(2.17)

1Max Born (1882–1970) was a german physicist and one of the fathers of quantum mechanics.
2Julius Robert Oppenheimer (1904–1967) was a US-american physicist and director of the Manhattan project.
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eventually yields

H = (p1, p2)
1

2

(
1 0
0 1

)(
p1

p2

)
+ (x1, x2)

1

2

(
k− 0
0 k+

)(
x1

x2

)
,

k± =
k(m+M) +Km±

√
k2M2 +m2(k +K)2 + 2kmM(k −K)

2mM
. (2.18)

Here, we have assumed that kM − (k +K)m > 0, otherwise k+ and k− are just exchanged.
The energies of these coupled oscillators can accordingly be computed via

En1n2 =
√
k−

(
n1 +

1

2

)
+
√
k+

(
n2 +

1

2

)
. (2.19)

Now, the Born-Oppenheimer approximation would simply solve the lightweight coordinate
by neglecting the kinetic term of the heavy coordinate, i.e. we solve (compare Eq. (2.8))

Hel =
p̂2

2m
+
K

2
X2 +

k

2
(x̂−X)2 . (2.20)

where we consider X as a classical variable. Therefore, the shift x̂ − X does not affect the
eigenvalues and we can from our knowledge of the harmonic oscillator essentially read off the
frequency of the oscillator via k = mω2, which implies for the energies

E0
n(X) =

√
k

m

(
n+

1

2

)
+
K

2
X2 , n ∈ {0, 1, 2, . . .} . (2.21)

Next, we insert this into the heavy coordinate Equation, compare Eq. (2.10)

Hph = E0
n(X) +

K

2
X̂2 − K

2
X2 +

P̂ 2

2M
,

=
P̂ 2

2M
+
K

2
X̂2 +

√
k

m

(
n+

1

2

)
. (2.22)

This shows that the two subsystems can for m�M be treated independently

EBO
n1n2

=

√
K

M

(
n1 +

1

2

)
+

√
k

m

(
n2 +

1

2

)
. (2.23)

Indeed, we obtain from expanding the exact solution (2.18)

√
k− =

√
K

M

[
1− 1

2

m

M
+O

{
m2

M2

}]
,

√
k+ =

√
k

m

[
1 +

1

2

m

M
+O

{
m2

M2

}]
. (2.24)

2.3 Phenomenologic Binding Models

Compare also Ref. [3].
In practice, it is for most systems rather impossible to calculate the effective potential V (R)

that stabilizes the ionic lattice. Therefore, one often uses effective parametrizations to enable
fast calculations. All these share some general characteristics. First, one assumes that the
total potential can be decomposed into a sum of two-body interactions depending only on the
distance between the ions

Veff(R̂) =
1

2

∑
i 6=j

v(|Ri −Rj|) . (2.25)
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Second, the two-body interaction is repulsive for small distances, attractive for large distances
and vanishes for infinite distances

v(d) =


> 0 : d < d0

< 0 : d > d0

0 : d→∞
. (2.26)

For different elements, different effective binding models are used:

• The van-der-Waals 3 binding is used for noble gases. Normally, one would expect
that these do not interact at all. However, due to the inner-atomic charge distribution
higher order interactions such as dipole or multipole interactions are possible. This leads
in the far field to an attractive r−6 interaction. Mainly to simplify calculations, the
repulsive interaction is modeled with a r−12 interaction term, leading to the Lennard-
Jones 4 potential

v(d) = 4ε

[(σ
d

)12

−
(σ
d

)6
]
, (2.27)

where ε > 0 and σ > 0 are phenomenological parameters. The van-der-Waals binding is
present in noble gases and in crystals composed of molecules, the typical binding energy
per atom is O{.1} eV.

• The ionic binding model is based on the assumption that by transferring one or more
electrons, the atoms of a crystal form two species: positively Q1 > 0 and negatively
Q2 < 0 charged. The interaction model becomes

v(d) =
Q1Q2

d
+
B

dn
, (2.28)

where the parameters B > 0 and n are empirically determined by experiments (e.g.
inter-ion distance, compressibility). Alternative choices for the repulsive part are possi-
ble. The ionic binding is present in crystals composed of elements with very different
electronegativity, e.g. NaCl with a binding energy of 3.08 eV.

• The covalent binding can be understood with quantum-mechanical approaches only:
Generally, levels hybridize when orbitals establish contact. Depending on the type of
orbitals, the corresponding energy of the levels may increase compared to the isolated or-
bitals (anti-binding) or decrease (binding). This problem can be solved approximately for
two hydrogen-like atoms but yields rather complex expressions involving an exponential
decay. Therefore, one often uses in practice simplified phenomenologic expressions like
the Morse 5 potential

v(d) = D(e−2α(d−d0) − 2e−α(d−d0)) (2.29)

with free parameters D, α, and d0. One prominent representative is diamond, where one
has binding energies of 7.3 eV/atom. It is one hallmark of the covalent binding type that
the orbitals of the element roughly determine the lattice structure.

• The metallic binding is similar to the ionic or covalent binding in the sense that the
valence electrons are distributed over more than one atom. However, the difference is that

3Johannes Diderik van der Waals (1837–1923) was a dutch physicist.
4John Edward Lennard-Jones (1894–1954) was a british mathematician and theoretical physicist.
5Philip McCord Morse (1903–1985) was a US-american theoretical physicist.
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for this binding type, the electrons are completely delocalized over the lattice (roughly
homogeneously). Not surprisingly, the metallic binding ist most prominent in metals, the
lattice configuration is determined by the dense packing of ions and the volume of the
electron gas. It must be said though that in many materials the boundaries between the
binding types are diffuse.

For just two particles, we can expand the two-body interaction around its minimum up to
second order, which should be valid for small displacements. This generically leads to potentials
of the form

v(d) = v0 +K(d− d0)2 , (2.30)

where v0, K > 0 and d0 > 0 are free parameters that can be determined by the underlying
model. Below, we will learn how to perform this for many particles.

2.4 Small displacement expansion

The normal mode expansion of coupled oscillators is essentially a problem known from theoret-
ical mechanics. We will first treat this problem classically and then perform the quantization,
see also Ref. [1]. However, our example for the exact solution of the Born-Oppenheimer ap-
proximation essentially shows that we can equally start from the quantized version and then
perform a canonical transformation.

So let us assume that our classical system of coupled oscillators (which in a solid state
system could be the atomic positions) is described by a Lagrange function

L(r, ṙ) =
1

2
ṙTT ṙ − V (r) . (2.31)

Here, T is a quadratic matrix (which can e.g. contain the different masses) and V (r) contains
the sum of the two-body interactions or even many-body interactions. In addition, we assume
the following: First, T is a positive definite matrix. This makes sense since if it had negative
eigenvalues, one could by ever increasing the velocity decrease the energy of the kinetic term.
Second, we assume that there exists an equilibrium configuration at r0, around which we can
expand the potential up to second order. In a realistic system, this equilibrium configuration
would be that the atoms exactly reside at the lattice points of the crystal, and for n atoms
in 3d we would have f = 3n degrees of freedom and therefore matrices of dimension f × f .
Expanding around the stationary equilibrium configuration yields new generalized coordinates

q = r − r0 , q̇ = ṙ , (2.32)

and the Lagrange function becomes

L(q, q̇) =
1

2
q̇TT q̇ − V (r0)− 1

2
qTV q +O{q3} . (2.33)

Here, we have simply inserted the quadratic approximation to the many-body potential. Since
we have expanded around an equilibrium configuration, the first order term (linear in q) vanishes
and V must be a symmetric and positive definite matrix. Since it has no effect, we can neglect
the constant V (r0). Thus, our approximate Lagrange function becomes

L(q, q̇) =
1

2
q̇TT q̇ − 1

2
qTV q (2.34)

with symmetric and positive definite f × f matrices T and V .
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2.4.1 Normal mode decomposition

We want to transform our generalized coordinates q to new coordinates Q such that the La-
grange function decouples. To this end, we assume this transformation to be linear

q = AQ , (2.35)

with f × f matrix A for a system with f degrees of freedom. This transforms the Lagrange
function into

L =
1

2
Q̇

T
ATTAQ̇− 1

2
QTATV AQ . (2.36)

Now, decoupling the system means that both the kinetic and the potential terms become
diagonal

ATTA = 1 , ATV A = WD , (2.37)

where WD is a diagonal matrix. Multiplying the first equation on the second, we get

ATV A = ATTAWD . (2.38)

Now, since the transformation is canonical, the matrix A is non-singular, i.e., we can compute
its inverse and also the inverse of its transpose. Therefore, we conclude

V A = TAWD . (2.39)

We can solve this equation – and thereby also the previous ones – by determining the columns
ai of the matrix A = (a1, . . . ,af ) – via solving an enlarged eigenvalue problem

V ai = λiTai . (2.40)

Now, when T is positive definite (which should be the case for a reasonable kinetic term as
physically the kinetic energy should only vanish when the velocities vanish and should be
positive otherwise), we can define the hermitian matrices

T±1/2 : T+1/2T−1/2 = 1 , T−1/2T = T+1/2 , (2.41)

and thereby write the generalized eigenvalue problem as

(T−1/2V T−1/2)T+1/2ai = λiT
+1/2ai , (2.42)

which is just a conventional eigenvalue problem for bi = T+1/2ai and the matrix T−1/2V T−1/2.
Now, given that both V and T are symmetric and positive definite, we conclude that also
T−1/2V T−1/2 is positive definite. We can show this by showing that for general normalized
vectors x we have

xTT−1/2V T−1/2x = xTT−1xyTV y ≥ 0 , y =
T−1/2x

xTT−1x
. (2.43)

In other words, for positive definite kinetic matrix T and positive definite potential V it
follows that the eigenvalues λi are not only real but even positive. Inserting the solution of the
generalized eigenvalue equation in the original equation above we see that decoupling of modes
can be achieved with λi > 0

V A = V (a1, . . . ,af ) = T (λ1a1, . . . , λfaf ) = TAWD , WD =

 λ1

. . .

λf

 .

(2.44)
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Figure 2.1: Illustration of some simple 1D mod-
els for which an analytic decomposition in terms
of normal modes is possible. From top to bot-
tom: Two coupled oscillators attached to two
walls (masses and spring constants may be dif-
ferent). A chain of homogeneously coupled os-
cillators with identical masses which is attached
to two walls (all normal frequencies are posi-
tive). The closed homogeneous chain: All nor-
mal frequencies are non-negative, one vanishes
and corresponds to the displacement of the com-
plete system.

Accordingly, the Lagrange function becomes

L =
1

2

f∑
i=1

Q̇2
i −

1

2

f∑
i=1

λiQ
2
i , (2.45)

which are just the decoupled Lagrange functions of f harmonic oscillators with mass m = 1.
Consequently, we identify

ωi =
√
λi (2.46)

as the positive eigenfrequency of the normal mode.
We transform this in the usual way to a Hamilton function using a Legendre transform

H =
1

2

f∑
i=1

P 2
i +

1

2

f∑
i=1

ω2
iQ

2
i . (2.47)

2.4.2 General Examples

Normally, such computations will have to be done numerically. However, there exist some
systems for which an analytic solution is possible, see Fig. 2.1.

Two coupled oscillators

For two coupled oscillators

L =
1

2
m1q̇

2
1 +

1

2
m2q̇

2
2 −

[
1

2
Kq2

1 +
1

2
Kq2

2 +
1

2
K(q1 − q2)2

]
(2.48)

we have the matrices

T =

(
m1 0
0 m2

)
, V = K

(
2 −1
−1 2

)
, (2.49)

and we see that both are positive definite. The generalized eigenvalue problem

V ai = λiTai (2.50)
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can be solved in general with lengthy expressions. For the simpler case m1 = m2 = m, it
becomes a normal eigenvalue problem with solutions

a1 =
1√
2m

(
1
1

)
, a2 =

1√
2m

(
1
−1

)
,

λ1 =
k

m
, λ2 = 3

k

m
. (2.51)

As expected, we have λi > 0 and consequently, the frequencies of the normal modes become

ω1 =

√
k

m
, ω2 =

√
3
k

m
. (2.52)

Finite Chain

We can consider a finite-sized chain of points with the same mass m

L =
1

2
m

N∑
i=1

q̇2
i −

1

2
Kq2

1 −
1

2
K

N−1∑
i=1

(qi − qi+1)2 − 1

2
Kq2

N , (2.53)

from which we can read off the matrices

T = m1 , V = K


2 −1

−1 2
. . .

. . . . . . . . .
. . . 2 −1
−1 2

 . (2.54)

The circle theorem by Gershgorin 6 shows that the V matrix is positive semidefinite. However,
due to its simplicity, we can even calculate the eigenvalues and eigenvectors of V explicitly
(1 ≤ a, b ≤ N)

V va = εava , εa = 2K − 2K cos
πa

N + 1
, vab =

2√
N + 1

sin
πab

N + 1
. (2.55)

To solve the generalized eigenvalue problem, we just need to multiply by 1√
m

, leading to the
generalized eigenvectors and transformation matrix

aa =
1√
m

2√
N + 1

 sin πa1
N+1
...

sin πaN
N+1

 , Aab =
1√
m

2√
N + 1

sin
πab

N + 1
, (2.56)

respectively. The eigenvalues of the generalized problem become

λa = 2
K

m

[
1− cos

πa

N + 1

]
> 0 , (2.57)

as 1 ≤ a ≤ N . From this, we obtain the normal mode frequencies as ωa =
√
λa. These will be in

a finite range. For N = 2 we reproduce the special case of the previous example. By contrast,
for N → ∞, the spectrum of normal mode frequencies will become continuously distributed
between the extremal frequencies

ωmin ≈
√

2
K

m

π√
2N

+O{N−2} , ωmax ≈ 2

√
K

m
+O{N−2} . (2.58)

The bound obtained for the normal mode frequencies is just a manifestation of the fact that
it is fully sufficient to know the frequencies within a primitive elementary cell of the reciprocal
lattice.

6Semjon Aronowitsch Gerschgorin (1901–1933) was a belorussian mathematician.
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Translationally invariant chain

There are two ways to end up with a translationally invariant chain. First, we could extend the
chain at both ends to plus/minus infinity. Then, one will also obtain a continuum of normal
modes. Any solid will however be of finite size, so another way to obtain a translationally
invariant model is to use periodic boundary conditions with finite N

L =
1

2
m

N∑
i=1

q̇2
i −

1

2
K

N∑
i=1

(qi − qi+1)2 , qN+1 ≡ q1 . (2.59)

The matrices for the kinetic and potential energy become

T = m1 , V = K


2 −1 −1

−1 2
. . .

. . . . . . . . .
. . . 2 −1

−1 −1 2

 . (2.60)

Now, we only see that the V matrix is positive semidefinite, i.e., some eigenvalues may actually
vanish. However, the V matrix is circulant, and its eigenvalues and eigenvectors can also be
analytically determined

V va = εava , εa = 2K

[
1− cos

2πa

N

]
, vab =

1√
N

exp

{
2πiab

N

}
. (2.61)

We observe a few things.
First, there is now one frequency where for a = N the energy vanishes εN = 0. This means

that when moving along the corresponding associated eigenvector

vN =
1√
N

 1
...
1

 (2.62)

the potential energy does not change. Physically, it means that movement along this generalized
coordinate just means to move the closed chain as a whole.

Second, only for even N there is another unpaired eigenvalue at a = N/2 with maximal
energy εN/2 = 4k

vN/2 =
1√
N


−1
+1
...
−1
+1

 (2.63)

Third, all other eigenvalues come in degenerate pairs, e.g. a = i and a = N − i where
1 ≤ i < N/2. For each of these pairs, we can form two real superpositions of the two eigenvectors
corresponding to degenerate pairs, leading to a fully real solution.

After separating off the generalized coordinate with vanishing eigenvalue we could proceed
as usual and solve the generalized eigenvalue problem. Accordingly, the frequencies of the
nontrivial normal modes just become

ωa =

√
2K

m

[
1− cos

2πa

N

]
, 1 ≤ a ≤ N − 1 . (2.64)
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2.4.3 Examples for periodic lattices

So far, our examples above did not need to be realized on a lattice. We just demanded that
the interaction strength between two lattice sites was constant along the chain, such that the
actual lattice constant did not show up. Here, one generally finds it more convenient to find the
frequencies not by exact diagonalization but by solving the equations of motion arising from
the corresponding Lagrange function.

1D Bravais lattice

Now we explicitly state that the masses on a 1D lattice should be distributed at positions

xn = na , n ∈ Z , (2.65)

which introduces the lattice constant a. Denoting as in Ref. [4] the local displacement of the
chain at n by un, the potential assumes the form

U =
1

2
K

N∑
n=1

[un − un+1]2 , uN+1 ≡ u1 . (2.66)

In this context, the periodic boundary conditions employed here are also often termed Born-von-
Kármán 7 boundary conditions. Furthermore, we note that we have only allowed for motional
degrees of freedom along the chain direction (longitudinal). Accordingly, the equations of
motion (Euler Lagrange) yield the coupled system

mün = −K [2un − un−1 − un+1] . (2.67)

To get the energies of the normal modes, we use the ansatz

un(t) = ce+i(nka−ωt) (2.68)

with the one-dimensional wave-vector k and frequency ω and some constant c. Insertion into
the equations of motion yields a relation between wave vector and frequency

−mω2 = −K[2− 2 cos(ka)] , (2.69)

and by solving for the frequency we obtain the dispersion relation

ω(k) =

√
2K

m
[1− cos(ka)] = 2

√
K

m
|sin(ka/2)| . (2.70)

Furthermore, from the periodic boundary conditions we also get that ka is discrete

eiNka = 1 =⇒ kna =
2πn

N
, n ∈ Z . (2.71)

One can see that there are only N different values of k that actually correspond to different
physical solutions: Adding an integer multiple of 2π to ka yields no change. It is therefore
customary to constrain the considerations to the first Brillouin zone

−π
a
≤ kn ≤ +

π

a
. (2.72)

The dispersion relation (2.70) assigns a normal mode frequency ωn = ω(kn) to each of the
discrete values of kn. In the limit of an infinitely large closed chain N → ∞, the values of kn

7Theodore von Kármán (1881–1963) was a hungarian physicist.
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Figure 2.2: Plot of the discrete density of
states (2.73) as train of δ functions (red spikes)
and its continuous version (2.76) (black and or-
ange). For each ω value there are two spikes
at the same position, corresponding to ±k(ω).
The integral over both functions is the same
(one).
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become more and more dense, which transfers to ω(k). In this limit, it makes sense to define
the density of states via

νN(ω) =
1

N

N∑
j=1

δ(ω − ωj) , (2.73)

where N denotes the total length of the system and ωj its eigenfrequencies.
One way to derive the limit of the density of states for N →∞ is to perform an integration

around one normal mode frequency. Apparently, we have

(ωj+1+ωj)/2∫
(ωj+ωj−1)/2

νN(ω)dω =
2

N
≈ νN(ωj)

ωj+1 − ωj−1

2
. (2.74)

Here, the factor of 2 after the equality results from the fact that for ±k we have the same
ω(+k) = ω(−k). Now, we can insert for sufficiently dense frequencies ωj = ω(kj) approximate

ωj+1 − ωj−1 ≈ ω(kj) +
dω(k)

dk

∣∣∣
kj

(kj+1 − kj)− ω(kj)−
dω(k)

dk

∣∣∣
kj

(kj−1 − kj) =
dω(k)

dk

∣∣∣
kj

(kj+1 − kj−1)

=
dω(k)

dk

4π

Na
. (2.75)

Inserting this in the above equation and solving we obtain the density of states in the limit
when N →∞

ν∞(ω) ≈ 2

N

Na

2π

1(
dω(k)
dk

) =
2

N

Na

2π

dk(ω)

dω
=
a

π

2m

a
√
m(4K −mω2)

=
2

π

1√
4K
m
− ω2

, 0 ≤ ω ≤ 2

√
K

m
. (2.76)

In the last equality of the first line, we have first solved Eq. (2.70) for k(ω) with k(ω) > 0 and
then computed the derivative. This is also illustrated in Fig. 2.2.

It should be noted that in our 1D examples, we have so far only taken longitudinal vibrations
into account. However, a 1d chain may also support transversal vibrations. Then, the 1d chain
would also allow for transversal displacements and we would have to write un(t) → un(t)
as vectors, allowing e.g. for 3 generalized coordinates per lattice node and two additional
transversal spring constants K1

⊥, K
2
⊥. In this case, we would essentially increase the number of

normal modes. Below, we will investigate in more detail what happens.
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Figure 2.3: 2d illustration of a lattice with equi-
librium positions R (red circles) and the dis-
placements u(R) from them (yellow circles).
The dynamical matrix D(R −R′) encodes the
potential between sites R and R′, which need
not necessarily be next neighbours. Metals start
to melt when the displacement reaches a few
percent of the lattice constant.

Normal modes in general Bravais lattices

For a general Bravais lattice with identical atoms, we can write the potential energy as (compare
Ref. [4])

U =
1

2

∑
R,R′

u(R)TDR,R′
u(R′) , DR,R′

= D(R−R′) . (2.77)

Now, R and R′ both denote lattice nodes on the Bravais lattice. Further u(R) denotes the
vector-valued local displacement of the atom that would normally be at equilibrium position
R, and similar for u(R′), see Fig. 2.3 for a 2D example. From translational invariance, the
dynamical matrix D should depend only on the difference between the two lattice vectors.

In fact, for isotropic lattices, one would actually expect that it only depends on the modulus
of the difference. However, in general we can conclude

D(R−R′) = DT (R′ −R) ,

D(R) = D(−R) ,∑
R

D(R) = 0 . (2.78)

The first relation follows simply from transposition of the total potential energy:

U =
1

2

∑
R,R′

uT (R′)DT (R−R′)u(R) =
1

2

∑
R,R′

uT (R)DT (R′ −R)u(R′) . (2.79)

The second follows from the invariance of the potential energy under inversion of all positions
and displacements (R→ −R and u(R)→ −u(−R)) or put more simply from the requirement
that actio = reactio.

Finally, the third symmetry relation follows from the requirement that homogeneous shifts
of all coordinates by the same constant displacement u(R) = u0 should not yield any potential
energy (gauging)

0 = uT0

 ∑
R,R′

D(R−R′)

u0 = uT0

∑
R

D(R)

u0 . (2.80)
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We note that in contrast to the previous simple examples, this treatment also includes all
directions of displacements, any connection topology admitted by the Bravais lattice, and also
couplings between very distant neighbours of the Bravais lattice.

We will not try to write the full Lagrange function as a quadratic form involving all general-
ized coordinates. Rather, we will use the equations of motion to obtain the dispersion relations.
These become for identical masses m

mü(R) = −
∑
R′

D(R−R′)u(R′) . (2.81)

Still, the matrix D now describes the coupling of the atom at position R to all other atoms.

Since we have now a vector-valued displacement, we use an ansatz where the constant c is now
replaced with the polarization vector ε

u(R, t) = ε exp{i(kR− ωt)} , (2.82)

where k is a wave vector and ω is the normal mode frequency. The wave vector k points into
the propagation direction of the wave, and ε points into the direction of the displacement. If ε
and k are perfectly aligned (i.e., parallel or anti-parallel), one calls the vibration longitudinal,
if they are perpendicular, the vibration is transversal. Inserting this ansatz into the equations
of motion, we get

−mω2ε = −
∑
R′

D(R−R′)εe−ik(R−R′
) = −

∑
R

D(R)e−ikRε = −D(k)ε . (2.83)

The Fourier-transformed matrix

D(k) =
∑
R

D(R)e−ikR (2.84)

is sometimes also called dynamical matrix.
From Eq. (2.78) we can derive that the dynamical matrix is real-valued and symmetric

D(k) = D(−k) = D∗(k) = DT (k) . (2.85)

Consequently, it can be diagonalized with orthogonal eigenvectors εσ(k) and real eigenvalues
λσ(k)

D(k)εσ(k) = λσ(k)εσ(k) . (2.86)

Choosing the polarization eigenvector as an eigenvector of the dynamical matrix εσ, we can
solve the resulting equation

mω2εσ(k) = D(k)εσ(k) = λσ(k)εσ(k) (2.87)

to get a separate dispersion relation

ωσ =

√
λσ(k)

m
(2.88)

for each of the polarizations σ and along the wave vector k. These dispersion relations are
also called acoustic branches of the Bravais lattice. They are called acoustic since one



2.4. SMALL DISPLACEMENT EXPANSION 29

can show that for small k, all these dispersion relations scale linearly in k: Exploiting the
symmetries (2.78) of the dynamical matrix, we can write

D(k) =
1

2

∑
R

D(R)
[
e−ikR + e+ikR − 2

]
= −2

∑
R

D(R) sin2 kR

2
≈ −1

2

∑
R

(kR)2D(R)

= −1

2
k2
∑
R

(ekR)2D(R) , ek =
k

k
. (2.89)

Accordingly, we can write for the dispersion relation

ωσ(ek) ≈ cσ(k)k , (2.90)

where cσ(ek) is the velocity of sound in direction k. Given the matrix
∑
R(ekR)2D(R), we can

microscopically calculate these. For example, in isotropic elastic media and three dimensions
one finds that the wave vector and polarization are either parallel or perpendicular, such that
one has one longitudinal and two transversal modes

ε1(k) ‖ k : 1 longitudinal mode (2.91)

ε2/3(k) ⊥ k : 2 transversal modes . (2.92)

However, for non-isotropic media it may not be possible to choose the eigenvectors εk of the
dynamical matrix in this way.

However, this does not tell us anything about the allowed values of k. To continue, we again
demand periodic boundary conditions (Born-von-Kármán), now in terms of periodic repetitions
of the basis vectors of the Bravais lattice

u(R+Niai) = u(R) , (2.93)

which simply means that the lattice is periodically continued after Ni repetitions of the basis
vector ai . The total number of lattice nodes is then given by

N = N1N2N3 . (2.94)

In particular, we can view the body spanned by

N1a1 +N2a2 +N3a3 (2.95)

as an elementary cell of an actually infinitely large lattice: Periodically repeating this elementary
cell (which contains N lattice points) covers the full space. The basis vectors of the Bravais
lattice can then be chosen as

a′
i = Niai . (2.96)

Then, when bi denote the basis vectors of the reciprocal lattice, the b′i are related to these via

b′i =
1

Ni

bi . (2.97)

We can therefore write

k =
∑
i

kib
′
i =

∑
i

ki
Ni

bi . (2.98)
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Normal modes in Bravais lattices with basis

The inversion symmetry used before in the dynamical matrix may not be respected when one
has media with a basis. Therefore, one can in these systems not expect the dispersion relations
for all modes to vanish linearly as ka goes to zero. In addition, so-called optical modes may
arise, and the normal mode frequencies of these optical modes remain finite as k is small. This
is simplest to illustrate with a closed chain made from a di-atomic basis in 1D. Let us denote
the generalized coordinates of species A by qi and that of species B by ui. Then, the potential
can be written as

U = K
1

2

∑
i

(qi − ui)2 +G
1

2

∑
i

(ui − qi+1)2 , qN+1 = q1 . (2.99)

Here, the basis is modeled by introducing an alternating spring constant K and G. Now, the
dispersion relation can be derived exactly from either direct diagonalization of the full Lagrange
function or using the equations of motion

mün = −K(un − qn)−G(un − qn+1) ,

mq̈n = −K(qn − un)−G(qn − un−1) . (2.100)

We again seek for a wave solution

un = Ae+i(nka−ωt) , qn = Be+i(nka−ωt) . (2.101)

Inserting this ansatz into the equations of motion and dividing by the exponentials, we get the
two coupled equations

(mω2 −K −G)A+ (K + e+ikaG)B = 0 , (K + e−ikaG)A+ (mω2 −K −G)B = 0 .
(2.102)

For that to have a non-trivial solution with non-vanishing A and B, the coefficient matrix
determinant has to vanish

0 = (mω2 −K −G)2 − (K + e+ikaG)(K + e−ikaG)

= (mω2 − (K +G))2 − (K2 +G2 + 2KG cos(ka)) . (2.103)

Solving for the frequency now tells us that there are two positive branches of the dispersion
relation

ω±(k) =

√
K +G

m
±
√
K2

m2
+
G2

m2
+ 2

KG

m2
cos(ka) . (2.104)

The same periodicity argument holds, and we can constrain −π < ka < +π, and we see that
for small ka the modes behave differently

ω−(0) = 0 , ω+(0) =

√
2(K +G)

m
. (2.105)

The branch that goes to zero for small k is the usual acoustic branch (dispersion relations
like ω(k) = ck are typical for sound waves). The other branch is called optical branch, as it
typically interacts with light much stronger. Alternatively, we can calculate the normal mode
frequencies by direct computation, see Fig. 2.4.

This qualitative picture also works in more complicated lattices, see also Fig. 2.5.
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Figure 2.4: Plot of acoustic (black) and opti-
cal (red) dispersion relations for a 1d di-atomic
chain (2.104) in the first Brillouin zone. The
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3 acoustic branches
3p-3 optical branches Figure 2.5: Sketch of the 3 acoustic dispersion

relations (black) and the 3p−3 optical branches
(red, here for p = 2). Whereas acoustic modes
scale linearly at the center of the Brillouin zone,
the frequency of the optical branches has a finite
value at k = 0.

Box 6 (Phonon mode classification) For a 3d lattice with M nodes and p atoms per lattice
node (and a total number of atoms N = Mp), one can classify the 3N = 3Mp vibrational modes
into 3p branches. Of these, three are acoustic branches and 3p−3 are optical branches. For each
branch, the frequencies ω(k) are functions of k, and the three acoustic branches scale linearly
in k at the center of the Brillouin zone.

2.4.4 Quantization of lattice vibrations

Eventually, we perform the quantization by introducing position and momentum operators via
the correspondence principle leading to the Hamilton operator

H =
1

2

f∑
i=1

P̂ 2
i +

1

2

f∑
i=1

ω2
i Q̂

2
i . (2.106)

Here, the operators have to obey the canonical commutation relations[
Q̂k, P̂j

]
= i~δkj . (2.107)

As known from single-oscillator treatments in quantum mechanics, we can now introduce raising
and lowering operators for every mode (we drop the operator hats)

aj =

√
ωj
2~
Qj +

i√
2~ωj

Pj , a†j =

√
ωj
2~
Qj −

i√
2~ωj

Pj , (2.108)



32 CHAPTER 2. PHONONS

and the commutation relations become

[aj, a
†
k] = δjk . (2.109)

In terms of these operators, the Hamiltonian becomes

H =

f∑
i=1

~ωi
[
a†iai +

1

2

]
, (2.110)

and since for each oscillator we can define the usual Fock 8 eigenstates

a†iai |ni〉 = ni |ni〉 , |ni〉 =
(a†i )

ni

√
ni!
|0〉i , (2.111)

upon which the ladder operators act as

ai |ni〉 =
√
ni |ni − 1〉 , a†i |ni〉 =

√
ni + 1 |ni + 1〉 , (2.112)

we obtain by the tensor product

|n1, . . . , nf〉 = |n1〉 ⊗ . . .⊗ |nf〉 (2.113)

the eigenstates of the total decoupled system

H |n1, . . . , nf〉 =

[
f∑
i=1

~ωi
(
ni +

1

2

)]
|n1, . . . , nf〉 . (2.114)

Since we have introduced the common classification into optical and acoustic branches, it
is customary to specify the index of normal mode i in the Hamiltonian as i = (σ,k), such that

H =
∑
σ

∑
k

~ωσ(k)

[
a†
σk
a
σk +

1

2

]
, (2.115)

Here, σ labels the branch of the dispersion relation (e.g. σ = 1, 2, 3 for the acoustic modes)
and k denotes the point in the Brillouin zone that labels the normal mode.

2.4.5 Specific Heat: Classical Treatment/Dulong-Petit

The thermal behaviour of solids strongly depends on the presence of phonons. In this section
(compare also Ref. [4]), we will denote the internal energy of the solid by U and the total particle
number by N . Dividing by the macroscopic volume V , we can introduce the corresponding
internal energy density and particle density

u =
U

V
, n =

N

V
. (2.116)

According to statistical mechanics, we can compute the internal energy by integrating over
the Hamilton function with a Boltzmann weight function

U =

∫
He−βHdΓ∫
e−βHdΓ

, β =
1

kBT
, dΓ =

∏
R

d3u(R)d3p(R) . (2.117)

8Wladimir Alexandrowitsch Fock (1898–1974) was a soviet theoretical physicist.
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Here, H is the total Hamilton function of the system, R denotes all N lattice nodes, u(R)
denotes the displacement at position R, p the momentum of the ion at position R, T is the
temperature, and kB the Boltzmann constant (often, one works in units where it is set to 1).
We integrate over all displacements and momenta and thereby calculate the average energy. It
is a standard trick to represent such average integrals by a derivative of the logarithm

U = −∂β ln

∫
e−βHdΓ , (2.118)

which can be verified by performing the derivative with respect to β.
Now, provided that the harmonic approximation holds, the Hamilton function is a quadratic

function of positions and momenta, compare Eq. (2.47), and we can transform the variables

u(R) = β−1/2ū(R) , p(R) = β−1/2p̄(R) ,

d3u(R) = β−3/2d3ū(R) , d3p(R) = β−3/2d3p̄(R) . (2.119)

For example, for a Hamilton function of the form

H({p(R),u(R)}) =
∑
R

p2(R)

2M
+ U eq +

1

2

∑
R,R′

uT (R)D(R−R′)u(R′) (2.120)

with constant minimum potential energy U eq and dynamical matrix D(R−R′) we see that the

temperature dependence of the integral for the internal energy is mapped into a simple factor∫
e−βHdΓ = e−βU

eq

β−3N

∫
dΓ̄ exp {−[H(p̄(R), ū(R))− U eq]} = e−βU

eq

β−3NI0 ,

dΓ̄ =
∏
R

d3ū(R)d3p̄(R) . (2.121)

Here, N is the total number of ions in the crystal (we consider no basis for the moment).
The remaining integral I0 is in principle of Gaussian type and can be calculated, but its value
is not at all interesting for the internal energy: Due to the additivity of the ln function and
the derivative with respect to β, the only important observation is that under the harmonic
approximation, the convergent integral I0 does not depend on β. We get for the internal energy

U = −∂β [−βU eq − 3N ln β + ln I0] = U eq +
3N

β
. (2.122)

Dividing by the volume, this means that the energy density scales linearly with the particle
density

u = ueq + 3nkBT , (2.123)

which is known as the law of Dulong 9-Petit 10. At zero temperature we only have the
energy resulting from the static lattice theory (which can be gauged to zero), which ignores
the zero-point motion. At finite temperature, this is corrected additively, by the simple 3nkBT
term, which means that all degrees of freedom are equally contributing to the total internal
energy.

Since the correction term for finite temperatures is the one that can be measured, one often
considers instead the specific heat (capacity)

cV =

(
∂u

∂T

)
V

= 3nkB . (2.124)

9Pierre Louis Dulong (1785–1838) was a french scientist.
10Alexis Thérśe Petit (1791–1820) was a french physicist.
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When cross-checking this law with experiments, one sees that it does not match at low tem-
peratures, where the derivation neglected the zero-point motion which would have required a
full quantum treatment. However, also at high temperatures it does not fit very well: Here,
the displacements are often so large that the harmonic approximation is not well fulfilled.

2.4.6 Specific heat: Quantum treatment

We first calculate the mean energy of a single quantum harmonic oscillator of frequency ω. The
Hamiltonian reads

H = ~ω(a†a+ 1/2) . (2.125)

Z = Tr
{
e−βH

}
=
∞∑
n=0

〈n| e−βH |n〉 = e−β~ω/2
∞∑
n=0

e−β~ωn =
e−β~ω/2

1− e−β~ω
. (2.126)

Similar to the classical case, we can calculate the mean energy by performing a derivative of
the log of the partition function

U = Tr

{
H
e−βH

Z

}
= −∂β lnZ = −∂β

[
−β~ω/2− ln[1− e−β~ω]

]
=

~ω
2

+
~ωe−β~ω

1− e−β~ω
=

~ω
2

+
~ω

e+β~ω − 1
. (2.127)

The first term simply yields the zero-point energy, and the second term increases monotonously
with temperature, in particular we have

lim
T→0

U =
~ω
2
, lim

T→∞
U =

~ω
2

+ kBT . (2.128)

Now, we reconsider the full phonon Hamilton operator (2.115)

H =
∑
σ

∑
k

~ωσ(k)

[
a†
σk
a
σk +

1

2

]
=

f∑
i=1

~ωi
[
a†iai +

1

2

]
, (2.129)

which decouples between different modes k and different dispersion relation branches σ that
altogether generate the f degrees of freedom. The total energy can be written as

U = −∂β lnZ , (2.130)

where – since in the normal mode decomposition the modes do not interact – we can write the
total partition function as a product of the individual partition functions

Z = Tr
{
e−βH

}
=
∑
n
〈n| e−βH |n〉 =

∞∑
n1,...,nf=0

〈n1, . . . , nf | e−β
∑
i ~ωi[a

†
iai+1/2] |n1, . . . , nf〉

=

f∏
i=1

∞∑
ni=0

〈ni| e−β~ωi[ni+1/2] |ni〉 =

f∏
i=1

Zi . (2.131)

Accordingly, we get as expected that the internal energy is computed from the sum of the
internal energies of the individual oscillators

U = −∂β
f∑
i=1

lnZi =
∑
i

[
~ωi
2

+
~ωi

e+β~ωi − 1

]
=
∑
σ

∑
k

[
~ωσ(k)

2
+

~ωσ(k)

e+β~ωσ(k) − 1

]
. (2.132)
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Here, the zero-point motion contribution does not depend on temperature. Likewise, we have
neglected the constant potential energy term U eq. Now, it makes sense to divide by volume
and calculate the specific heat, where the zero-point motion drops out

cV =
1

V

∑
σ

∑
k

∂

∂T

~ωσ(k)

e+β~ωσ(k) − 1
. (2.133)

Given the dispersion relations for all branches, we can therefore in principle calculate the specific
heat for the phonons. For example, comparing with the dispersion relations for the diatomic
chain in Eq. (2.104), we can directly evaluate the continuum limit by converting the sum over
k to a one-dimensional integral. To do so, we just need to know how much volume of the
Brillouin zone is used per k point. Given that the volume of the primitive elementary cell (e.g.
the Wigner-Seitz cell) is trivially related to the macroscopic crystal volume V and the number
of atoms N via

Vec =
V

N
(2.134)

and that the volume of the primitive reciprocal lattice cell is – compare Eq. (1.11) – given by

Vrec =
(2π)3

Vec

= N
(2π)3

V
, (2.135)

we get – as we have N different k values in the 1. Brillouin zone – for the volume element in
the reciprocal lattice per k vector

d3k =
(2π)3

V
. (2.136)

With this, we can for sufficiently large N convert sums of smooth function f(k) to integrals
over these functions via the recipe∑

k

f(k)→ V

(2π)3

∫
1.BZ

f(k)d3k . (2.137)

Applied to Eq. (2.133), we get

cV =
∑
σ

∫
1.BZ

∂

∂T

~ωσ(k)

e+β~ωσ(k) − 1

d3k

(2π)3
. (2.138)

From this expression, we directly see that the dependence on the volume drops out, such that
cV only depends on the type of the material but not on the size.

In 1d, we have to use the replacement
∑

k → V
∫

1.BZ
dk
2π

. Revisiting our example for the
1d diatomic chain, we generate Fig. 2.6. There, one can see that for different values of spring
constant G, the low temperature is linear in T and also the high-temperature behaviour of the
specific heat for the phonons is essentially the same. Below, we will discuss why.

The high-temperature limit

To evaluate the high-temperature limit, we consider

1

ex − 1
=

1

x+ 1
2
x2 + 1

6
x3 + . . .

=
1

x

[
1− x

2
+O{x2}

]
(2.139)
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Figure 2.6: Plot of the specific heat versus tem-
perature for the 1D diatomic chain with dis-
persion relations (2.104). At low temperatures,
where only the acoustic mode contributes, all
curves are linear in T . The curves also converge
to the law of Dulong-Petit cV → 2kB (we have
2N degrees of freedom) for large temperatures.
With increasing G, the optical mode is lifted
higher, such that it can only be occupied for
larger temperatures.
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for small

x = β~ωσ(k) =
~ωσ(k)

kBT
, (2.140)

which can be reached with high temperatures or small frequencies ωσ(k). By keeping only the
leading order term, we get for the specific heat

cV =
1

V

∑
σ

∑
k

∂

∂T
~ωσ(k)

kBT

~ωσ(k)
= 3

N

V
kB = 3nkB , (2.141)

which is just the result of Dulong-Petit. However, we mention that typically at high temper-
atures, the anharmonic corrections (not considered here) are likely larger than the quantum
corrections (higher orders in x) to this result.

The low-temperature limit

We first use that for sufficiently large crystals, the allowed values in the first Brillouin zone
become dense, and we can replace the summation over k by an integral over the first Brillouin
zone, such that the specific heat becomes

cV =
∑
σ

∫
1.BZ

d3k

(2π)3

∂

∂T

~ωσ(k)

e+β~ωσ(k) − 1
. (2.142)

Second, we see that when β~ωσ(k) � 1, the integrand will be exponentially suppressed, such
that at low temperatures, only modes with vanishingly small frequencies have the chance to
contribute. These are only the acoustic modes. Third, we can for simplicity linearize the
dispersion relation of the acoustic modes over the full Brillouin zone (the higher frequencies are
hardly populated anyway), and for the same reason extend the integral over the full k space.
Then, we can write with ωσ = cσ(ek)k with sound velocity cσ(ek) for branch σ

cV ≈
∑
σ:ac

∫
d3k

(2π)3

∂

∂T

~cσ(ek)k

e+β~cσ(ek)k − 1
. (2.143)

Now, it is just a matter of calculating the resulting integral. Going to spherical coordinates
d3k = k2dkdΩ and introducing the variable

β~cσ(ek)k = x (2.144)
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as well as the average sound velocity of all three acoustic modes

1

c3
≡ 1

3

∑
σ:ac

dΩ

4π

1

c3
σ(ek)

, (2.145)

we can write the specific heat as

cV =
∂

∂T

∑
σ:ac

∫
k2dkdΩ

(2π)3

1

β

x

ex − 1
=

∂

∂T

∑
σ:ac

∫
x2dxdΩ

(2π)3

1

β(β~cσ(ek))3

x

ex − 1

=
∂

∂T

3

2π2

(kBT )4

(~c)3

∫ ∞
0

x3

ex − 1
dx =

∂

∂T

3

2π2

(kBT )4

(~c)3

π4

15
=

2π2

5
kB

(
kBT

~c

)3

. (2.146)

This T 3 relation has been experimentally verified for many materials – the average velocity
of sound c was then determined from the elastic parameters. In 1d, a very similar discussion
shows that for low temperatures, the specific heat must scale linearly in T as visible in Fig. 2.6.

Finally, we mention that the failure of the Dulong-Petit model for low temperatures was
quite similar to the inability of classical approaches to explain blackbody radiation. In fact,
the differences are small: First, whereas for phonons one has 3p modes for every k and corre-
spondingly 3p complicated dispersion relations ωσ(k), one has for photons for a given k only
the two transversal polarizations each with the dispersion relation ω = ck (with light velocity
c). Second, for phonons the k is confined to the first Brillouin zone, whereas for photons k is
arbitrary. Correspondingly, the equations for the thermal energy density are

upn =
∑
σ

∫
1.BZ

d3k

(2π)3

~ωσ(k)

eβ~ωσ(k) − 1
, upt = 2

∫
d3k

(2π)3

~ck
eβ~ck − 1

. (2.147)

2.4.7 Density of normal modes

We have seen that for large crystals, the energy density of normal modes is so large that sums
can often be conveniently converted into integrals

I =
1

V

∑
σ

∑
k

Q(ωσ(k)) =
∑
σ

∫
1.BZ

d3k

(2π)3
Q(ωσ(k)) . (2.148)

For many problems, it is however more convenient to represent the integral over d3k as a
one-dimensional integral over the energies of the normal modes, leading to

I =

∫ ∞
0

ν(ω)Q(ω)dω . (2.149)

Comparing these expressions, we see that the density of states must be given by

ν(ω) =
∑
σ

∫
1.BZ

d3k

(2π)3
δ(ω − ωσ(k)) . (2.150)

While this is an exact formal definition, it does not help much when one is given a dispersion
relation ωσ(k) but would like to have a continuous version of the density of states. Since we
are now considering higher dimensions, the procedure is not as straightforward as in Eq. (2.73).
We can use a property of the δ-function∫

Rd
f(x)δ(g(x))ddx =

∫
g−1(0)

f(x)

|∇g(x)|
dσ(x) . (2.151)

Here, f(x) and g(x) are functions Rd → R, and dσ(x) denotes a surface integral over the
d-dimensional surface defined by g−1(0). Applying this to the density of states, we obtain a
representation in terms of a surface integral
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Box 7 (density of states) The density of states in d dimensions can be computed via

ν(ω) =
∑
σ

1

(2π)d

∫
1.BZ

ddkδ(ω − ωσ(k)) =
∑
σ

1

(2π)d

∫
Sσ

1∣∣∇kωσ(k)
∣∣dS , (2.152)

where Sσ denotes the surface defined by ω = ωσ(k).

As a sanity check, we reconsider the 1d dispersion relation

ω(k) =

√
2K

m
[1− cos(ka)] , (2.153)

for which we have calculated already the density of states (2.73). The surface defined by
ω = ω(k) then simply defines two points of k, and up to a factor of a (which roots in our
definition) we recover Eq. (2.73)

ν(ω) =
2

πa

1√
4K
m
− ω2

. (2.154)

In general, we see that for a bounded periodic function, we will expect the derivative to vanish
at some points, which may lead to divergencies of the density of states. For our 1d example,
such a singularity is actually observed in Fig. 2.2. In this context, they are called van-Hove 11

singularities, they were first discussed within the context of phonons [5], but they occur in
a much wider context. Recently, they are still under debate as excited state quantum phase
transitions.

2.5 Remarks on the Theory of Elasticity

Following Ref. [4], we can write the harmonic potential as

U = +
1

2

∑
R,R′

uT (R)D(R−R′)u(R′) = −1

4

∑
R,R′

[
uT (R′)− uT (R)

]
D(R−R′) [u(R′)− u(R)] .

(2.155)

Here, the equality follows from the symmetry properties (2.78) of the dynamical matrix D.

Now, within the theory of elasticity, one does not define the displacement only at discrete
lattice nodes but at all continuous positions, which we denote by the symbol u(r). Now, for
any reasonable theory, the dynamical matrix D(R−R′) varies only over a finite range, it must

decay to zero for large distances. If the displacement vector field u(R) varies little over this
range (long wavelength expansion), it is permissible to use a tailor series expansion

u(R′) = u(R) + [(R′ −R) · ∇]u(r)
∣∣∣
r=R

+ . . . , (2.156)

or in components

uµ(R′) = uµ(R) +
∑
σ

(R′σ −Rσ)∂σuµ(R) + . . . (2.157)

11Léon Charles Prudent Van Hove (1924–1990) was a belgian theoretical physicist.
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Here, we have used the short-hand notation ∂σ = ∂
∂xσ

. Inserting this in the harmonic potential
energy, we get

U = −1

4

∑
µνστ

∑
R,R′

[(R′σ −Rσ)∂σuµ(R)]Dµν(R−R′) [(R′τ −Rτ )∂τuν(R)]

=
1

2

∑
R

∑
µνστ

[∂σuµ(R)][∂τuν(R)]Eσµτν , (2.158)

where Eσµτν is a fourth rank tensor that contains the elastic properties of the material

Eσµτν = −1

2

∑
R′

(R′σ −Rσ)Dµν(R−R′)(R′τ −Rτ ) = −1

2

∑
R′

(Rσ −R′σ)Dµν(R−R′)(Rτ −R′τ )

= −1

2

∑
R

RσDµν(R)Rτ . (2.159)

Since the u(r) are varying slowly, we can write the remaining summation as an integral

U =
1

2

∑
στµν

∫
d3r[∂σuµ(r)][∂τuν(r)]Ēσµτν , Ēσµτν =

Eσµτν
Vec

, (2.160)

where Vec is the volume of the primitive elementary cell. The rank 4 tensor Eσµτν contains all
the elastic moduli.

Further, demanding that the potential energy is invariant with respect to infinitesimal rota-
tions, one finds that the derivatives entering the energy can only enter in a certain symmetric
combination

εσµ =
1

2
[∂σuµ + ∂µuσ] , (2.161)

commonly known as strain tensor (Verzerrungstensor). Accordingly, the potential energy
can also be written in terms of the strain tensor U = 1

2

∑
στµν

∫
d3rεσµετνλσµτν , where from

symmetry considerations one can show that the rank 4 tensor λσµτν contains in general 21
independent elastic parameters. This number can be further reduced when a specific crystal
system is considered (obeying particular point symmetries). Also representing the kinetic term
as an integral (using a constant mass density)

T = ρ

∫
d3r

1

2
u̇T u̇ , (2.162)

one can construct the Lagrange function and via Hamilton’s principle derive the equations of
motion. These assume the form of wave equations for sound waves, see Refs. [1, 6].
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Chapter 3

Electrons

According to the Born-Oppenheimer approximation, we first need to solve the electronic Schrödinger
equation for obtaining the effective potential for the ions. In the previous chapter, we have
simply assumed this problem as solved and used effective descriptions. Now, we are going to
make up for this. We start with neglecting the inter-electronic interaction [3].

3.1 Non-interacting electrons in periodic potentials

When the electrons do not interact, we may as well solve the single-particle Schrödinger equation
with an effective background potential (according to the Born-Oppenheimer approximation, this
would be the potential generated by the ions)

HΨ(r) =

{
− ~2

2m
∇2 + V (r)

}
Ψ(r) = εΨ(r) . (3.1)

Here, m is the electron mass and V (r) is the potential felt by the electrons. In particular, we
assume that it has the periodicity of the Bravais lattice

V (r +R) = V (r) (3.2)

for all lattice vectors R. It is known that for periodically driven ordinary differential equations,
Floquet’s theorem applies. For periodic potentials, there exists an analogous theorem: The
Bloch 1 theorem.

Box 8 (Bloch theorem) The eigenfunctions of the single-electron Schrödinger equation (3.1)
with periodic potential (3.2) can be written as

Ψ
nk(r) = e+ikru

nk(r) , u
nk(r +R) = u

nk(r) . (3.3)

Here, n is called band index and k is the wave vector. For the eigenfunctions of H,
this means that although they are not periodic, they only acquire a trivial phase factor when
translated by a lattice vector

Ψ
nk(r +R) = e+ikRΨ

nk(r) . (3.4)

1Felix Bloch (1905–1983) was an austrian-swiss physicist who earned the Nobel prize for his contributions
to nuclear spin resonance spectroscopy.

41



42 CHAPTER 3. ELECTRONS

This is actually an alternative statement of Bloch’s theorem. Clearly, the probability density of
finding the electron at position r is therefore fully periodic over the lattice, as the phase factor
cancels ∣∣Ψ

nk(r +R)
∣∣2 =

∣∣Ψ
nk(r)

∣∣2 . (3.5)

Proof of Bloch’s theorem

One proof goes as follows: The translation operator for a Bravais lattice vector R acts on an
arbitrary function f(r) as

TRf(r) ≡ f(r +R) . (3.6)

It must commute with the systems Hamiltonian: As the system Hamiltonian is periodic, one
has for any function Ψ(r) the identity

TRH(r)Ψ(r) = H(r +R)Ψ(r +R) = H(r)Ψ(r +R) = H(r)TRΨ(r) , (3.7)

which can only be true if

TRH(r) = H(r)TR . (3.8)

Furthermore, two different translation operators must also commute

TRTR′ = TR′TR . (3.9)

Thus, the operators H and TR are a mutually commuting set of operators whenever R is a
Bravais lattice vector. Such operators have a common set of eigenfunctions

HΨ(r) = εΨ(r) , TRΨ(r) = c(R)Ψ(r) , (3.10)

with energy eigenvalues ε and eigenvalues of the translation operators c(R). In general, eigen-
functions and eigenvalues will depend on some generalized quantum number, which we have
omitted for brevity. From the properties of the translation operator it further follows that its
eigenvalues must satisfy

c(R+R′) = c(R)c(R′) , (3.11)

which is only satisfied by the exponential function. Without loss of generality we can write the
eigenvalues of translations by the basis vectors of the Bravais lattice as

c(ai) = e+2πixi (3.12)

with suitably chosen xi (for now, we can interpret them as complex numbers). Since by con-
struction

R =
∑
i

niai , (3.13)

it follows that the eigenvalues of general Bravais lattice translations must obey

c(R) = cn1(a1)cn2(a2)cn3(a3) = e2πix1n1+2πix2n2+2πix3n3 = ei[x1b1+x2b2+x3b3][n1a1+n2a2+n3a3]

= eikR , with k = x1b1 + x2b2 + x3b3 . (3.14)

Here, we have used the relation for the basis vectors of the reciprocal lattice aibj = 2πδij.
Consequently, we have

TRΨ(r) = Ψ(r +R) = c(R)Ψ(r) = e+ikRΨ(r) , (3.15)

which concludes the proof.
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Remarks on the electronic wave vector

So far, the wave vector k in our discussion was quite arbitrary, but we can imagine that the
same restrictions as for the phonons must apply. Let us assume that we consider a crystal of
N = N1N2N3 atoms where Ni � 1. By imposing periodic boundary conditions on the wave
function

Ψ(r +Niai) = Ψ(r) (3.16)

one can show that the wave vector k can only assume discrete and real values. First, we note
that the above periodicity assumption (also called Born-von-Kármán boundary conditions here)
does not render general phase factors in the Bloch theorem to one, since we only demand it
to equal the identity for three different lattice vectors of the Bravais lattice. The periodicity
assumption yields the conditions

eiNikai = 1 , i ∈ {1, 2, 3} , (3.17)

which implies for k = x1b1 + x2b2 + x3b3 that

xi =
mi

Ni

, mi ∈ Z . (3.18)

This shows that the wave vector k must be real and that it can only assume discrete values.
For example, it would suffice to consider 1 ≤ mi ≤ Ni as the other values do not yield any new
physics. It is conventional to choose the allowed values of mi such that the wave vector lies in
the first Brillouin zone as we did with the phonons. Now, we see that by increasing the number
of atoms Ni, the allowed k values get closer and closer as e.g. visible for the phonon example
in Fig. 2.4, such that the same recipe as Eq. (2.137) applies.

Solutions to Schrödingers equation

In our formulation of the Bloch theorem, we have already used that one will in general have
multiple solutions n for each k. As the k becomes continuous, these become bands, and
accordingly n is called band index. Using the Bloch theorem in the Schrödinger equation

He+ikru
nk(r) =

[
− ~2

2m
∇2 + V (r)

]
e+ikru

nk(r)

= e+ikr
[
− ~2

2m
∇2 − 2

~2

2m
ik∇+

~2

2m
k2 + V (r)

]
u
nk(r)

= e+ikr
[
+

~2

2m
(−i∇+ k)2 + V (r)

]
u
nk(r) , (3.19)

we get an equation for the periodic function u
nk(r) only[

+
~2

2m
(−i∇+ k)2 + V (r)

]
u
nk(r) = En(k)u

nk(r) . (3.20)

Since according to Bloch’s theorem u
nk(r) must be periodic, we can solve this by constraining

ourselves to an arbitrary elementary cell. Since it is a hermitian eigenvalue problem constrained
to a finite volume, we will accordingly for each k get an infinite number of discrete eigenvalues
En(k). Accordingly, the eigenvalues are discretely spaced in n and continuous in k. In partic-
ular, one can choose the En(k) to have the periodicity of the reciprocal lattice, and they are
then denoted as the electronic band structure of the solid.
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For an arbitrary k vector, we can normalize the solutions over the volume of a primitive
elementary cell

1

Vec

∫
ec

d3ru∗
nk(r)u

mk(r) = δnm . (3.21)

Furthermore, we note that the completeness relation∑
n

u∗
nk(r)u

nk(r′) = Vecδ(r − r′) (3.22)

has to hold. Then, we find that the full Bloch functions

Ψ
nk(r) =

1√
V
e+ikru

nk(r) , (3.23)

where V denotes the macroscopic volume of the crystal, are also orthonormal∫
V

d3rΨ∗
nk(r)Ψmq(r) =

1

V

∫
d3re−ikru∗

nk(r)e+iqrumq(r)

=
1

V

∑
R

∫
ec(R)

d3re−ik(R+r)u∗
nk(R+ r)e+iq(R+r)umq(R+ r)

=
1

Vec

 1

N

∑
R

e+i(q−k)R

∫
ec(R)

d3rei(q−k)ru∗
nk(r)umq(r)

= δk,q
1

Vec

∫
ec(R)

d3ru∗
nk(r)umq(r) = δk,qδnm . (3.24)

This simply means that the eigenfunctions and eigenvalues for single (non-interacting) electrons
in a periodic potential can be classified by the two quantum numbers n and k, and by solving
Eq. (3.20) we can obtain an orthonormal set of solutions for the full Schrödinger equation.

But how can one solve the periodic Schrödinger equation in general? Since we can presup-
pose that the u

nk are periodic functions, we can use the Fourier decomposition of both the
periodic potential and the u

nk

V (r) =
∑
G

VGe
+iGr , VG =

1

Vec

∫
Vec

V (r)e−iGrd3r ,

u
nk(r) =

∑
G

unkG e+iGr , unkG =
1

Vec

∫
Vec

u
nk(r)e−iGrd3r . (3.25)

Here,G runs over all nodes of the reciprocal lattice and VG as well as unkG are the corresponding

Fourier coefficients. Inserting these decompositions into Eq. (3.20) we get

En(k)u
nk(r) =

∑
G

e+iGrEn(k)unkG

=

+
~2

2m
(−i∇+ k)2 +

∑
G′

VG′e+iG′r

∑
G

unkG e+iGr

=
∑
G

e+iGr

+
~2

2m
(G+ k)2 unkG +

∑
G′

VG′unkG−G′

 . (3.26)
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This leads to an algebraic eigenvalue problem for the unknown functions unkG+
~2

2m
(G+ k)2 unkG − En(k)unkG +

∑
K

VG−KunkK

 = 0 , (3.27)

which in principle couples all Fourier coefficients that are connected by a reciprocal lattice
vector. In principle, this could be an all-to-all coupling, but one has the hope that the Fourier
coefficients of the potential VG−K will be small when |G−K| is large. Now, we recall the
dispersion relation for free nonrelativistic electrons

E(0)(k) =
~2k2

2m
, (3.28)

such that we can write

unkG = −
∑
K

VG−K
E(0)(G+ k)− En(k)

unkK . (3.29)

This expression is still exact.

Perturbation theory

For more clarity we write in the following

u
nk(G) = −

∑
K

V (G−K)

E(0)(G+ k)− En(k)
u
nk(K) . (3.30)

We can perform a perturbative treatment by using the free expressions in the r.h.s. of the
above equation. Since it is already of order V , the correction we neglect with this is of even
higher order in the potential V . The free solutions are plane waves which do not depend on
the band index n

E(0)
n (k) = E(0)(k) =

~2k2

2m
, u

(0)

nk
= δK ,0

. (3.31)

The second condition would imply that u
nk = 1 as one would expect for plane waves. Inserting

the free solution on the r.h.s., we get the first order correction on the l.h.s., i.e.,

u
(1)

nk
(G) = − V (G)

E(0)(G+ k)− E(0)(k)
. (3.32)

This yields the first correction to the plane wave ansatz, but the perturbation theory fails
when

(G+ k)2 = k2 . (3.33)

This condition is identical to what we had for Bragg reflection in Eq. (1.27). This means that
as far as we are far from the Bragg reflection points, we can use this naive perturbation theory.
However, when we are close to the Bragg reflections, we need to be more careful.

In the delicate case, we rewrite the exact equation without any denominator[
E(0)(G+ k)− En(k)

]
u
nk(G) +

∑
K

V (G−K)u
nk(K) = 0 . (3.34)
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Now, when one gets close to a Bragg point, e.g. k = −G/2, the Fourier components for
u
nk(K = 0) and for u

nk(K = G) are most important, as they diverge to lowest order. We
therefore only keep these in the sum, neglecting the coupling of the potential to other modes.
This yields [

E(0)(G+ k)− En(k)
]
u
nk(G) + V (G)u

nk(0) + V (0)u
nk(G) = 0 . (3.35)

When we consider the same equation at G = 0, we get[
E(0)(k)− En(k)

]
u
nk(0) + V (0−G)u

nk(G) + V (0− 0)u
nk(0) = 0 . (3.36)

We can always shift the periodic potential by a constant, such that V (0) = 0. Accordingly, we
get the coupled two by two system[

E(0)(G+ k)− En(k)
]
u
nk(G) + V (G)u

nk(0) = 0 ,

V (−G)u
nk(G) +

[
E(0)(k)− En(k)

]
u
nk(0) = 0 . (3.37)

To get a nontrivial solution, the coefficient matrix determinant must vanish[
E(0)(G+ k)− En(k)

] [
E(0)(k)− En(k)

]
− V (−G)V (+G) = 0 . (3.38)

Now, inserting that at the Bragg reflection point we have (G + k)2 = k2, we can solve the
above condition for the true energy at a Bragg reflection point

En(k) =
~2k2

2m
±
√
V (+G)V (−G) =

k2

2m
± |V (G)| , (3.39)

where we have used V (−G) = V ∗(+G). This tells us that at the Bragg reflection points, the
energy bands will split up! When we are not exactly at the Bragg reflection point, we have to
solve Eq. (3.38) for En(k) to get an approximate dispersion relation. Note however, as we have
considered only the closest K modes, this yields only the splitting at the first avoided crossing.
To get the full spectrum, all Fourier components need to be involved.

Things become really complicated in higher dimensions, so we will consider only a one-
dimensional example here. Think e.g. of considering the full problem only along a preferred
direction. In 1d, the reciprocal lattice vector runs over

G ∈ {0,±2π

a
,±4π

a
, . . .} (3.40)

and the Bragg reflection condition is given by k = −G/2 ∈ {0,±π
a
,±2π

a
, . . .}. Correspondingly,

the reflection condition is fulfilled when k = nπ
a

with n ∈ Z. At these points, free dispersion

relations E
(0)
n (k) and E

(0)
n (k +G) cross. However, at the Bragg points, the exact eigenvalues

split with leading order splitting value 2|V (G)|, and in the vicinity of the splitting point, we
have the shape of an avoided crossing, see Fig. 3.1.

Example: Full band structure calculation

Clearly, the two-mode approximation fails when we consider also other values of K in the exact
band structure problem (3.34). For illustration, we consider a cosine potential in a 1d problem

V (x) = V0 cos
(

2π
x

a

)
, (3.41)
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Figure 3.1: Plot of the free electronic disper-
sion relations and their displaced copies (dashed
curves) at reciprocal lattice vectors G (verti-
cal dotted lines). Adding a weak periodic po-
tential with just two Fourier components (e.g.
of cos shape) leads to a splitting into energy
bands, where under the two-mode approxima-
tion the exact crossings become avoided ones
(red curves). Parameters V (±G) = 1, m = 1,
Ga = ±2π.

where 2V0 is the depth of the potential and a is the lattice constant. In 1D, the Fourier
coefficients are just given by

VG =
1

a

∫ a

0

V (x)e−iGxdx , G ∈ {0,±2π

a
,±4π

a
, . . .} . (3.42)

We just have two non-vanishing Fourier coefficients

V+1 ≡ V+2π/a =
V0

2
, V−1 ≡ V−2π/a =

V0

2
. (3.43)

This simplifies the summation over K a lot, but nevertheless it remains an infinitely large
coupled system. For clarity, we also introduce some abbreviations for the nth Fourier coefficient
of the umk mode and the free energy dispersion relation

unmk = umk

(
n

2π

a

)
, E(0)

n (k) = E(0)

(
k + n

2π

a

)
. (3.44)

Now, since the potential only has two Fourier components, Eq. (3.34) becomes[
E(0)
n (k)− Em(k)

]
unmk + V−1u

n+1
mk + V+1u

n−1
mk = 0 . (3.45)

For given mk, this defines an infinitely large coupled set of equations, which we will have to
truncate at some point. The coefficient matrix reads

. . . V0/2

V0/2 E
(0)
−1(k)− En(k) V0/2

V0/2 E
(0)
0 (k)− En(k) V0/2

V0/2 E
(0)
+1(k)− En(k) V0/2

V0/2
. . .

 . (3.46)

By setting its determinant to zero we obtain a number of solutions for the electronic energies.
One will have to truncate the matrix dimension and check for convergence. It turns out that
for moderate potential depts V0, it suffices to keep only a few modes. For example, when we
just keep five modes, the dispersion relations are obtained from∣∣∣∣∣∣∣∣∣∣∣


E

(0)
−2(k)− En(k) V0/2

V0/2 E
(0)
−1(k)− En(k) V0/2

V0/2 E
(0)
0 (k)− En(k) V0/2

V0/2 E
(0)
+1(k)− En(k) V0/2

V0/2 E
(0)
+2(k)− En(k)



∣∣∣∣∣∣∣∣∣∣∣
= 0 ,

(3.47)
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which yields five solutions for the energy bands En(k). These form energy bands. The result
is depicted in Fig. 3.2. There, we observe that depending on the value of V0 band gaps will
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Figure 3.2: Plots of the arising band structure in the first Brillouin zone when three modes or
five modes (solid and dashed, identical results) are taken into account, for different potential
depths V0. For weak potential depth (red and orange, left), one separate band (orange box) is
clearly visible. In fact, there is also an avoided crossing at k = 0, but it is at weak potential
depth very small (quasi-continuous). For stronger potential (dark and light green, right), two
bands (marked boxes) are clearly separated from the rest of the spectrum. Above the horizontal
dashed lines, one still has tiny avoided crossings with hardly visible band gaps.

change. In particular, with increasing V0, an increased number of bands will clearly separate
from the rest of the spectrum.

As mentioned, in higher dimensions, things become difficult. As k becomes a vector, the
energy bands become sheets in two dimensions and in three dimensions they become volumes
difficult to visualize. The takehome message is that in analogy to a single potential well, which
may support a finite number of bound states with sharp energies depending on its depth and
width, periodic potentials support bound states only with energies distributed within bands
which with increasing potential depth become more separate.

3.1.1 Kramer theorem

Finally, we would like to comment on the visible symmetry of the dispersion relation which we
calculated so far.

Box 9 (Kramers theorem) The dispersion relations obey

En(k) = En(−k) . (3.48)

More generally, one could even say that

En(Sk) = En(k) , (3.49)

whenever S is a symmetry operation of the underlying lattice.

For now, we just consider the inversion symmetry

SΨnk(r) ≡ Ψnk(−r) . (3.50)
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By construction, it commutes then with the Hamiltonian

SH(r)Ψnk(r) = H(−r)Ψnk(−r) = H(r)SΨnk(r) = En(k)SΨnk(r) . (3.51)

From this we conclude that if Ψnk(r) is an eigenfunction of H(r), then also SΨnk(r) is an

eigenfunction with the same eigenvalue. Further, we have for the translation operator

TRSΨ
nk(r) = TRe

−ikru
nk(−r) = e−ik(r+R)u

nk(−r −R)

= e−ikRe−ikru
nk(−r) = e−ikRSΨ

nk(r) . (3.52)

From this we conclude that SΨ
nk(r) is an eigenstate to the translation operator with eigenvalue

e−ikR. However, we had already used in our proof of Bloch’s theorem, compare Eq. (3.15),

that the corresponding eigenvalue must actually be e+ikR. Therefore, they must be equal
SΨ

n,+k(r) = Ψ
n,−k(r). The symmetry operation for Kramers theorem is just the inversion.

The proof for general point symmetries is analogous.

3.1.2 Tight-binding method with single-atom orbitals

The basic idea of perturbation theory in periodic potentials was fine to observe the qualitative
appearance of energy bands. However, we have started from a perturbation of the free limit,
and in practice we will typically not go beyond a few orders. For typical experimental setups
however, this limit is not realistic. Rather, the potential is strong, and most electrons are tightly
bound to their nuclei. Therefore, the tight-binding method does the perturbation from exactly
the opposite perspective (compare Ref. [3]): The unperturbed problem is the interaction of an
electron with a single atom at position R

HRφn(r −R) =

[
p2

2m
+ V (r −R)

]
φn(r −R) = Enφn(r −R) . (3.53)

Here, r is the position of the electron and R is the position of the atom, V (r − R) is their
(at least in some region attractive) interaction potential, and p is the electronic momentum
operator. So for example, the quantum number n is in general a multi-index with n=̂(ñ, `,m, σ)
with main quantum number ñ, total angular momentum `, z-component of angular momentum
m and spin σ.

The full problem for non-interacting electrons is now given by adding the potentials of the
other atoms

H =
p2

2m
+
∑
R′

V (r −R′) =
p2

2m
+ V (r −R) + ∆H , ∆H =

∑
R′ 6=R

V (r −R′) . (3.54)

Within tight-binding, we assume that the single-atom-single-electron problem (3.53) has been
solved for φn(r − R). Assuming that these functions do hardly overlap, i.e., that they are
localized close to the respective atom R, it follows that∑

R′ 6=R

V (r −R′)φn(r −R) ≈ 0 , (3.55)

and these wave functions are also approximate solutions to the full problem with the same
eigenvalue

Hφn(r −R) ≈ Enφn(r −R) . (3.56)
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We can use them as a basis to construct Bloch functions (N is the number of atoms)

Ψ
nk(r) =

1√
N

∑
R

e+ikRφn(r −R) . (3.57)

By construction, these wave functions exactly obey the Bloch condition

Ψ
nk(r +R) =

1√
N

∑
R′

e+ik(R′ −R+R)φn(r +R−R′) = e+ikR 1√
N

∑
R′′

e+ikR′′
φn(r −R′′)

= e+ikRΨ
nk(r) , (3.58)

and they are also approximate eigenfunctions of the full problem

HΨ
nk(r) =

1√
N

∑
R

− ~2

2m
∇2 + V (r −R) +

∑
R′ 6=R

V (r −R′)

 e+ikRφn(r −R)

≈ 1√
N

∑
R

En(k)e+ikRφn(r −R) = En(k)Ψ
nk(r) . (3.59)

However, the underlying approximation (3.56) can be assumed to hold for the inner electrons
only. Nevertheless, it can be used to obtain a first approximation to the true eigenvalues and
eigenfunctions of the problem. Since the wave functions φn(r −R) are not fully localized to
the respective atom at R, the Bloch functions constructed from them are not orthonormal〈

Ψ
nk|Ψmk

〉
=

1

N

∑
R,R′

eik(R−R′
)

∫
d3rφ∗n(r −R′)φm(r −R)

=
1

N

∑
R,R′

e−ik(R′−R)

∫
d3r′φ∗n(r′ − (R′ −R))φm(r′)

=
1

N

∑
R

∑
R′′

e−ikR′′
∫
d3r′φ∗n(r′ −R′′)φm(r′)

= δnm +
∑
R 6=0

e−ikR
∫
d3rφ∗n(r −R)φm(r)

= δnm +
∑
R 6=0

e−ikRαnm(R) . (3.60)

Here, we have introduced the overlap between wave-functions at the origin and different atoms
as

αnm(R) =

∫
d3rφ∗n(r −R)φm(r) . (3.61)

An estimate for the true eigenvalue εn(k) is then obtained from computing the expectation
value of the Hamiltonian with the (normalized) wave function ansatz

εn(k) ≈ 〈Ψn(k)|H |Ψn(k)〉
〈Ψn(k)|Ψn(k)〉

. (3.62)

The denominator follows from the normalization

〈Ψn(k)|Ψn(k)〉 = 1 +
∑
R 6=0

e−ikRαnn(R) . (3.63)
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However, for the numerator we get

〈Ψn(k)|H |Ψn(k)〉 = En 〈Ψn(k)|Ψn(k)〉

+
1

N

∑
RR′

e+ik(R−R′
)

∫
d3rφ∗n(r −R′)

∑
R′′ 6=R

V (r −R′′)φn(r −R) .

(3.64)

Depending on the configurations ofR,R′, andR′′, the integral may or may not yield significant
contributions.

First, we see that when all positions are different, we have at any point of the integral always
a product of two small terms, and in tight-binding approximation we neglect these terms

R 6= R′ 6= R′′ 6= R :

∫
d3rφ∗n(r −R′)V (r −R′′)φn(r −R) ≈ 0 . (3.65)

Second, we can consider the case R = R′ 6= R′′. For this regime, we define

βn ≡
1

N

∑
R

∫
d3rφ∗n(r −R)

∑
R′′ 6=R

V (r −R′′)φn(r −R) . (3.66)

This is just the expectation value of all background atoms with respect to the wavefunctions
localized at R and corresponds to a constant shift of the energies.

Third, we can choose R′ = R′′ 6= R. Then, we have

1

N

∑
R 6=R′

e+ik(R−R′
)

∫
d3rφ∗n(r −R′)V (r −R′)φn(r −R)

=
∑
R 6=0

e−ikR
∫
d3rφ∗n(r −R)V (r −R)φn(r) ≡

∑
R 6=0

e−ikRλn(R) . (3.67)

This integral does now lead to a nontrivial transformation of all eigenvalues.
Putting these ingredients together, we find the eigenvalues in the tight-binding approxima-

tion.

Box 10 (tight-binding-approximation) Given single-atom electronic functions φn(r) with
single-atom electronic energies En, in tight-binding approximation the full eigenfunction and
its eigenvalue are given by

Ψ
nk(r) ≈

1√
N

∑
R e+ikRφn(r −R)√

1 +
∑
R 6=0

e−ikRαn(R)
, εn(k) ≈ En +

βn +
∑
R 6=0

e−ikRλn(R)

1 +
∑
R 6=0

e−ikRαn(R)
. (3.68)

The auxiliary quantities can be computed from the overlap integrals

αn(R) =

∫
d3rφ∗n(r −R)φn(r) , βn =

∫
d3rφ∗n(r)

∑
R 6=0

V (r −R)φn(r) ,

λn(R) =

∫
d3rφ∗n(r −R)V (r −R)φn(r) . (3.69)

Very often, one additionally restricts the summations over next or next-to-next neighbours,
as the overlap integrals become extremely small for distant neighbours.
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3.1.3 Improvements on the tight-binding method

In the discussion above, we have used the localized single-atom wave functions although they
do not pose an orthogonal basis – except perhaps in the limit where the atoms do not interact.
However, there exists an orthonormal basis based on the Bloch functions. These are called
Wannier 2 states. Given the full exact solutions Ψ

nk(r) with N atoms, the Wannier states
are formally defined by

wn(r −R) =
1√
N

∑
k

e−ikRΨ
nk(r) . (3.70)

Of course, this formula only demonstrates the existence of the Wannier states, and the summa-
tion over k involves all allowed values in the first Brillouin zone. However, from this definition
it follows that they form an orthonormal set∫
d3rw∗n(r −R)wm(r −R′) =

1

N

∑
kk′

eikR−ik′R′
∫
d3rΨ∗

nk(r)Ψ
mk′(r)

=
1

N

∑
kk′

eikR−ik′R′
δnmδkk′ = δnm

1

N

∑
k

eik(R−R′
) = δnmδR,R′ .

(3.71)

Instead of using the local atomic orbitals φn(r −R) in the Bloch functions, we could redo the
derivation with the Wannier functions instead

Ψ
nk(r) =

1√
N

∑
R

e+ikRwn(r −R) . (3.72)

Then, we would have

ε
nk =

〈
Ψ
nk
∣∣H ∣∣Ψ

nk
〉

=
1

N

∑
RR′

e−ik(R−R′
)

∫
d3rw∗n(r −R)

 p2

2m
+
∑
R′′

V (r −R′′)

wn(r −R′)

=
1

N

∑
RR′

e−ik(R−R′
)

∫
d3rw∗n(r − (R−R′))

 p2

2m
+
∑
R′′

V (r − (R′′ −R′))

wn(r)

=

∫
d3rw∗n(r)

 p2

2m
+
∑
R′′

V (r −R′′)

wn(r)

+
1

N

∑
R 6=R′

e−ik(R−R′
)

∫
d3rw∗n(r − (R−R′))

 p2

2m
+
∑
R′′

V (r −R′′)

wn(r) .

(3.73)

In the last line, we have only separated the sum into two contributions R′ = R and R′ 6= R
and simplified the diagonal contribution, which yields N identical terms. In the last term, we
do now again neglect the three-center contributions, i.e., terms where R′′ 6= R −R′ and also

2Gregory Hugh Wannier (1911–1983) was a swiss solid state physicist.
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the kinetic overlap term. Altogether, we do then have for the full energies

ε
nk ≈ Ẽn +

1

N

∑
R 6=0

e−ikRλ̃n(R) ,

Ẽn =

∫
d3rw∗n(r)

 p2

2m
+
∑
R

V (r −R)

wn(r) ,

λ̃n(R) =

∫
d3rw∗n(r −R)V (r −R)wn(r) . (3.74)

Unfortunately, we usually do not know the Wannier functions wn(r −R) as they are defined
to be exact.

Therefore, one often determines their parameters experimentally and starts from represent-
ing the Hamiltonian in the Wannier basis. When |nR〉 denotes the nth Wannier state for an
electron localized at site R, this is formally achieved via

H =
∑

nR,n′R′
〈nR|H |n′R′〉 |nR〉 〈n′R′|

=
∑

nR,n′R′

[∫
w∗n(r −R)Hwn′(r −R′)d3r

]
|nR〉 〈n′R′| , (3.75)

where H is given by Eq. (3.54). Calculating the matrix elements can actually often not be per-
formed in practice, but the generic resulting form of the Hamiltonian is (neglecting transitions
between different bands)

H =
∑
nR

Ẽn |nR〉 〈nR|+
∑
n

∑
R 6=R′

tnRR′ |nR〉 〈nR′| . (3.76)

The matrix element tRR′ is called hopping amplitude as it describes a transition of an
electron from state n localized at R′ to state n localized at R. This Hamiltonian is the starting
point of many calculations – where the hopping amplitudes tRR′ and on-site energies Ẽn are
to be determined experimentally. In many models, this is even further approximated to include
next neighbour processes only

tnRR′ =

{
t : R and R′ are next neighbours
0 : else

. (3.77)

We just mention here that another way to obtain good approximations to the full Hamilto-
nian is to approximate the Wannier functions by not just one atomic orbital (as we did in the
previous section) but a linear combination of them

w(r −R) =
∑
n

anφn(r −R) . (3.78)

Here, the an are variational parameters, upon which one has to optimize to improve the method.
This method is called linear combinations of atomic orbitals (LCAO).

3.1.4 Tight-Binding Example: Single Electron

As a simple example to the tight-binding model, we revisit the chain Hamiltonian

H1 = E
N∑
n=1

|n〉 〈n|+ t
N∑
n=1

[|n〉 〈n+ 1|+ |n+ 1〉 〈n|] , |N + 1〉 = |1〉 , (3.79)
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where En = E is the homogeneous single-orbital energy and t ∈ C is a hopping matrix element.
We only consider jumps to the next neighbors and neglect jumps to neighbours farther away
in the structure. The state |n〉 denotes a single(!) localized electron residing at site n – all
other sites are empty (so far, we only discuss single-electron physics). The states are defined
orthogonal 〈n|m〉 = δnm, and therefore we define the |n〉 states as the Wannier basis. Further,
the term |n〉 〈n+ 1| describes the tunneling from site n + 1 to site n. This Hamiltonian has a
Hilbert space dimension corresponding to the number of sites N . The index n denotes where
the electron is localized, and consequently the position operator would be given by

x = a
∑
n

n |n〉 〈n| , (3.80)

where a is the lattice constant. It is not possible to represent the momentum operator with the
|n〉 state basis alone.

Coming back to our tight-binding problem, the atomic orbitals and energies are given by

φn(r − nR) = 〈r − na|n〉 , En = E . (3.81)

By construction, these already form an orthogonal basis and they are therefore a Wannier basis
for our problem. By defining the |n〉 states to represent a localized electron at site n, it follows
that some approximations performed (neglect of many-center contributions) are valid exactly.
The Bloch states become

|k〉 =
1√
N

N∑
n=1

e+ikna |n〉 , (3.82)

and they are orthogonal as well

〈k|k′〉 =
1

N

N∑
n=1

e−i(k−k′)na = δkk′ . (3.83)

In the continuum limit, we would have δ(k− k′). The Bloch states are exact eigenstates of our
Hamiltonian

H |k〉 = E |k〉+ t
1√
N

N∑
n=1

e+ikna |n− 1〉+ t
1√
N

N∑
n=1

e+ikna |n+ 1〉

= E |k〉+ t(e+ika + e−ika) |k〉 = [E + 2t cos(ka)] |k〉 . (3.84)

Indeed, we can read off the full energies, and they correspond to Eq. (3.74)

ε
nk = 〈n|H |n〉+

∑
n′ 6=n

e−ikna 〈n′|Vnn′ |n〉

= E + 2t cos(ka) . (3.85)

The energies in this example are only distributed along a single band, ranging from E − 2t to
E + 2t.

3.1.5 Tight-Binding Example: Noninteracting Electrons

If we would now add an additional non-interacting electron (so far, our electrons are assumed
spinless), we cannot simply consider the sum of two such Hamiltonians. This would, for exam-
ple, allow for the double occupation of the same site by two (spinless) electrons. This should
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be forbidden by the exclusion principle, and therefore, we rather use fermionic creation and
annihilation operators for an electron on site n

{cn, c†m} = δnm , {cn, cm} = 0 (3.86)

to define the state of an electron at site n via the action of a creation operator on the vacuum
state. The anticommutation relations then automatically enforce the Pauli exclusion princi-
ple. take into account that we cannot create more than one electron on a single site. The
Hamiltonian is then written as

HN = E
∑
n

c†ncn + t
∑
n

[
c†ncn+1 + c†n+1cn

]
, cN+1 = c1 . (3.87)

Here, we can put at most N electrons into the system, leading in total to a Hilbert space
dimension of d = 2N – much bigger than the single-electron example used before. An electron
on site n is created by c†n acting on the vacuum state, and the term c†n+1cn represents a tunneling
process from site n to site n+ 1. In contrast to bosons, the fermionic creation and annihilation
operators act on multi-particle Fock states by creating a phase factor [2], which can be chosen
as

ci |n1, n2, . . . , 1i, . . . , nN〉 = (−1)n1+...+ni−1 |n1, n2, . . . , 0i, . . . , nN〉 ,
ci |n1, n2, . . . , 0i, . . . , nN〉 = 0 ,

c†i |n1, n2, . . . , 1i, . . . , nN〉 = 0 ,

c†i |n1, n2, . . . , 0i, . . . , nN〉 = (−1)n1+...+ni−1 |n1, n2, . . . , 1i, . . . , nN〉 . (3.88)

When two operators act on the same site, the phase factor always cancels

c†ici |n1, . . . , nN〉 = ni |n1, . . . , nN〉 , (3.89)

and the particle number operator is given by

N̂ =
∑
i

c†ici . (3.90)

The relation to the single-particle sector is obtained by sandwhiching the Hamiltonian with
many-particle Fock states. For example, we can recover the single-particle sector by computing
the matrix elements

〈n1n2 . . . nN−1nN |H |n1n2 . . . nN−1nN〉 = E
N∑
i=1

ni ,

〈n1 . . . 10 . . . nN |H |n1 . . . 01 . . . nN〉 = t . (3.91)

in the single-particle subspace where
∑

i ni = 1. However, we are now free to put up to N
electrons on the chain, as becomes visible by decoupling the Hamiltonian

HN = (c†1 . . . c
†
N)


E t t

t
. . . . . .
. . . . . . . . .

. . . . . . t
t t E


 c1

...
cN

 . (3.92)
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We can perform a unitary rotation of both the creation and annihilation operators

ci =
∑
k

uikdk , c†i =
∑
k

u∗ikd
†
k , (3.93)

to new fermionic operators that also obey the fermionic anticommutation relations. Since the
uik are the matrix elements of a unitary matrix, we get from presupposing fermionic anticom-
mutation relations for the transformed modes

{ci, c†j} =
∑
kq

uiku
∗
jq{dk, d†q} =

∑
k

uiku
∗
jk = δij . (3.94)

However, since the transformation is unitary, its inverse is unitary as well, such that the argu-
ment also works in the opposite direction. In fact, this unitary transform is a special case of a
transformation known as Bogoliubov transform – we will encounter it again later. For now, we
just need that any unitary transformation preserves the fermionic anticommutation relations.
Particularly, we choose the one that decouples the Hamiltonian

HN =
(
d†1 . . . d

†
N

)
U †


E t t

t
. . . . . .
. . . . . . . . .

. . . . . . t
t t E

U

 d1
...
dN

 =
(
d†1 . . . d

†
N

) ε1
. . .

εN


 d1

...
dN



=
∑
i

εid
†
idi . (3.95)

This is the same matrix as is present in the single-particle Hamiltonian, and we have already
computed its spectrum in Eq. (3.85). In addition, we also encountered such a structure when
analyzing normal mode transformations in rings, compare Sec. 2.4.2. The single-particle ener-
gies therefore lie in the energy band [E− 2t, E+ 2t], and the energy band of the single-electron
subspace is identical to the one computed in the previous section. When we now consider two
different electrons, we have to take two different modes due to the Pauli exclusion principle.
For sufficiently long chains however, all energy eigenvalues become quasi-continuous, and the
two-electron subspace will cover the values [2E − 4t, 2E + 4t].

3.1.6 Electronic Band Structure Classification

Coming from both sides – the free electrons and the Wannier states – we have seen that in
periodic potentials, band structures will develop. These band structures are very important for
the material properties.

To begin, we postulate that we have a class of electronic eigenstates to the Hamiltonian∣∣{n
`kσ}

〉
, where ` denotes the band index, k the wave vector, and σ ∈ {−1/2,+1/2} the

electronic spin (we have neglected it so far). The number n
`kσ ∈ {0, 1} then just tells us

whether the corresponding single-particle eigenstate is occupied (n
`kσ = 1) or not (n

`kσ = 0).
In the absence of any interaction, the many-electron states can be constructed from the single
particle eigenstates

∣∣n
`kσ
〉

via ∣∣{n
`kσ}

〉
=
⊗
`kσ

∣∣n
`kσ
〉
, (3.96)
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and their energies follow directly from summing up the single-particle energies of the occupied
states

H
∣∣{n

`kσ}
〉

=
∑
`kσ

n
`kσε`(k)

∣∣{n
`kσ}

〉
, (3.97)

which is automatically implemented by n
`kσ ∈ {0, 1}. Here, ε`(k) is the energy for wave vector

k in band ` and it has been assumed that the two spin degrees of freedom have the same
energy. For a system with N atoms, each of the bands has exactly N different k values, which
corresponds to 2N single particle electronic states per band if we include the spin. In general,
the total number of bound states will exceed the total number of electrons Ne. Therefore, at
very low temperatures, we can construct the many-particle ground state by successively filling
the bands with electrons until the total number of occupied states equals the total number of
electrons. The energy above the highest occupied and below the lowest empty state is then
called the Fermi energy EF

2
∑

`k:ε`(k)<EF

1 = Ne . (3.98)

Depending on the band configuration and the ratio of the total number of atoms N and the
total number of electrons Ne, there are two different possibilities

• All lower bands are completely filled and all higher bands are completely empty. The
Fermi energy is then actually not well defined and lies somewhere in the band gap
between the highest filled band and the lowest empty band. To excite an electron, it is
necessary to provide at least the band gap energy in the order of a few eV. Consequently,
current is hardly supported and these materials are semiconductors or even insulators.
The highest completely filled band is then called valence band.

• One band is only partially filled even at zero temperature. Then – keeping in mind that the
k-values are continuous – one can excite an electron with arbitrarily little energy, which
allows conduction. Correspondingly, this is the case in metals, and the corresponding
partially filled band is called a conduction band.

Provided the bands do not overlap, this allows a vague classification from the crystal struc-
ture and the number of electrons per primitive elementary cell Ze. Clearly, we have

Ne = NZe. (3.99)

Since we have 2N states per band, we can – if Ze is odd – fill Ze−1
2

bands fully and one
band half. The total number of electrons is then 2N(Ze − 1)/2 + 2N/2 = NZe = Ne. Thus,
one would expect a metal and the (Ze + 1)/2-th band to be the conduction band – and indeed,
this is often the case.

Now, for even Ze, we can fully fill Ze
2

bands, and one would expect a semiconductor or
an insulator. This second rule does not always work since the underlying assumption of non-
overlapping bands is often violated.

The classification is summarized in Fig. 3.3.

3.1.7 Electronic Density of States

As with phonons (compare Sec. 2.4.7), one often encounters summations over functions that
actually only depend on the electronic dispersion relation

S =
1

V

∑
nkσ

f(ε
nk) =

∑
nσ

∫
1.BZ

d3k

(2π)3
f(εn(k)) =

∫
dEf(E)ρ(E) , (3.100)
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Figure 3.3: Sketch of the band filling for
semiconductors and insulators (left) or metals
(right), together with the corresponding posi-
tion of the Fermi energy. Due to the electronic
spin, each filled band hosts 2N electrons.

which defines the electronic density of states

ρ(E) =
1

V

∑
nkσ

δ(E − εn(k)) =
∑
nσ

∫
d3k

(2π)3
δ(E − εn(k)) . (3.101)

Sometimes, one also defines these densities of states specific to individual bands. Here, V
denotes the macroscopic volume and E has units of energy (sometimes we also write ρ(ω)).

The Fermi energy (3.98) is now defined by (the lower energy bound is handled by the
electronic density of states ρ(E)) ∫ EF

−∞
ρ(E)dE =

Ne

V
. (3.102)

Here, Ne is the total number of electrons and V the macroscopic volume. Similar to the phonon
case we can express the electronic density of states in terms of a surface integral

ρ(E) =
1

4π3

∑
n

∫
S(E)

d2k∣∣∇kεn(k)
∣∣ , (3.103)

where S(E) is the surface in k space that is defined by the solution of E = εn(k) with respect
to k. The Fermi surface is then defined by SF = S(EF ). Its physical interpretation is that
this surface separates at zero temperature the occupied parts of k-space from the unoccupied
ones. It has characteristic shapes for each solid.

Example: Density of states for free electrons

A particularly simple example is of course the dispersion relation of free electrons εn(k) =
E(k) = ~2k2

2m
. We have ∇kεn(k) = ~2

m
k, such that the density of states becomes for the single

”band”

ρ(E) =
1

4π3

m

~2

∫
S(E)

d2k

k
=

1

4π3

m

~2

4πk2

k
=

√
2m3

π2~3

√
E , E ≥ 0 . (3.104)

Here, the surface integral is just over the sphere defined by E = ~2k2/(2m). At the band
edge the density of states becomes non-analytic with a root scaling. In general, a scaling of
ρ(E) ∝

√
E − Ec is characteristic at band edges of 3d systems, compare the discussion of

van-Hove singularities in case of phonons. The Fermi energy EF is then defined by
√

2m3

π2~3

∫ EF

0

E1/2dE =

√
2m3

π2~3

2

3
E

3/2
F =

Ne

V
. (3.105)
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Example: Higher dimensions

Let |i, j, k〉 denote the Wannier state of a single electron localized at site i, j, k ∈ Z on a simple
cubic lattice. Then, the single-particle Hamiltonian in tight-binding approximation can be
written as

H = E0

∑
ijk

|i, j, k〉 〈i, j, k|

+ t
[
|i, j, k〉 〈i+ 1, j, k|+ |i+ 1, j, k〉 〈i, j, k|+ |i, j, k〉 〈i, j + 1, k|+ |i, j + 1, k〉 〈i, j, k|

+ |i, j, k〉 〈i, j, k + 1|+ |i, j, k + 1〉 〈i, j, k|
]
. (3.106)

As before, we define these Wannier states to be fully localized, such that the overlap integrals
vanish. Assuming a simple cubic lattice with lattice constant a, the Bloch states become

|k〉 =
1√

NxNyNz

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

eika(iex+jey+kez) |i, j, k〉 =
1√
N

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

eia(ikx+jky+kkz) |i, j, k〉 ,

(3.107)

where the k vectors are distributed over the 1. BZ of the reciprocal lattice (also simple cubic).
More specifically, the periodicity condition demands that they are discrete

kα =
2π

a

nα
Nα

, nα ∈ Z , −Nα

2
≤ nα < +

Nα

2
. (3.108)

The Bloch states are eigenstates of the Hamiltonian

H |k〉 = E0 |k〉+
t√
N

∑
i,j,k

[2 cos(kxa) + 2 cos(kya) + 2 cos(kza)] eia(ikx+jky+kkz) |i, j, k〉

= [E0 + 2t (cos(kxa) + cos(kya) + cos(kza))] |k〉 , (3.109)

and we can read off the 3d dispersion relation

εn(k) = E0 + 2t [cos(kxa) + cos(kya) + cos(kza)] . (3.110)

We can easily compute the gradient of this with respect to k, but the surface defined by
E = εn(k) is highly complicated, such that even within tight-binding, the density of states
should be computed numerically.

3.1.8 Specific Heat of metals at low temperatures

Let us assume that we are given the full electronic Hamiltonian and that we know the single-
particle energies for band index `, wave vector k, electron spin σ and their corresponding
eigenstates |`kσ〉. With the dispersion relation ε`(k), and occupation number n

`kσ ∈ {0, 1},
we can express the total eigenvalue equation as

H
∣∣{n

`kσ}
〉

=
∑
`kσ

ε`(k)c†
`kσ

c
`kσ
∣∣{n

`kσ}
〉

=
∑
`kσ

n
`kσε`(k)

∣∣{n
`kσ}

〉
. (3.111)

Now, we follow essentially the same calculations as for the phonons. However, there are two
fundamental differences. First, the statistics of the involved operators is evidently fermionic
and not bosonic. Second, we do now have to take a chemical potential into account, since the
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macroscopic many-body state is not only determined by temperature but also by the number
of electrons. Therefore, we consider the grand-canonical equilibrium state.

For a single fermion, we consider the grand-canonical density matrix

ρ =
e−β(Ĥ−µN̂)

Tr
{
e−β(Ĥ−µN̂)

} (3.112)

with Ĥ = εc†c and N̂ = c†c. The mean energy cannot be simply determined with a derivative
with respect to β. Instead, it can be calculated directly

U = Tr

{
εc†c

e−β(ε−µ)c†c

Tr
{
e−β(ε−µ)c†c

}}

= ε 〈0| c†c e−β(ε−µ)c†c

Tr
{
e−β(ε−µ)c†c

} |0〉+ ε 〈1| c†c e−β(ε−µ)c†c

Tr
{
e−β(ε−µ)c†c

} |1〉
= ε

e−β(ε−µ)

1 + e−β(ε−µ)
= ε

1

eβ(ε−µ) + 1
. (3.113)

This defines the Fermi function

f(ω) =
1

eβ(ω−µ) + 1
, (3.114)

which depends on inverse temperature β and chemical potential µ. For low temperatures, the
Fermi function behaves similar to an inverted step function, but generally it is a function that
decays from a value +1 = limω→−∞ f(ω) at the position of the chemical potential 1/2 = f(µ)
down to the value 0 = limω→+∞ f(ω) over a region with a width corresponding to β−1. The
chemical potential is typically fixed such that the total electron number Ne is given by Ne =
f(ε). For a single mode, this simply fixes the Fermi function to Ne and the internal energy to
Neε.

For many non-interacting electrons, we take the same grand-canonical equilibrium state as
before, but now with the total Hamiltonian and total particle number

Ĥ =
∑
i

εic
†
ici , N̂ =

∑
i

c†ici . (3.115)

As the Hamiltonian is non-interacting, its exponential factorizes. More formally, we note that[
c†ici, c

†
jcj

]
= 0 , (3.116)

which allows us to separate the exponential of these terms into individual ones. Accordingly,
the internal energy just becomes a sum of the internal energies

U =
∑
i

εif(εi) =
∑
i

εi

〈
c†ici

〉
. (3.117)

Fixing the chemical potential now becomes non-trivial

Ne =
∑
i

f(εi) . (3.118)
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Specifically for our problem, i = (`,k, σ), and we would like to compute internal energy and
electronic particle number

U =
∑
`kσ

f(ε`(k))ε`(k) =
∑
`σ

V

(2π)3

∫
1.BZ

d3kf(ε`(k))ε`(k) = V

∫
f(ω)ωρ(ω)dω ,

Ne =
∑
`kσ

f(ε`(k)) =
∑
`σ

V

(2π)3

∫
1.BZ

d3kf(ε`(k)) = V

∫
f(ω)ρ(ω)dω . (3.119)

Here, ρ(ω) denotes the electronic density of states. To compute the heat capacity, we want
to compute the derivative of U with respect to T . The computation of the particle number is
required to fix the chemical potential µ.

Integrals over a product of a well-behaved function H(ω) and the Fermi function can be
computed with the Sommerfeld expansion

lim
ω→−∞

H(ω) <∞ , K(ω) =

∫ ω

−∞
H(ω′)dω′ ,

I =

∫
H(ω)f(ω)dω = [K(ω)f(ω)]+∞ω=−∞ −

∫
K(ω)f ′(ω)dω

=

∫
K(ω)[−f ′(ω)]dω . (3.120)

Here, we have used that f(+∞) = 0 and by construction K(−∞) = 0. The derivative of the
Fermi function is actually non-negligible only in a region [µ−O{kBT}, µ+O{kBT}.

−f ′(ω) =
1

eβ(ω−µ) + 1

βeβ(ω−µ)

eβ(ω−µ) + 1
= βf(ω)[1− f(ω)] , (3.121)

and decays exponentially fast farther away from it. This means that for numerical solutions,
one actually only needs a small interval around µ. This can be exploited by expanding the
function K(ω) in a Taylor series around µ

K(ω) = K(µ) +
∞∑
n=1

(ω − µ)n

n!
K(n)(ω)|ω=µ . (3.122)

This implies for the full integral

I =

∫ [
K(µ) +

∞∑
n=1

(ω − µ)n

n!
K(n)(ω)|ω=µ

]
[−f ′(ω)]dω

= −K(µ)f(ω)|+∞−∞ +
∞∑
n=1

H(n−1)(µ)

∫
(ω − µ)n

n!
[−f ′(ω)]dω

= +K(µ) +
∞∑
n=1

H(2n−1)(µ)

∫
(ω − µ)2n

(2n)!
[−f ′(ω)]dω

=

∫ µ

−∞
H(ω)dω +

∞∑
n=1

an(kBT )2nH(2n−1)(µ) ,

an =

∫
x2n

(2n)!

1

(ex + 1)(e−x + 1)
dx , (3.123)

where we have used that f ′(ω) is an even function around µ (this lets all odd powers vanish),
and where we also introduced x = β(ω − µ). One can calculate the coefficients an analytically,



62 CHAPTER 3. ELECTRONS

specifically

a1 =
π2

6
. (3.124)

Eventually, this implies for the electronic particle number and internal energy

Ne = V

[∫ µ

−∞
ρ(ω)dω +

π2

6
(kBT )2ρ′(µ) +O{T 4}

]
,

U = V

[∫ µ

−∞
ωρ(ω)dω +

π2

6
(kBT )2 (µρ′(µ) + ρ(µ)) +O{T 4}

]
. (3.125)

If the chemical potential was constant, we could now directly compute the specific heat. How-
ever, the chemical potential depends on temperature, since it is fixed by the first equation.
Therefore, we consider now the first equation to establish a relation between chemical potential
and particle number at low temperatures. At zero temperature, the chemical potential must
be exactly at the Fermi energy µ(T = 0) = EF , such that at low temperatures we can assume
it to be close to this value and therefore approximate the upper bound as

Ne ≈ V

[∫ EF

−∞
ρ(ω)dω +

∫ µ

EF

ρ(ω)dω +
π2

6
(kBT )2ρ′(µ)

]
≈ V

[∫ EF

−∞
ρ(ω)dω + (µ− EF )ρ(EF ) +

π2

6
(kBT )2ρ′(µ)

]
= Ne + V (µ− EF )ρ(EF ) + V

π2

6
(kBT )2ρ′(EF ) , (3.126)

where we have used Eq. (3.102). Accordingly, we get that at low temperatures, the chemical
potential must scale quadratically with temperature

µ = EF −
π2

6

ρ′(EF )

ρ(EF )
(kBT )2 . (3.127)

We can insert this into the second equation for the energy density, using a similar expansion of
the upper integral bound and keeping only terms to quadratic order in temperature

u =
U

V
≈
∫ EF

−∞
ωρ(ω)dω + (µ− EF )EFρ(EF ) +

π2

6
(kBT )2(EFρ

′(EF ) + ρ(EF ))

= u0 −
π2

6
ρ′(EF )EF (kBT )2 +

π2

6
(kBT )2(EFρ

′(EF ) + ρ(EF ))

= u0 +
π2

6
ρ(EF )(kBT )2 . (3.128)

Accordingly, we get for the electronic specific heat at low temperatures

cel
V =

π2

3
ρ(EF )k2

BT . (3.129)

This has to be seen in combination with our result for the phonons at low temperatures from
Eq. (2.146). By adding both contributions, we get

lim
T→0

cV =

[
π2

3
ρ(EF )kB

]
kBT +

[
2π2

5
kB

(
1

~c

)3
]

(kBT )3 . (3.130)

Accordingly, both ρ(EF ) and the average sound velocity c can be determined from measuring
the heat capacity scaling at low temperatures.

This derivation only holds for metals, since we used that the density of states is a smooth
function at the Fermi energy. For semiconductors and insulators, we always have by construc-
tion ρ(EF ) = 0, such that the calculated contribution to the specific heat would vanish.
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Figure 3.4: Sketch of the semiconductor band
structure in two-mode approximation with rel-
evant parameters. At zero temperature, the
lower valence band is completely filled, whereas
at finite temperatures, electrons will occasion-
ally be excited into the conduction band, leav-
ing holes in the valence band. The sought-
after chemical potential will lie somewhere in
the band gap.

3.1.9 Specific Heat of semiconductors at low temperatures

Clearly, when the Fermi energy lies within the band gap, we have ρ(EF ) = 0, as there are no
states available. Therefore, we have to treat this configuration differently.

For a feasible analysis, we first postulate some assumptions

• We only consider a two-band approximation by only taking the valence band and the
conduction band into account. At low temperatures, only these bands will contribute to
the specific heat.

• We will furthermore assume that the bands do not overlap and that the temperatures are
low.

• At the band edges, we will assume that the density of states for electrons and holes will
scale like the electronic density of states for free electrons.

The total density of states is then given by the sum over two bands

ρ(ω) = ρv(ω) + ρc(ω) , (3.131)

where ρv(ω) denotes the valence band density of states and ρc(ω) the conduction band density
of states. Let Ev > 0 denote the upper edge of the valence band and Ec < ∞ the lower edge
of the conduction band. The Fermi energy lies between them, see Fig. 3.4. Then, at zero
temperatures, where only the valence band is occupied, the total number of electrons is given
by

Ne = V

∫ EF

0

ρ(ω)dω = V

∫ Ev

0

ρv(ω)dω , T = 0 . (3.132)

At the same time, at finite temperatures we will have some states occupied in the valence band,
such that then, the total number of electrons is given by

Ne = V

∫ ∞
0

ρ(ω)dω = V

[∫ Ev

0

ρv(ω)f(ω)dω +

∫ ∞
Ec

ρc(ω)f(ω)dω

]
, T > 0 , (3.133)
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where f(ω) denotes the Fermi function. Equating the last two expressions, we obtain the
relation

nh(β) ≡
∫ Ev

0

ρv(ω)[1− f(ω)]dω =

∫ ∞
Ec

ρc(ω)f(ω)dω ≡ ne(β) . (3.134)

The l.h.s. represents the (volume) density of holes in the valence band, and the r.h.s. is
the (volume) density of electrons in the conduction band, i.e., the density of holes equals
the density of electrons. Due to the exclusion principle, each electron excited from the valence
band into the conduction band leaves a hole, which also obeys the same Fermi-Dirac statistics
as the electrons. We can think of the holes just as particles with an effective mass.

Our first goal will now be to find the temperature-dependence of the chemical potential.
From the constraint of the total particle number we can already conclude that it must lie within
the band gap Ev ≤ µ ≤ Ec, but its exact value at low temperatures must be obtained from the
above equation. Now, at low temperatures

β(Ec − µ)� 1 , β(µ− Ev)� 1 . (3.135)

With this, we can approximate the Fermi functions in the respective energy regions as

ω > Ec : f(ω) =
1

eβ(ω−µ) + 1
≈ e−β(ω−µ) ,

ω < Ev : 1− f(ω) =
1

eβ(µ−ω) + 1
≈ e−β(µ−ω) , (3.136)

i.e., the volume density of electrons above the band gap and the density of holes below the
band gap will be exponentially suppressed at low temperatures. Now, we further specify our
assumption of the density of states for electrons in the conduction ρc(ω) and valence band ρv(ω)
near the band gaps

ρc(ω) ≈ (2me)
3/2

2π2~3
(ω − Ec)1/2 : ω > Ec ,

ρv(ω) ≈ (2mh)
3/2

2π2~3
(Ev − ω)1/2 : ω < Ev . (3.137)

For the conduction band electrons, this just corresponds to Eq. (3.104), and for the holes we
have assumed the same distribution, just with an effective mass mh instead. The electron
density in the conduction band therefore becomes

ne(β) ≈
∫ ∞
Ec

ρc(ω)e−β(ω−µ)dω = e−β(Ec−µ)

∫ ∞
Ec

ρc(ω)e−β(ω−Ec)dω

=
(2me)

3/2

2π2~3
e−β(Ec−µ)

∫ ∞
Ec

(ω − Ec)1/2e−β(ω−Ec)dω

=
(2me)

3/2

2π2~3
e−β(Ec−µ)β−3/22

∫ ∞
0

x2e−x
2

dx =
(2me)

3/2

2π2~3

√
π

2
e−β(Ec−µ)β−3/2 . (3.138)

Here, we have used that due to the exponential suppression at low temperatures, it is permissible
to extend the upper integration bound to +∞ and furthermore used the substitution x =
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β(ω − Ec). The calculation for the hole volume density in the valence band is similar

nh(β) ≈ e−β(µ−Ev) (2mh)
3/2

2π2~3

∫ Ev

0

(Ev − ω)1/2e−β(Ev−ω)dω

=
(2mh)

3/2

2π2~3
e−β(µ−Ev)β−3/22

∫ √βEv
0

y2e−y
2

dy

≈ (2mh)
3/2

2π2~3
e−β(µ−Ev)β−3/22

∫ ∞
0

y2e−y
2

dy

=
(2mh)

3/2

2π2~3

√
π

2
e−β(µ−Ev)β−3/2 . (3.139)

From equating the last two equations, compare Eq. (3.134), we obtain a relation for the chemical
potential

m3/2
e e−β(Ec−µ) = m

3/2
h e−β(µ−Ev) , (3.140)

from which it follows that the ratio of effective hole mass and electron masses determines
whether the chemical potential lies above or below the Fermi energy

µ(T ) =
Ec + Ev

2
+

3

4
kBT ln

(
mh

me

)
. (3.141)

Experimentally, this mass ratio can be tuned by doping the semiconductor with other atoms.
In contrast to metals we see that the chemical potential scales linearly with temperature. At
zero temperature, it is by construction equal to the Fermi energy µ(0) = EF = Ec+Ev

2
.

The calculation of the specific heat now proceeds along similar lines

cV =

∫
ωρ(ω)

∂f(ω)

∂T
dω

=

∫ Ev

0

ωρv(ω)

[
ω − µ
kBT 2

+ β
∂µ

∂T

]
eβ(ω−µ)

(eβ(ω−µ) + 1)
2dω +

∫ ∞
Ec

ωρc(ω)

[
ω − µ
kBT 2

+ β
∂µ

∂T

]
eβ(ω−µ)

(eβ(ω−µ) + 1)
2dω

≈
∫ Ev

0

ωρv(ω)
ω − EF
kBT 2

eβ(ω−µ)dω +

∫ ∞
Ec

ωρc(ω)
ω − EF
kBT 2

e−β(ω−µ)dω

=
e−β(Ec−Ev)/2

kBT 2

[∫ Ev

0

ω(ω − EF )ρv(ω)e−β(Ev−ω)dω +

∫ ∞
Ec

ω(ω − EF )ρc(ω)e−β(ω−Ec)dω

]
.

(3.142)

Here, we have only kept the leading order terms for small temperatures (underlined) and
neglected the temperature dependence of the chemical potential, as that would lead to higher-
order corrections.

Eventually, we do now insert the densities of states of the individual bands (3.137), which
allows to evaluate these integrals as before. For example, we get for the first integral

Iv =

∫ Ev

0

ω(ω − EF )ρv(ω)e−β(Ev−ω)dω

=
(2mh)

3/2

2π2~3

∫ Ev

0

[
(Ev − ω)− Ev

] [
(Ev − ω) + (EF − Ev)

]
(Ev − ω)1/2e−β(Ev−ω)dω

≈ −(2mh)
3/2

2π2~3
Ev(EF − Ev)β−3/2

√
π

2
+ . . . , (3.143)
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where we have only kept the leading order terms for small temperatures (underlined). The
same calculation is performed for the conductance band

Ic =

∫ ∞
Ec

ω(ω − EF )ρc(ω)e−β(ω−Ec)dω

=
(2me)

3/2

2π2~3

∫ ∞
Ec

[
(ω − Ec) + Ec

] [
(ω − Ec) + (Ec − EF )

]
(ω − Ec)1/2e−β(ω−Ec)dω

≈ +
(2me)

3/2

2π2~3
Ec(Ec − EF )β−3/2

√
π

2
+ . . . , (3.144)

where we have only kept the leading order terms for small temperatures (underlined). Putting
it all together, we eventually obtain

cV =
2kB

23/2π3/2~3

e−β(Ec−Ev)/2

kBT

[
m3/2
e Ec(Ec − EF )−m3/2

h Ev(EF − Ev)
]

=
2kB

(2π~2)3/2

Ec − Ev
2

[
m3/2
e Ec −m3/2

h Ev

] e−β(Ec−Ev)/2

kBT
. (3.145)

For temperatures small in comparison with the band gap kBT � (Ec − Ev) ≡ ∆, this is
exponentially suppressed. Of course, these results depend on the specific assumptions on the
density of states (3.137), but the exponential suppression is characteristic for all systems with
a gapped spectrum.

3.2 Interacting Electrons

In addition to the previous section, we will now examine the effects of electron-electron inter-
actions, i.e., the total Hamiltonian is given by

H =
Ne∑
i=1

pi
2

2m
+

Ne∑
i=1

V (ri) +
∑
i<j

u(ri − rj) , (3.146)

where Ne is the total number of electrons, pi is the momentum operator of the i-th electron,
V (ri) is the lattice-periodic ion-potential felt by the i-th electron at position ri, and u(ri−rj)
denotes the electronic interaction potential. Microscopically, the last term should be given by
the Coulomb repulsion

u(r − r′) =
e2

|r − r′|
. (3.147)

However, very often, parts of the effective electron-electron interaction can be treated by ef-
fective single particle potentials V (ri), such that a full microscopic description of all electron-
electron interactions is hardly ever performed. For example, the inner electrons of an ion can
be considered as tightly bound, such that it is well justified to treat the interaction between a
conduction band electron and such an inner shell electron effectively as an interaction between
the conduction band electron and the screened ion potential.

3.2.1 Operator representations

We have already discussed the fundamental properties of creation and annihilation operators
in Sec. 3.1.5, where we saw how one could represent a tight-binding Hamiltonian for many
non-interacting electrons by comparing with the single-particle case. In this section, we will
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dominantly work with creation and annihilatin operators, such that it is useful to step back for
a moment and to define the field operators more formally, compare Ref. [3]. Let |α〉 denote an
(electronic) single-particle state with quantum number α. That means, α=̂(`kσ) is in general
some multi-index containing the band index `, wavevector k and electron spin σ. Then, the
corresponding wave function at position r is defined by

φα(r) = 〈r|α〉 . (3.148)

We would like to find representations of single-particle operators

A =
Ne∑
i=1

a(ri) , (3.149)

which are additively composed from electronic single-particle contributions a(ri). For example,

the single-particle contribution of our Hamiltonian (3.146) would be given by a(ri) =
pi2
2m

+
V (ri). Although single-particle operators contain no direct interaction between the electrons,
the dimension of the Hilbert space is different. To represent general single particle operators,
we label the single-particle basis for the i-th electron at position ri by the state |αi〉. Then, we
can insert identities

∑
α |αi〉 〈αi| = 1 (on the remaining Hilbert space, the operators |αi〉 〈αi|

act like the identity) to obtain

A =
Ne∑
i=1

∑
αβ

〈
αi
∣∣ a(ri)

∣∣βi〉 ∣∣αi〉 〈βi∣∣
=
∑
αβ

aαβc
†
αcβ , c†αcβ =

Ne∑
i=1

∣∣αi〉 〈βi∣∣ . (3.150)

Here, we have used that the matrix element does not depend on the index i,

aαβ =
〈
αi
∣∣ a(ri)

∣∣βi〉 =

∫
d3rid

3r′i
〈
αi|ri

〉
〈ri| a(ri)

∣∣r′i〉 〈r′i|βi〉
=

∫
d3riφ

∗
α(ri)a(ri)φβ(ri) =

∫
d3rφ∗α(r)a(r)φβ(r) , (3.151)

since the electrons are indistinguishable. This shows that the most general particle-number-
preserving electronic single-particle operators will be given by quadratic fermionic operators,
where the numbers of creation and annihilation operators is balanced.

The same argument can be applied to two-particle operators, which can be decomposed into
terms acting only on pairs of particles

B =
1

2

Ne∑
i 6=j

b(ri, rj) . (3.152)

One example of such a two-particle operator is the Coulomb interaction term b(ri, rj) = u(ri−
rj) in Eq. (3.146). Now, we insert on both sides identities 1 =

∑
α |αi〉 〈αi| and 1 =

∑
β |βj〉 〈βj|

to obtain

B =
1

2

Ne∑
i 6=j

∑
αβγδ

〈
αi
∣∣ 〈βj∣∣ b(ri, rj) ∣∣γj〉 ∣∣δi〉 ∣∣αi〉 ∣∣βj〉 〈γj∣∣ 〈δi∣∣ . (3.153)
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Here, we just note that expressions like 〈αi| |βj〉 must not be further simplified as i 6= j and
the operators act on different Hilbert spaces. Again, the matrix element does not depend on
the indices i and j

bαβγδ =
〈
αi
∣∣ 〈βj∣∣ b(ri, rj) ∣∣γj〉 ∣∣δi〉 =

∫
d3ri

∫
d3rjφ

∗
α(ri)φδ(ri)φ

∗
β(rj)φγ(rj)b(ri, rj)

=

∫
d3r

∫
d3r′φ∗α(r)φδ(r)φ∗β(r′)φγ(r

′)b(r, r′) . (3.154)

This allows us to represent general particle-number conserving two-body interactions with quar-
tic fermionic operators

B =
1

2

∑
αβγδ

bαβγδc
†
αc
†
βcγcδ , c†αc

†
βcγcδ =

Ne∑
i 6=j

∣∣αi〉 ∣∣βj〉 〈γj∣∣ 〈δi∣∣ , (3.155)

where the constraint is that the number of creation and annihilation operators must be balanced.
A perhaps more compact way to derive these relations uses the wave functions φα(r) and

the fermionic operators cα to define field operators for particles at position r

Φ(r) =
∑
α

φα(r)cα , Φ†(r) =
∑
α

φ∗α(r)c†α . (3.156)

Since the cα and c†α are fermionic annihilation and creation operators, the field operators obey
the anticommutation relations

{Φ(r),Φ(r′)} = 0 ,
{

Φ(r),Φ†(r′)
}

= δ(r − r′) , (3.157)

which follows from the completeness relation of the wave functions
∑

α φ
∗
α(r)φα(r′) = δ(r−r′).

These field operators allow for the convenient representation of single-particle and two-particle
operators via

A =

∫
d3rΦ†(r)a(r)Φ(r) ,

B =
1

2

∫
d3r

∫
d3r′Φ†(r)Φ†(r′)b(r, r′)Φ(r′)Φ(r) . (3.158)

Inserting the definition of the field operators, we recover our previous representations.

3.2.2 Important interacting models

The most general Hamiltonian (3.146) can therefore be written with balanced quadratic and
quartic fermionic operators. However, we still have the freedom e.g. to diagonalize the free
single-particle part of the Hamiltonian as we did for non-interacting electrons. Furthermore,
the normal Coulomb interactions will generally not flip the electronic spin, such that not all
matrix elements need to be considered.

Homogeneous electron gas

In this model, we just consider interacting electrons, i.e., we neglect the potential of the ions
completely V (r) = 0 and just consider the Coulomb interaction between the electrons. With a
plane-wave ansatz for the wave function

φkσ(r) |σ〉 =
e+ikr
√
V
|σ〉 , (3.159)
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where V denotes the volume, the free Hamiltonian just yields the well-known quadratic disper-
sion relation. The free Hamiltonian becomes

H0 =

∫
d3rΦ†(r)

(
−~2∇2

2m

)
Φ(r)

=
∑
kq,σ

∫
d3r

1

V
e−ikr

(
~2q2

2m

)
e+iqrc†

kσ
cqσ =

∑
k

∑
σ

~2k2

2m
c†
kσ
ckσ . (3.160)

Furthermore, we can also compute the matrix element of the interaction via

H1 =
1

2

∫
d3r

∫
d3r′Φ†(r)Φ†(r′)

e2

|r − r′|
Φ(r′)Φ(r)

=
1

2

∑
σσ′

∑
kqk′q′

∫
d3r

∫
d3r′φ∗kσ(r)φ∗qσ′(r

′)
e2

|r − r′|
φq′σ′(r

′)φk′
σ
(r)c†

kσ
c†qσ′cq′σ′ck′

σ

=
1

2

∑
σσ′

∑
kqk′q′

Ikqk′q′c
†
kσ
c†qσ′cq′σ′ck′

σ
(3.161)

Here, we have already used that the interaction does not induce spin flips. The remaining
integral can now be explicitly computed as

Ikqk′q′ =
1

V 2

∫
d3r

∫
d3r′e−ikre−iqr′ e2

|r − r′|
e+iq′r′e+ik′r

=
1

V 2

∫
d3r

∫
d3r′′e−ikre−iq(r−r′′) e

2

|r′′|
e+iq′(r−r′′)e+ik′r

=

[
1

V

∫
d3re

+i
(
k′

+q′−k−q
)
r
] [

1

V

∫
d3r′′

e2

|r′′|
e+i(q−q′)r′′

]
. (3.162)

While the first factor just yields a δ-function that conserves the total momentum (the Coulomb
interaction only implies elastic scattering events), the second term can also be calculated exactly
in spherical coordinates∫

d3r
1

|r|
e+iqr = 2π

∫ ∞
0

dr

∫ +1

−1

dxe+iqrxr = lim
δ→0

2π

∫ ∞
0

dr

∫ +1

−1

dxe+iqrx−δrr

= lim
δ→0

2π

∫ ∞
0

dr
i

q
e−δr

[
e−iqr − e+iqr

]
= lim

δ→0

2πi

q

(
− 2iq

q2 + δ2

)
=

4π

q2
. (3.163)

Here, we have used the usual substitution x = cos(θ) and chose the angle θ between r and q
via rq = rq cos(θ). Accordingly, the integral becomes

Ikqk′q′ = δk+q,k′
+q′

4πe2

V |q − q′|2
, (3.164)

which eventually yields for the total Hamiltonian of the homogeneous electron gas

H =
∑
k

∑
σ

~2k2

2m
c†
kσ
ckσ +

1

2

∑
σσ′

∑
kqk′q′

δk+q,k′
+q′

4πe2

V |q − q′|2
c†
kσ
c†qσ′cq′σ′ck′

σ

=
∑
k

∑
σ

~2k2

2m
c†
kσ
ckσ +

1

2

∑
σσ′

∑
k̄k̄′q̄

4πe2

V q̄2
c†
k̄−q̄,σ

c†
k̄′+q̄,σ′

ck̄′,σ′
ck̄,σ . (3.165)
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In the last line, we have only renamed some terms. The conventional interpretation of the last
term are two incoming electrons at momenta k̄ and k̄′ that exchange momentum 2q̄, such that
after the scattering event, they have momenta k̄ + q̄ and k̄′ − q̄. Since we assumed a bare
Coulomb potential, the contribution without momentum transfer q̄ = 0 actually diverges. This
artifact can be cured by considering a screened electron-electron interaction. If instead we used
a screened potential – for a Yukawa type potential this would correspond to keeping finite δ in
the calculation of the above two-body integral – all matrix elements would remain finite.

The Hubbard model

We are not forced to diagonalize the free Hamiltonian. If we do not do this, the free Hamiltonian
has hopping terms and on-site energies. The simplest model taking some interactions and
tunneling of electrons into account is the Hubbard 3 model, originally suggested to explain
band magnetism. It has a hopping term and an on-site Coulomb interaction

H = t
∑
σ

∑
<R,R′

>

c†
R,σ

cR′
,σ

+ U
∑
σσ′

∑
R

c†
R,σ

c†
R,σ′

cR,σ′
cR,σ

. (3.166)

The notation < R,R′ > denotes next neighbours on a lattice. With just two parameters t and
U , the model exhibits rich physics. Depending on the parameters and the filling ratio of the
model (number of electrons versus number of sites), it can model metal and insulator behaviour
and the corresponding transition between them. The Hubbard model has the exactly solvable
limits U = 0 (non-interacting electrons, hopping phase) and t = 0 (insulating phase). For small
and finite number of lattice sites N , it can be diagonalized exactly with exponential effort:
The dimension of the Hilbert space is 2 · 2N if the number of electrons is not specified, and
still as 2 N !

Ne!(N−Ne)! for Ne electrons distributed over N sites. This shows that exact numerical
diagonalizations of the model are numerically demanding and will be restricted to small systems.
One very important feature of the Hubbard model is that can model band magnetism just from
the ingredients of electronic spin and strong Coulomb interaction, which we will revisit later.

3.2.3 Hartree-Fock approximation

The basis of all our considerations is the grand-canonical thermal equilibrium state

ρgc =
e−β(H−µN)

Tr {e−β(H−µN)}
, (3.167)

where H and N are Hamiltonian and particle number operator, and β and µ are inverse
temperature and chemical potential. From statistical physics we know that to compute mean
values of operators, it is helpful to compute only the normalization factor, i.e., the grand-
canonical partition function

Zgc = Tr
{
e−β(H−µN)

}
. (3.168)

For example, we can compute the mean particle number from derivatives with respect to
the chemical potential

〈N〉 = Tr {Nρgc} = β−1∂µ lnZgc . (3.169)

From this, we can also compute the mean energy

〈H〉 = Tr {Hρgc} =
[
µβ−1∂µ − ∂β

]
lnZgc , (3.170)

3J. Hubbard (1931–1980) was a british physicist.
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where we already used this formula for µ = 0 in the calculation of the specific heat of phonons,
compare Sec. 2.4.6. However, such relations are even more powerful. For example, when the
Hamiltonian depends on a parameter λ via H = H0+λH1, where both H0 and H1 are operators,
this parameter dependence will transfer to the partition function. Then, we get

−β−1∂λ lnZgc =
−β−1

Zgc
Tr
{
∂λe

−β(H0+λH1−µN)
}

=
1

Zgc

∞∑
n=0

(−β)n−1

n!
Tr {∂λ [H0 + λH1 − µN ]n}

=
1

Zgc

∞∑
n=0

(−β)n−1

n!
Tr

{
n∑
i=1

[H0 + λH1 − µN ]i−1H1 [H0 + λH1 − µN ]n−i
}

=
1

Zgc

∞∑
n=1

(−β)n−1

(n− 1)!
Tr
{

[H0 + λH1 − µN ]n−1H1

}
=

1

Zgc
Tr
{
e−β(H−µN)H1

}
= 〈H1〉 , (3.171)

where we have used that the trace is invariant under cyclic permutations of its arguments. In
summary, the partition function, or derived quantities such as the grand-canonical potential
are very useful to determine mean values of operators.

Box 11 (grand-canonical potential) The grand-canonical potential is given from the loga-
rithm of the grand-canonical partition function via

Φgc = −kBT lnZgc = −kBT ln Tr
{
e−β(H−µN)

}
. (3.172)

The problem is that the partition function can be easily calculated for non-interacting
models – where the Hamiltonian can be brought in the form of independent modes. For
interacting models it is in general a difficult problem, which in reality means impossible. The
basic idea is now to find an approximate non-interacting Hamiltonian

Heff =
∑
k

χkc
†
kck , (3.173)

where the parameters χk ∈ R have to be determined such that the resulting grand-canonical
potential with respect to the effective Hamiltonian is close to the exact grand-canonical potential
(and therefore all derived quantities should also be close to the true values). In order to quantify
what is meant by the term ”close to”, we introduce the quantum relative entropy.

Box 12 (quantum relative entropy) The quantum relative entropy between two density
matrices ρ and σ is given by

D(ρ||σ) = Tr {ρ [ln ρ− lnσ]} ≥ 0 . (3.174)

Obviously, the relative entropy vanishes when the two density matrices are equal D(ρ||ρ) =
0. However, it is not symmetric, such that it cannot be considered a distance. We can also see
that it is positive by using the spectral decompositions of both density matrices

ρ =
∑
`

ρ` |`〉 〈`| , 0 ≤ ρ` ≤ 1 ,
∑
`

ρ` = 1 ,

σ =
∑
α

σα |α〉 〈α| , 0 ≤ σα ≤ 1 ,
∑
α

σα = 1 , (3.175)
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which yields

−D(ρ||σ) =
∑
`

ρ` [〈`| lnσ |`〉 − ln ρ`] =
∑
`

ρ`

[∑
α

ln(σα)|〈`|α〉|2 − ln ρ`

]

=
∑
`

ρ`

[∑
α

ln(σα)|〈`|α〉|2 − ln(ρ`)
∑
α

|〈`|α〉|2
]

=
∑
`

∑
α

ρ`|〈`|α〉|2 ln
σα
ρ`

≤
∑
`

∑
α

ρ`|〈`|α〉|2
[
σα
ρ`
− 1

]
=
∑
α

σα −
∑
`

ρ` = 0 , (3.176)

where we have used ln(x) ≤ x− 1, such that accordingly D(ρ||σ) ≥ 0. Specifically, the relative
entropy between an arbitrary density matrix ρ and the grand-canonical one ρgc becomes

D(ρ||ρgc) = Tr {ρ ln ρ} − Tr

{
ρ ln

e−β(H−µN)

Zgc

}
= Tr {ρ ln ρ}+ Tr {ρβ(H − µN)}+ lnZgc .

(3.177)

We now define the functional on an arbitrary density matrix ρ

Φ[ρ] ≡ Tr {ρ(H − µN) + kBTρ ln ρ} . (3.178)

From Eq. (3.172) and Eq. (3.177) we see that we can express this functional by a relative
entropy to the thermal state

Φ[ρ] = Φ[ρgc] + kBTD(ρ||ρgc) ≥ Φ[ρgc] , (3.179)

and accordingly, it assumes its minimal value when ρ is the grand-canonical equilibrium state.
Specifically applied to our effective Hamiltonian, we can define an effective density matrix

and effective grand canonical potential (simple to compute)

ρeff =
e−β(Heff−µN)

Zeff

, Φeff = −kBT lnZeff = −kBT ln Tr
{
e−β(Heff−µN)

}
. (3.180)

Inserting this in the functional, we get the relation

Φ[ρeff ] = Tr {ρeff [(H − µN) + kBT (−β(Heff − µN)− lnZeff)]}
= Tr {(H −Heff)ρeff} − kBT lnZeff ≥ Φ[ρgc] . (3.181)

This relation now tells us that by minimizing Tr {(H −Heff)ρeff}−kBT lnZeff with respect to the
free parameters in the effective Hamiltonian (3.173), we get that the effective grand potential
is close to the true one (at least with respect to single-particle operator representations of
the Hamiltonian). The advantage is now that we can explicitly minimize the grand-canonical
potential as all parameters are directly computable.

As an example, we can consider the Hamiltonian

H =
∑
k

εkc
†
kck +

1

2

∑
kk′qq′

ukk′qq′c
†
kc
†
k′cq′cq , (3.182)

with simply describes electronic modes with energies εk and interaction term coefficients ukk′qq′
(we neglect the spin for the moment). We note that this may also include tunneling, since
by diagonalizing the tunneling Hamiltonian we would obtain a diagonal representaion of the
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quadratic part of the Hamiltonian. Furthermore, the interaction must be invariant when in-
coming and outgoing particles are exchanged

ukk′qq′ = uk′kq′q . (3.183)

The effective density matrix becomes

ρeff =
e−β

∑
k(χk−µ)c†kck

Zeff

. (3.184)

Insertion into the functional, which should be minimized, yields

Φ[ρeff ] = Tr {(H −Heff)ρeff} − kBT lnZeff

= −kBT lnZeff +
∑
k

(εk − χk)
〈
c†kck

〉
eff

+
1

2

∑
kk′qq′

ukk′qq′
〈
c†kc
†
k′cq′cq

〉
eff
. (3.185)

For a non-interacting model, we can explicitly determine the expectation values〈
c†kck

〉
eff

=
e−β(χk−µ)

1 + e−β(χk−µ)
=

1

eβ(χk−µ) + 1
= f(χk) (3.186)

in terms of the Fermi function f(ω). In general contexts, we can think of f(χk) as a general
function describing the expectation value above. To treat the quartic term, we use〈
c†kc
†
k′cq′cq

〉
eff

= (1− δqq′)(1− δkk′)
[
δkqδk′q′

〈
c†kcq

〉
eff

〈
c†k′cq′

〉
eff
− δkq′δk′q

〈
c†kcq′

〉
eff

〈
c†k′cq

〉
eff

]
=
[
δkqδk′q′

〈
c†kcq

〉
eff

〈
c†k′cq′

〉
eff
− δkq′δk′q

〈
c†kcq′

〉
eff

〈
c†k′cq

〉
eff

]
= δkqδk′q′f(χk)f(χk′)− δkq′δk′qf(χk)f(χk′) . (3.187)

We insert this in the grand-canonical functional

Φ[ρeff ] = −kBT lnZeff +
∑
k

(εk − χk)f(χk) +
1

2

∑
kk′

[ukk′kk′ − ukk′k′k] f(χk)f(χk′) . (3.188)

We still want to find the minimum of this functional with respect to the unknown parameters
χk. For this, we note that

−kBT∂χq lnZeff =
〈
c†qcq

〉
eff

= f(χq) , (3.189)

which follows from Eq. (3.171) or can be checked directly. Accordingly, the minimization
equations become

0 = f(χq)− f(χq) + (εq − χq)f ′(χq)

+
1

2

∑
k′

[uqk′qk′ − uqk′k′q] f ′(χq)f(χk′) +
1

2

∑
k

[ukqkq − ukqqk] f(χk)f
′(χq)

= f ′(χq)

[
εq − χq +

1

2

∑
k

(uqkqk − uqkkq + ukqkq − ukqqk) f(χk)

]

= f ′(χq)

[
εq − χq +

∑
k

(uqkqk − uqkkq) f(χk)

]
(3.190)
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Here, we have used the symmetry constraints on the interaction to simplify the last term.
The term in square brackets should vanish, which yields a self-consistent solution for the best
possible parameters

χ∗q = εq +
∑
k

(uqkqk − uqkkq) f(χ∗k) . (3.191)

Clearly, for a non-interacting model, we recover χ∗q = εq, but for finite interactions, this non-
linear coupled system will in general have to be solved numerically. However, for very high
temperatures we could e.g. approximate the Fermi functions by f(χk) = 1/2−β/4(χk−µ)+ . . .
to linearize the system. In general, the effective Hamiltonian becomes

Heff =
∑
k

[
εk +

∑
q

(ukqkq − ukqqk) f(χ∗q)

]
c†kck . (3.192)

This corresponds to the Hamiltonian in Hartree 4-Fock approximation. Traditional derivations
use a Slater determinant as an ansatz for the full wave function and then derive an effective
Schrödinger equation for interacting systems. The two terms ukqkq and ukqqk correspond to the
Hartree-contribution and the Fock- (or exchange) contribution, respectively.

A shortcut recipe to obtain the general form of the Hamiltonian in Hartree-Fock approxi-
mation is the replacement

c†kc
†
k′cq′cq ≈ −

〈
c†kcq′

〉
eff
c†k′cq +

〈
c†kcq

〉
eff
c†k′cq′

+
〈
c†k′cq′

〉
eff
c†kcq −

〈
c†k′cq

〉
eff
c†kcq′ , (3.193)

where we consider the expectation value of one creation and one annihilation operator, and
where the sign in front is determined by the fermionic anticommutation relations. Inserting
this into the original Hamiltonian (3.182), and demanding the resulting effective Hamiltonian to
be diagonal, i.e., of the form Heff =

∑
k χkc

†
kck (which yields an additional Kronecker-delta), we

recover the mean-field Hamiltonian (3.192)(exercise). In general, such approximations where
higher-order operators are replaced by expectation values of few-body operators are called
mean-field approximations (”Molekularfeldnäherung”).

3.2.4 Example: Double Quantum Dot

As an extremely small-scale example, we consider a double quantum dot under the assumption
that only one spin species is present. The total Hamiltonian reads

H = ε(d†LdL + d†RdR) + T (d†LdR + d†RdL) + Ud†LdLd
†
RdR , (3.194)

where ε is the on-site energy of the dots and T is a next-neighbor hopping amplitude and U > 0
is a Coulomb interaction. We have chosen T as real (a possible phase can be absorbed in the
operators). Note also that the on-site energies can be chosen different for both dots, which
makes all transformations technically more complex.

To bring it into the form that we used to derive the Hartree-Fock approximation, we have
to diagonalize the free (quadratic) part of the Hamiltonian first

H0 = (d†L, d
†
R)

(
ε T
T ε

)(
dL
dR

)
= (d†L, d

†
R)V †V

(
ε T
T ε

)
V †V

(
dL
dR

)
. (3.195)

4D. R. Hartree (1897–1958) was a british mathematician and physicist.
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Here, the special choice

V =
1√
2

(
1 −1
1 1

)
(3.196)

Diagonalizes the free Hamiltonian

H0 = (c†1, c
†
2)

(
ε− T 0

0 ε+ T

)(
c1

c2

)
= (ε− T )c†1c1 + (ε+ T )c†2c2 . (3.197)

New and old operators are connected via(
c1

c2

)
=

1√
2

(
1 −1
1 1

)(
dL
dR

)
,

(
dL
dR

)
=

1√
2

(
1 1
−1 1

)(
c1

c2

)
. (3.198)

To represent the interaction in terms of the new operators, we compute (exercise)

H1 =
U

4
(c†1 + c†2)(c1 + c2)(c†1 − c

†
2)(c1 − c2) = . . . = Uc†1c1c

†
2c2 . (3.199)

To arrive at this result, one has to use the fermionic anticommutation relations a few times,
which implies relations like

cic
†
i = 1− c†ici , c2

i = (c†i )
2 = 0 , cic

†
ici = ci , c†icic

†
i = c†i . (3.200)

Accordingly, expressed with the new operators the Hamiltonian reads

H = (ε− T )c†1c1 + (ε+ T )c†2c2 + Uc†1c1c
†
2c2 , (3.201)

which can be solved exactly. Generically, we get for transformations that do not mix between
creation and annihilation operators, that the operator for the total particle number remains
the same

N = d†LdL + d†RdR = c†1c1 + c†2c2 . (3.202)

First, we note that the system is small enough such that we can treat it exactly. In the
basis |n1, n2〉 ordered with increasing eigenvalues |0, 0〉,|1, 0〉,|0, 1〉, and |1, 1〉, Hamiltonian and
particle number operator have the matrix representations

H =


0

ε− T
ε+ T

2ε+ U

 , N =


0

1
1

2

 . (3.203)

Since they are both diagonal, we can straightforwardly compute the grand-canonical equilibrium
state

ρgc =
e−β(H−µN)

Tr {e−β(H−µN)}
(3.204)

and the corresponding partition function

Zgc = 1 + e−β(ε−T−µ) + e−β(ε+T−µ) + e−β(2ε+U−2µ) . (3.205)
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Since we have seen that the particle number can be obtained via 〈N〉 = β−1∂µ lnZgc, this yields
a nonlinear equation linking the chemical potential and the expectation value of the particle
number

〈N〉 =
e−β(ε−T−µ) + e−β(ε+T−µ) + 2e−β(2ε+U−2µ)

Zgc
, (3.206)

which can be solved for the chemical potential due to the small dimension of the system (not
shown). In particular, one can check that at half-filling, the temperature-independent choice
µ1 = ε + U

2
fixes the particle number to 〈N〉 = 1. For other values of 〈N〉, the chemical

potential µN will be temperature-dependent. From the grand-canonical equilibrium state with
fixed chemical potential, we can now compute arbitrary observables of the double quantum dot
system.

Second, to obtain the Hartree-Fock (mean-field) approximation, we represent the Hamilto-
nian in our standard form

H = (ε− T )c†1c1 + (ε+ T )c†2c2 +
U

2

[
c†1c
†
2c2c1 + c†2c

†
1c1c2

]
, (3.207)

where by comparison with (3.182) we can read off the non-vanishing coefficients ε1 = ε − T ,
ε2 = ε + T , u1212 = u2121 = U . The single-particle chemical potential is again fixed by the
expectation value of the total particle number

〈N〉 = f(χ∗1) + f(χ∗2) , (3.208)

which for 〈N〉 = 1 simply becomes µ1 = 1/2(χ∗1 + χ∗2).

From this, we see that we need to solve the equations

χ∗1 = ε− T + Uf(χ∗2) = ε− T +
U

eβ(χ∗2−µ∗) + 1
,

χ∗2 = ε+ T + Uf(χ∗1) = ε+ T +
U

eβ(χ∗1−µ∗) + 1
,

〈N〉 = f(χ∗1) + f(χ∗2) =
1

eβ(χ∗1−µ∗) + 1
+

1

eβ(χ∗2−µ∗) + 1
(3.209)

self-consistently for the single-particle energies χ∗i and the chemical potential µ∗. If we instead
applied our recipe (3.193), the effective Hamiltonian would read

Heff = (ε− T )c†1c1 + (ε+ T )c†2c2 + U
〈
c†1c1

〉
eff
c†2c2 + U

〈
c†2c2

〉
eff
c†1c1 , (3.210)

which leads to precisely the same single-particle equations – provided the self-consistency is
respected. The approximation to the grand-canonical density matrix is then given by

ρgc ≈
e−β[(χ∗1−µ∗)c

†
1c1+(χ∗2−µ∗)c

†
2c2]

Tr
{
e−β[(χ∗1−µ∗)c

†
1c1+(χ∗2−µ∗)c

†
2c2]
} . (3.211)

It is truly necessary to solve these equations self-consistently, which yields a satisfactory agree-
ment with the exact solution for small values of U and also for extremely large values of U , see
Fig. 3.5. For example, inserting just the interaction-free values of the single-particle energies
ε± T in the Fermi functions, the exact solution is hardly reproduced (dashed orange).



3.2. INTERACTING ELECTRONS 77

0 1 2 3 4

interaction strength βU

0

0,05

0,1

0,15

0,2

d
o
u

b
le

 o
cc

u
p

at
io

n
 p

ro
b

ab
il

it
y
 <

n
1
n

2
>

exact solution
Hartree-Fock (self-consistent)

not self-consistent solution

Figure 3.5: Plot of the two-electron-occupation

probability
〈
c†1c1c

†
2c2

〉
for the exact solu-

tion (solid black, Eq. (3.204)), for the Hartree-
Fock approximation (solid red, Eq. (3.211)),
and for an inconsistent application of the
Hartree-Fock approximation (dashed orange),
where in the arguments of the Fermi functions
the single-particle energies are replaced by the
values at vanishing interaction. Other parame-
ters: βε = 1, βT = 2, 〈N〉 = 1.

3.2.5 Example: Jellium model

To treat the homogeneous electron gas within Hartree-Fock approximation, we add a positive
background density ρ(r), which in the most idealized limit could be a homogeneous background
density eρ0 = eNe

V
, where e is the electron charge, Ne is the number of electrons and V is the total

physical volume. More realistically, this should be a summation of point charges distributed at
the ion positions. In first quantization, the Hamiltonian reads

H =
Ne∑
i=1

pi
2

2m
−

Ne∑
i=1

∫
d3r

e2ρ(r)

|ri − r|
+

1

2

Ne∑
i 6=j=1

e2

|ri − rj|
. (3.212)

We have already computed the representations of the first (momentum) and the last (electronic
repulsion) term in Eq. (3.165). The additional term is a single-particle operator, and we can
find its representation in second quantization by using the field operators

∆H = −e2

∫
d3rd3r′Φ†(r)

ρ(r′)

|r − r′|
Φ(r)

= −e2
∑
σ

∑
kk′

∫
d3rd3r′

1

V
e−ikr ρ(r′)

|r − r′|
e+ik′rc†

kσ
ck′

σ

= −e2
∑
σ

∑
kk′q

∫
d3rd3r′′

1

V
e−ikre+ik′r ρ(−q)

q2
e+iq(r−r′′)c†

kσ
ck′

σ

= −e2
∑
σ

∑
kq

4πρ(−q)

q2
c†
kσ
ck−q,σ = −4πe2

∑
σ

∑
kq

ρ(q)

q2
c†
k−q,σ

ck,σ . (3.213)

Here, we have introduced the Fourier transform of the charge density (for a truly homoge-
neous background charge density, the contribution q = 0 to the sum would diverge) via the
decomposition

ρ(r) =
∑
q
ρ(−q)e+irq . (3.214)

Altogether, the full Hamilton operator in second quantization reads

H =
∑
kσ

~2k2

2m
c†
kσ
ckσ − 4πe2

∑
σ

∑
kq

ρ(q)

q2
c†
k−q,σ

ck,σ +
1

2

∑
σσ′

∑
kk′q

4πe2

V q2
c†
k−q,σ

c†
k′

+q,σ′
ck′

,σ′
ck,σ .

(3.215)
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To this example, we can now apply the single-particle aproximation

Heff =
∑
k

∑
σ

χkσc
†
kσckσ (3.216)

and determine the single-particle energies χkσ self-consistently.
To avoid the lengthy minimization procedure, we directly follow the recipe (3.193) and

obtain for the effective Hamiltonian

Heff =
∑
kσ

~2k2

2m
c†
kσ
ckσ − 4πe2

∑
σ

∑
kq

ρ(q)

q2
c†
k−q,σ

ck,σ

+
1

2

∑
σσ′

∑
kk′q

4πe2

V q2

[ 〈
c†
k−q,σ

ck,σ

〉
eff
c†
k′

+q,σ′
ck′

,σ′
+
〈
c†
k′

+q,σ′
ck′

,σ′

〉
eff
c†
k−q,σ

ck,σ

−
〈
c†
k−q,σ

ck′
,σ′

〉
eff
c†
k′

+q,σ′
ck,σ −

〈
c†
k′

+q,σ′
ck,σ

〉
eff
c†
k−q,σ

ck′
,σ′

]
=
∑
kσ

~2k2

2m
c†
kσ
ckσ − 4πe2

∑
σ

∑
kq

ρ(q)

q2
c†
k−q,σ

ck,σ

+
∑
σ

∑
kq

4πe2

V q2

∑
σ′k′

〈
c†
k′

+q,σ′
ck′

,σ′

〉
eff

 c†
k−q,σ

ck,σ

−
∑
σ

∑
kk′

4πe2

V (k − k′)2

〈
c†
k′
σ
ck′

σ

〉
eff
c†
kσ
ckσ . (3.217)

Now, we use that the FT of the charge density can be written as

ρ(q) =
1

V

∫
〈ρ(r)〉 e+iqrd3r =

1

V

∫
d3r

〈∑
i

δ(r − ri)

〉
e+iqrd3r =

1

V

∑
i

〈
eiqri

〉
=

1

V

∫
d3r
〈
Φ†(r)eiqrΦ(r)

〉
=

1

V

∑
kk′

,σ

1

V

∫
e−ikre+ik′re+iqrd3r

〈
c†
kσ
ck′

σ

〉
eff

=
1

V

∑
kk′

,σ′

δ(k − k′ − q)
〈
c†
kσ′

ck′
σ′

〉
eff

=
1

V

∑
k′σ′

〈
c†
k′

+q,σ′
ck′

,σ′

〉
eff
. (3.218)

This means that the two summations with q in the previous equation cancel and we are left
with

Heff =
∑
kσ

~2k2

2m
− 1

V

∑
k′

4πe2

V (k − k′)2

〈
c†
k′
σ
ck′

σ

〉
eff

 c†
kσ
ckσ , (3.219)

which is the effective single-particle Hamiltonian in Hartree-Fock approximation. The effective
single-particle energies have to be determined self-consistently

εkσ =
~2k2

2m
−
∑
k′

4πe2

V (k − k′)2

〈
c†
k′
σ
ck′

σ

〉
eff

=
~2k2

2m
− 1

V

∑
k′

4πe2

(k − k′)2

1

eβ(εk′σ−µ) + 1
. (3.220)

Still, we see that in the summation over k′, the case k′ = k leads to a divergent contribution, and
the reason for this is the long-range Coulomb interaction. Within the Hartree-Fock approxima-
tion with bare Coulomb interaction, it is not possible to overcome this artifact. Using a screened
Yukawa potential Φ(r) = Q

r
e−δr would correspond to the replacement (k−k′)2 → (k−k′)2+δ2.

Therefore, we discuss below how screened potentials may arise.
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3.2.6 Thomas-Fermi theory of screening

From electrodynamics we know that an external field applied to a medium with charges that
can move will lead to a polarization of these charges. This in turn will lead to a change of the
external field, which acts on the charges, and so on. Here, we will discuss that this self-consistent
solution may explain the screening effect.

From electrostatics we recall that polarization effects are effectively described by a dielec-
tric tensor ε [7, 8], which relates displacement field D and electric field E typically linearly

D(r) = ε(r)ε0E(r) =

[
1 + χ(r)

]
ε0E(r) = ε0E(r) +P (r). Here, the tensor χ is the dielectric

susceptibility, it describes how the polarization P of the medium is related to the external field.
However, it should be noted that this already involves some approximations: For example, for
large fields the polarization will in general not scale linearly with the external field. Further-
more, the polarization at position r will depend on the field also at different positions r′, such
that in reality the relations between external electric field and polarization are more difficult.
Following Ref. [4], we consider the potential Φ0(r) due to an unscreened charge density ρ0(r),
which obeys the Poisson equation

∆Φ0(r) = −4πρ0(r) . (3.221)

The full potential does of course also fulfill a Poisson equation

∆Φ(r) = −4πρ(r) = −4π
[
ρ0(r) + ρind(r)

]
, (3.222)

where ρind(r) is the induced charge density due to the polarizability of the medium. One
assumes that the bare potential and the full potential are related via a convolution

Φ0(r) =

∫
d3r′ε(r, r′)Φ(r′) =

∫
d3r′ε(r − r′)Φ(r′) , (3.223)

where we assumed an isotropic medium, where the dielectric tensor is just a scalar, which should
in addition only depend on the difference between the positions but not on their absolute values.
To relate with simpler results, we can consider the corresponding equation for the displacement
fields and take the limit where the fields vary rather slowly over the range on which ε(r) changes

D(r) ≡
∫
d3r′ε(r − r′)E(r′) ≈

[∫
d3r′ε(r′)

]
E(r) = εE(r) . (3.224)

Performing a 3d Fourier transform of all quantities in the convolution equation, we obtain that
the Fourier transforms of the bare and full potentials are related linearly

Φ0(q) = ε(q)Φ(q) . (3.225)

Here, ε(q) is the FT of ε(r). In addition, we can compute the FT of the two Poisson equations
for the bare and the full potential

q2Φ0(q) = 4πρ0(q) , q2Φ(q) = 4πρ(q) , (3.226)

which yields

q2

4π
[Φ(q)− Φ0(q)] = ρind(q) = χ(q)Φ(q) . (3.227)
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Here, χ(q) is the FT of the dielectric susceptibility. Solving for the potential, we get the relation

Φ(q) =
Φ0(q)

1− 4πχ(q)

q2

. (3.228)

With Eq. (3.225), this links the FT of ε(r) to the FT of the electric susceptibility

ε(q) = 1− 4π

q2
χ(q) = 1− 4π

q2

ρind(q)

Φ(q)
. (3.229)

Now, the Thomas 5-Fermi approach starts from the single-electron Schrödinger equation in
presence of the full potential

−~2∇2

2m
Ψi(r)− eΦ(r)Ψi(r) = εiΨi(r) , (3.230)

where i is a quantum number, εi are the eigenenergies and Ψi(r) are the corresponding eigen-
functions. When we assume that the total potential varies very slowly, we can discretize space
in many volume elements, and for each volume element approximate the potential by a con-
stant. The dispersion relation in each volume element is then just the plane-wave dispersion
relation – shifted by the constant, i.e.,

εr(k) =
~2k2

2m
− eΦ(r) . (3.231)

For each volume element, we can compute the density of electrons via

nr =
1

V

∑
k

〈
c†
k
ck

〉
=

1

(2π)3

∫
d3k

1

exp[β(εr(k)− µ)] + 1
. (3.232)

Now, in absence of any potential, this equation would read

n0(µ) =

∫
d3k

(2π)3

1

exp[β(~
2k2

2m
− µ)] + 1

, (3.233)

and the induced charge density is given by the difference of the particle density in presence of a
potential and the particle density in absence of a potential – multiplied by the electron charge

ρind(r) = −e[n0(µ+ eΦ(r))− n0(µ)] ≈ −e2∂n0(µ)

∂µ
Φ(r) , (3.234)

where we have used that the shift due to the electric field potential can be equally well de-
scribed as a shift of the chemical potential and performed a Taylor series for small Φ. Fourier-
transforming and comparing this with Eq. (3.227), we conclude that the susceptibility and
derived dielectric constant do both not depend on q

χ(q) = −e2∂n0(µ)

∂µ
, ε(q) = 1 +

4πe2

q2

∂n0(µ)

∂µ
. (3.235)

Now, let us finally consider the bare potential of a point charge and its FT

Φ0(r) =
Q

r
, Φ0(q) =

4πQ

q2
, (3.236)

5Llewellyn Hilleth Thomas (1903–1992) was a british-american physicist.
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where we had computed the 3d FT of a 1/r term before. From Eq. (3.225), we get the FT of
the full potential

Φ(q) =
Φ0(q)

ε(q)
=

4πQ

q2 + 4πe2 ∂n0(µ)
∂µ

≡ 4πQ

q2 + k2
TF

, (3.237)

where kTF is also known as Thomas-Fermi wavevector. Inverting the FT, we get the
screened Coulomb potential (we have effectively computed this before in Sec. 3.2.2 when dis-
cussing the regularization of an integral)

Φ(r) =
Q

r
e−kTF r . (3.238)

In the theory of mesons, an analogous form had been derived, such that such a potential is also
known as Yukawa potential 6

3.2.7 Lindhard theory of screening

In the previous chapter, we used that the external potential is weak and that it varied slowly,
such that we could assume an equilibrium distribution in the small volume elements. Since
on top of this, we used the assumption that the field potential was small, we may directly
obtain the induced charge density from applying perturbation theory in the strength of the
field potential to the Schrödinger equation

−~2∇2

2m
Ψk(r)− eΦ(r)Ψk(r) = εkΨk(r) . (3.239)

In general, for a splitting H = H0 + H1 and free (non-degenerate) eigenvalues H0

∣∣∣Ψ(0)
k

〉
=

E
(0)
k

∣∣∣Ψ(0)
k

〉
, the correction to first order on the eigenvectors is given by

|Ψk〉 =
∣∣∣Ψ(0)

k

〉
+
∑
q 6=k

〈
Ψ

(0)
q

∣∣∣H1

∣∣∣Ψ(0)
k

〉
ε

(0)
k − ε

(0)
q

∣∣Ψ(0)
q

〉
+ . . . =

∣∣∣Ψ(0)
k

〉
+
∣∣∣Ψ(1)

k

〉
+ . . . . (3.240)

Specifically, the free problem solutions are just plane waves with εk = ~2k2

2m
and

〈
r|Ψ(0)

k

〉
=

1√
V
e+ikr ,

〈
r|Ψ(1)

k

〉
=
∑
q 6=k

〈
Ψ

(0)
q

∣∣∣H1

∣∣∣Ψ(0)
k

〉
ε

(0)
k − ε

(0)
q

1√
V
e+iqr , (3.241)

and we use for the perturbation

H1 = −eΦ(r) . (3.242)

Then, we get that the matrix element in the correction is just given by the FT of the full
potential

〈
Ψ(0)
q

∣∣H1

∣∣∣Ψ(0)
k

〉
= − e

V

∫
d3re+i(k−q)rΦ(r) = −eΦ(k − q) . (3.243)

6Yukawa Hideki (1907–1981) was a japanese physicist and Nobel laureate.
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When one inserts this in the particle density at position r (the factor of two results from the
spin)

n(r) = 2
∑
k

f(εk)
∣∣Ψk(r)

∣∣2 , f(εk) =
1

e
β(εk−µ)

+ 1
, (3.244)

we would get to first order

n(r) = 2
∑
k

f(εk)
〈
r|Ψk

〉 〈
Ψk|r

〉
= 2

∑
k

f(εk)
〈
r|Ψ(0)

k

〉〈
Ψ

(0)

k
|r
〉

+ 2
∑
k

f(εk)
[〈
r|Ψ(0)

k

〉〈
Ψ

(1)

k
|r
〉

+
〈
r|Ψ(1)

k

〉〈
Ψ

(0)

k
|r
〉]

+ . . .

(3.245)

The second term (and higher corrections) is identified as the induced particle density, such that
we get for the induced charge density

ρind(r) = −2e
∑
k

f(εk)
[〈
r|Ψ(1)

k

〉〈
Ψ

(0)

k
|r
〉

+ h.c.
]

= +
2e2

V

∑
k 6=q

f(εk)

[
e−ikrΦ(k − q)

εk − εq
e+iqr + h.c.

]

= +
2e2

V

∑
k

∑
q 6=0

f(εk)
e−iqrΦ(q) + e+iqrΦ(−q)

~2

m
kq − ~2q2

2m

= +
∑
q 6=0

e−iqr

2e2

V

∑
k

f(εk)

 1

~2

m

(
k − q

2

)
q
− 1

~2

m

(
k +

q
2

)
q

Φ(q)


= +

∑
q 6=0

e−iqr

2e2

V

∑
k

f(εk+q/2)− f(εk−q/2)

~2kq/m
Φ(q)

 . (3.246)

The term in square brackets must now apparently be the FT of the induced charge density (the
exclusion of the q = 0 term is not problematic in the continuum limit). Therefore, we conclude

ρind(q) =
2e2

V

∑
k

f(εk+q/2)− f(εk−q/2)

~2kq/m
Φ(q) = χ(q)Φ(q) , (3.247)

and the FT of the susceptibility becomes

χ(q) =
2e2

V

∑
k

f(εk+q/2)− f(εk−q/2)

~2kq/m
→ e2

∫
d3k

4π3

f(εk+q/2)− f(εk−q/2)

~2kq/m
. (3.248)

This is known as the Lindhard 7 susceptibility [9]. As a consistency check, we consider the limit
of small q, where we can expand the Fermi functions to get

χ(q → 0)→ −e2

∫
d3k

4π3

∂f(εk)

∂µ
= −e2∂n0(µ)

∂µ
, (3.249)

7J. Lindhard (1922–1997) was a danish theoretical physicist.
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Figure 3.6: Plot of the Lindhard func-
tion (3.252) with asymptotic behaviour. At x =
1, the first derivative diverges, while F (1) =
1/2.

which is just the Thomas-Fermi susceptibility from Eq. (3.235). Inserting the general Lindhard
susceptibility into the FT of the dielectric constant one arrives at

ε(q) = 1− 4π

q2
χ(q) = 1− e2m

~2π2q2

∫
d3k

f(εk+q/2)− f(εk−q/2)

kq
. (3.250)

At zero temperature T = 0, this integral can be simplified by constraining the integration over
k by the Fermi surface, and one obtains (lengthy exercise [10, 3])

lim
T→0

ε(q) = 1 +
4mkF e

2

π~2q2
F

(
q

2kF

)
, (3.251)

with Fermi wavenumber kF (related to EF = ~2k2
F/(2m)) and with the Lindhard function

F (x) =
1

2
+

1− x2

4x
ln

∣∣∣∣1 + x

1− x

∣∣∣∣ . (3.252)

The Lindhard function is non-analytic at x = 1 (mapping to q = 2kF ), where its first derivative
diverges, see Fig. 3.6. Eventually, this results in an oscillatory behaviour of the reverse FT.

We can compute the screened Coulomb potential of a point charge from the reverse FT

Φ(r) =

∫
d3q

(2π)3
Φ(q)e−iqr =

∫
d3q

(2π)3

4πQ

q2 − 4πχ(q)
e−iqr . (3.253)

At zero temperature, an analytic calculation of the screening is possible

Φ(r) =

∫
d3q

(2π)3

4πQ

q2 + 4mkF e2

π~2 F
(

q
2kF

)
= . . . =

(
kTF

4kF ε(2kF )

)2
cos(2kF r)

r3
. (3.254)

Here, we recall the definition of the Thomas-Fermi wavenumber k2
TF = 4πe2 ∂n0(µ)

∂µ
. This

means that the screening does not only affect the farfield behaviour, but also the near-field be-
haviour of a screened potential is different. Furthermore, the screening behaviour is in general
temperature-dependent. To obtain the Lindhard approximation, we performed a perturbative
expansion in the field strength, such that one should treat the small r behaviour – where already
the bare potential Φ0(r) is large – with caution. Nevertheless, what is also observed is that
the screened potential exhibits oscillations (so-called Friedel 8 oscillations), see Fig. 3.7. These

8Jacques Friedel (1921 – 2014) was a French physicist and material scientist.
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Figure 3.7: Plot of bare (solid black), Yukawa
(dashed red), and Lindhard (solid green) po-
tentials versus distance r. Parameters kTF = 1,(

kTF
4kF ε(2kF )

)2

= 4, 2kF = 1. The screened Lind-

hard potential exhibits weak oscillations.
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oscillations of the potential eventually map to oscillations of the observed electronic particle
density, and similar effects can be observed also for other charged particles.

The Lindhard screening model fits well for metals, where the free electron model does apply
aproximately. Further modifications are necessary for insulators and semiconductors [3].

3.2.8 Basics of the density functional theory

The fact that interacting models are notoriously difficult to treat, has given rise to the devel-
opment of many different methods. In recent years, the density functional theory has become
quite important, and we will briefly discuss its main ideas. The Hamiltonian considered is still
given by

H =
∑
i

p2
i

2m
+
∑
i

V (ri) +
∑
i<j

e2

|ri − rj|
, (3.255)

where pi and ri are position and momentum operators for the i-th electron, and V (ri) is the
background potential of the ions felt by the i-th electron.

The probability density to find the first electron at r1, the second at r2, and so on is given
by the square of the many-particle wave function, which at zero temperatures is just the ground
state of the system

P (r1, . . . , rN ) = |Ψ0(r1, . . . , rN )|2 . (3.256)

However, since the electrons are indistinguishable, we have to consider the particle density in
the ground state instead

n0(r) =

∫
d3r1 . . .

∫
d3rNΨ∗0(r1, . . . , rN )

[
N∑
i=1

δ(r − ri)

]
Ψ0(r1, . . . , rN ) . (3.257)

The theorem of Hohenberg 9 and Kohn 10 tells us that the ground state energy can be found
from the particle density.

Box 13 (Hohenberg-Kohn theorem) The ground state energy is a unique functional of the
ground state particle density n0(r).

9P.C. Hohenberg (1934–2017) was a US-american theoretical physicist.
10W. Kohn (1923–2016) was a US-american physicist and Nobel laureate.
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This statement is not trivial. Clearly, we can uniquely assign an energy to any wave function
via E = 〈Ψ|H |Ψ〉, i.e., the ground state energy is clearly a functional of the ground state wave
function. However, for the particle density we still have to show that. Let us assume that we
have two different normalized and non-degenerate ground states |Ψ0〉 and |Ψ′0〉 that result from
different Hamiltonians H |Ψ0〉 = E0 |Ψ0〉 and H ′ |Ψ′0〉 = E ′0 |Ψ′0〉. We furthermore use that the
difference in the Hamiltonians can only come from the single-particle potential, since for a given
number of electrons, the kinetic and electron-electron interactions are fixed H = H ′ + V − V ′.
The Rayleigh-Ritz theorem tells us that when these states are different, we must have

E0 = 〈Ψ0|H |Ψ0〉 < 〈Ψ′0|H |Ψ′0〉 = 〈Ψ′0| (H ′ + V − V ′) |Ψ′0〉

= E ′0 +

∫
d3r1 . . .

∫
d3rNΨ∗

′

0 (r1, . . . , rN )

[∑
i

V (ri)− V ′(ri)

]
Ψ′0(r1, . . . , rN )

= E ′0 +

∫
d3r

∫
d3r1 . . .

∫
d3rNΨ∗

′

0 (r1, . . . , rN )

[∑
i

δ(r − ri)

]
[V (r)− V ′(r)] Ψ′0(r1, . . . , rN )

= E ′0 +

∫
d3r[V (r)− V ′(r)]n′(r) . (3.258)

Analogously, we get

E ′0 < E0 +

∫
d3r[V ′(r)− V (r)]n(r) . (3.259)

Adding these inequalities leads – as we assumed n(r) = n′(r) – to a contradiction, and hence
we conclude that the initial assumption (different Hamiltonians with different ground states)
was wrong, such that for equal particle densities we must have |Ψ′0〉 = |Ψ0〉 (up to a global
phase of course).

Together with the Rayleigh-Ritz minimization principle, this allows to obtain the ground
state energy from a minimization of the energy functional E[n(r)] of the particle density and
not of the wave function, i.e.,

E0 = E[n0(r)] ≤ E[n(r)] . (3.260)

In particular, the density, for which the energy functional assumes its global minimum, is then
the ground state density. Formally, we have a minimization problem under side constraints

δ

[
E[n(r)]− µ

(∫
d3rn(r)−Ne

)]
, (3.261)

where the chemical potential µ acts as a Lagrange multiplier and Ne is the total electron
number, and we have to vary over all possible particle densities that are formally written as
〈Ψ| (

∑
i δ(r − ri)) |Ψ〉. The problem is, we do not know the functional that should be mini-

mized. Assuming that the energy functional is additively composed from kinetic, background
potential and interaction potential contributions

E[n(r)] = T [n(r)] + V [n(r)] + U [n(r)] , (3.262)

we only know the functional dependence of the potential energy (compare the proof of the
Hohenberg-Kohn theorem above):

V [n(r)] =

∫
d3rV (r)n(r) . (3.263)
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Instead, the functional for the kinetic energy is not known – we can only calculate its value
when we know the wave function

T [n(r)]=̂ 〈Ψ|
∑
i

pi
2

2m
|Ψ〉 . (3.264)

Also, the functional for the interaction is not known – here it is customary to approximate it
by a classical ansatz

U [n(r)] =
e2

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r − r′|
+ Ex[n(r)] . (3.265)

Here, the first term corresponds to the classical interaction energy of a charge distribution
ρ(r) = −en(r), and the second term (called exchange-correlation-energy) is unknown. There-
fore, to proceed, one needs the functionals of kinetic and interaction terms. These can be
guessed from exactly solvable cases such as the homogeneous electron gas. However, it should
be stressed that even if the density functional theory applies, we can only use it to determine
the ground state energy and the corresponding ground state particle density, for the finite-
temperature behaviour other methods need to be applied.



Chapter 4

Electron-Phonon Interaction

So far, we understood solids as a complicated problem of electrons and nuclei, where we want
to take the electron-electron as well as the electron-nucleus interactions into account. In the
discussion of the Born-Oppenheimer approximation in Sec. 2.2, we learned that due to the
large asymmetry between nucleus and electron masses, we could treat the electrons and nuclei
at least partially independently: First, the electronic Schrödinger equation had to be solved,
by inserting the positions of the nuclei as classical variables. The resulting electronic wave
function then had to be taken to generate a background potential for the nuclei.

Swapping the order, we discussed in section 2.4 how an effective electronic potential with
postulated equilibrium positions for the nuclei at the lattice nodes would – upon expansion –
lead to a harmonic potential for the nuclei, which could be quantized with bosonic annihilation
and creation operators. This led to the concept of a phonon, and we learned how the structure of
a crystal (dimension, type and basis) would upon application of a normal mode decomposition
give rise to different phonon modes (acoustic and optical modes), we arrived in Eq. (2.115) at
a phonon Hamiltonian of the form

Hph =
∑
qj

~ωj(q)

(
b†qjbqj +

1

2

)
, (4.1)

with bosonic annihilation operators bqj of normal mode q, j in the first Brillouin zone and
phonon branch index j denoting the optical or acoustic branch. Here, ωj(q) was the phonon
dispersion relation, with different behaviour depending on optical or acoustic modes.

In the previous chapter, specifically Sec. 3.1, we discussed how the electronic Schrödinger
equation could be solved for periodic background potentials of the nuclei. This means, we
assumed that the nuclei were fixed at their lattice positions, neglecting both the presence of
phonons and also the zero-point motion of the nuclei. When in addition we neglected the
electron-electron interaction, this led to electronic Hamiltonians (3.111) of the form

Hel =
∑
kνσ

εkνc
†
kνσ

ckνσ , (4.2)

with fermionic annihilation operators ckνσ for an electron in band ν, wave number k in the first
Brillouin zone and spin σ. With taking electron-electron interactions into account in Sec. 3.2,
we arrived at representations with additional quartic terms (e.g. in the homogeneous electron
gas or the Hubbard model)

Hee =
1

2

∑
k1,k2q

∑
σσ′

∑
νν′

uk1+q,ν,k2−q,ν′;k2,ν′,k1,νc
†
k1+q,ν,σ

c†
k2−q,ν′,σ′

ck2ν′σ′ck1νσ , (4.3)

87
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which could be intuitively interpreted as an elastic scattering event of two electrons, entering at
momenta k1 and k2, exchanging momentum 2q, and leaving the scattering region with momenta
k1 + q and k2 − q, while keeping their spin (exact) and their band index (approximate).

So what is left in this picture is now to take deviations of the nuclei positions from their
lattice position into account, but now in the equations for the electrons.

4.1 The Fröhlich model of electron-phonon interaction

The position of the n-th nucleus is then given by

Rn = R0
n + un , (4.4)

where the un is the displacement of the n-th ion from its equilibrium position, see also Fig. 2.3.
Typically, these displacements are below 10 percent of the lattice constant, since for larger dis-
placements the solid will start to melt. This means that we are allowed to expand the potential
around the equilibrium position of the nuclei. However, there is one important difference: For
the nuclei, we expanded the potential felt by the nuclei around the equilibrium position of the
nuclei, and therefore the first order vanished. Here, the equilibrium position of the nuclei is not
the equilibrium position of the potential felt by the electrons, therefore, the first order term
does not vanish but mediates the electron-phonon interaction.

Specifically, we can write the background potential felt by the ith electron as

V (ri) =
N∑
n=1

v(ri −R0
n)−

N∑
n=1

[
∇v(ri −R0

n)
]
· un + . . . . (4.5)

Here, N is the total number of nuclei (ions) and ri is the position of the i-th electron. We note
that only the lowest order contribution is periodic with respect to lattice vector shifts R

Vper(r) =
N∑
n=1

v(ri −R0
n) = Vper(r +R) , (4.6)

and consequently all the properties such as Bloch theorem etc. only hold when neglecting the
influence of the phonons completely.

We will sketch how to compute the representation of the electron-phonon interaction in
second quantization

Hel−ph = −
N∑
n=1

∑
kk′

σ

〈k′|Vel−ph(r) |k〉 c†
k′
σ
ckσ . (4.7)

Here, we have already used that the spin is not flipped. Accordingly, we need to evaluate the
matrix element of the single-particle operator

〈k′|Vel−ph(r) |k〉 =
N∑
`=1

∫
d3rΨ∗k′(r)

[
∇v(r −R0

`)
]
· u`Ψk(r) . (4.8)

The most important ingredient is now that we can map the displacement of the `-th ion to
bosonic operators [3]

u` =
1√
N

∑
qj

√
~

2Mωj(q)

(
bqj + b†−q,j

)
ej(q)e+iqR0

` . (4.9)
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Here, M is the ion mass and ej describes the polarization vector of branch j. Inserting all this,
we arrive at the Fröhlich 1-Model for the electron-phonon interaction

Hel−ph =
∑
kq

∑
G

∑
j

∑
ν

∑
σ

M j

k,q+G

(
bq,j + b†−q,j

)
c†
k+q+G,ν,σ

ck,ν,σ (4.10)

with matrix elements M j

k,q+G
. Here, the sums over k and q run over the first Brillouin zone

and become continuous in the large N limit. The sum over G runs over all reciprocal lattice
vectors and remains discrete. The sum over j denotes the phonon branch index, and the sum
over ν the electronic band index. The Hamiltonian has a simple interpretation. In particular,
the term bq,jc

†
k+q+G,ν,σ

ck,ν,σ is interpreted as an incoming electron with wavenumber k, band

index ν, and spin σ absorbing a phonon from branch j and with wavenumber q, leaving the
interaction region as an electron with wavenumber k + q +G but unchanged band index and
spin. Likewise, the other term b†−q,jc

†
k+q+G,ν,σ

ck,ν,σ describes the emission of a phonon with

wavenumber −q and branch j by an incoming electron of band index ν and spin σ.
Importantly, we see that the full quasi-momentum is not conserved in this process, this

holds true only up to a lattice vector G of the reciprocal lattice. As k + q may lie outside
the first Brillouin zone, we have to add a reciprocal lattice vector, such that k + q +G lies in
the first Brillouin zone again. Since adding a reciprocal lattice vector may nearly completely
change the wavenumber, such processes (where G 6= 0) are called Umklapp processes. In
principle, it would be possible that phonons also change the band index etc.

We can combine these things in the complete electron-phonon Hamiltonian.

Box 14 (Electron-Phonon Hamiltonian) Denoting the electron band index by ν, the elec-
tron spin by σ, the phonon branches by j, the Hamiltonian is given by

H =
∑
kνσ

εν(k)c†
kνσ

ckνσ +
∑
qj

~ωj(q)

(
b†q,jbq,j +

1

2

)
+

1

2

∑
k1k2q

∑
σσ′

∑
νν′

uk1+q,ν,k2−q,ν′;k2,ν′,k1,ν
c†
k1+q,ν,σ

c†
k2−q,ν′,σ′

ck2,ν′,σ′
ck1,ν,σ

+
∑
kq

∑
G

∑
ν

∑
j

∑
σ

M j

k,q+G

(
bq,j + b†−q,j

)
c†
k+q+G,ν,σ

ck,ν,σ . (4.11)

Here, the first two lines are the free electron and phonon Hamiltonians, respectively, the second
line denotes the electron-electron interaction, and the last line encodes the electron-phonon
interaction with matrix element M j

k,q+G
.

To memorize this Hamiltonian, it is useful to represent the interaction processes by di-
agrams, where it is conventional to use wave lines for the phonons and solid lines for the
electrons, see Fig. 4.1. From these elementary processes we already learn that both the elec-
tronic and phononic wavenumbers k and q are no good quantum numbers, as the electrons may
be scattered into different k modes, and new phonons with wave numbers q may be created. In
particular, these scattering processes are the main reason for electric resistance, with phonon
contributions dominating at high temperature. The remaining contribution is generated by

1H. Fröhlich (1905–1991) was a german physicist who published a famous work on the elctron phonon
interaction in 1950.
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Figure 4.1: Diagrams for the electron-electron Coulomb interaction (solid and dashed line, left)
and elementary electron-phonon processes for he absorbtion and emission of a phonon by an
electron (solid and wavy lines, right). The electron spin is not changed, and usually also the
band index is invariant.

Figure 4.2: Classically, the emission and re-
absorbtion of a phonon by a moving electron
can be interpreted as a localized lattice polar-
ization, that is attached to the electron – called
a polaron.

deviations from the ideal lattice structure. Further, the phonon particle number is obviously
not conserved, while the electronic particle number (and spin) is.

Such elementary processes can be combined in larger diagrams (with multiple vertices),
which can mediate effective interactions. For example, an electron may emit phonon(s) and
re-absorb them later-on, see Fig. 4.2. Such a localized lattice polarization that is attached to
an electron is called polaron. It is a quasi-particle which consists of a real-particle (the
electron) and another quasi-particle (the phonons).

Alternatively, the emitted phonon(s) can be absorbed by another electron, leading to an
effective scattering process between two electrons, see Fig. 4.3.

Further processes are conceivable. For example, the diagrams can be understood as effective,
with lines representing e.g. only the creation of free electrons in the conduction band. Then,

Figure 4.3: Emitted phonons may be ab-
sorbed by other electrons. Unlike shown
in the figure, the mediated effective inter-
action may be attractive.
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phonons can even create an electron-hole pair by exciting an electron from the valence band
into the conduction band. Altogether, there are some analogies between diagrams of electron-
phonon interactions and those in quantum field theory, where the effective interaction between
electrons is mediated by photons.

4.2 Method: The polaron transform and Hamiltonian of

mean force

The polaron transfom is a useful method for a unitary mapping of Hamiltonians with a linear
coupling to a non-interacting bosonic reservoir.

Box 15 (electronic polaron transform) The small polaron transform (also: Lang-Firsov
transform) is a unitary transform defined by

U = eA(αb−α∗b†) , (4.12)

where A = A† is an operator acting on a different Hilbert space than the bosonic operators b
and b†, and where the coefficients α ∈ C can be chosen conveniently.

In the electronic context, we will see that we will often choose A as the particle number
operator of electrons, e.g.

A =
∑
k

c†kck . (4.13)

Below, we will practice its application at some simple models. In the evaluation of the polaron
transform, it will be helpful to use that

e+SAe−S = A+ [S,A] +
1

2!
[S, [S,A]] + . . . =

∞∑
n=0

1

n!
[S,A]n , (4.14)

where the generalized commutator is defined recursively as

[S,A]n+1 = [S, [S,A]n] , [S,A]0 = A . (4.15)

Another useful concept for bipartite systems is the Hamiltonian of mean force.

Box 16 (Hamiltonian of mean force) For a bipartite system with parts A and B, which is
described by the full Hamiltonian H = HA +HB +HAB with [HA, HB] = 0 the Hamiltonian of
mean force is implicitly defined by the reduced density matrix of the global canonical equilibrium
state

e−βH
∗
A

TrA {e−βH
∗
A}

= TrB

{
e−β(HA+HB+HAB)

TrAB {e−β(HA+HB+HAB)}

}
. (4.16)

The r.h.s. is just the reduced density matrix of a global Gibbs state. It can always be
written as the exponential of a different Hamiltonian as the reduced density matrix is positive
semidefinite. For consistency, we note that it will be equal to HA when HAB = 0. The
Hamiltonian of mean force can be seen as the effective Hamiltonian that acts on a system in
presence of some environment, but in general it is very hard to compute and will obviously
depend on the temperature.
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4.2.1 Example: A single phonon-coupled quantum dot

Reducing the complexity of the Fröhlich Hamiltonian, we can consider just one electronic mode
(i.e., no spin, no bands, no wave numbers) and just one phonon mode (no branches, no wave
numbers). Then, there cannot be any electron-electron interaction and only the terms with
q = 0 and G = 0 in the complete Hamiltonian remain. We can therefore suppress all indices
and the system is given by

H = εc†c+ λ(b+ b†)c†c+ Ωb†b . (4.17)

Here, λ describes the coupling between the electrons (c) and the phonons (b). The model could
be realized in a quantum dot that is hosted on a small molecule, where the phonons represent
just one particular vibrational mode of the molecule. It would be trivial if the electron number
were not allowed to change: We would either have an electron on the molecule or not for all
times, and we could eliminate the electronic operators from the Hamiltonian by replacing them
with their eigenvalue c†c→ {0, 1}, leaving it either a normal oscillator

H0 = Ωb†b (4.18)

with spectrum

E0
n = Ωn , (4.19)

or a displaced oscillator

H1 = ε+ λ(b+ b†) + Ωb†b = ε+ Ω

(
b† +

λ

Ω

)(
b+

λ

Ω

)
− λ2

Ω
. (4.20)

Since b̃ = b + λ
Ω
1 is also a valid bosonic annihilation operator, we can immediately conclude

the spectrum of the displaced oscillator

E1
n = ε− λ2

Ω
+ Ωn . (4.21)

Some interesting dynamics can be introduced into the model by coupling it to electronic
leads [12], which allow for electrons entering the quantum dot and leaving it. In particu-
lar, an electron jumping into the system will not just create an electron, but it will be dressed
by a whole cloud of phonons. Formally, this can be seen by the polaron transform. For example,
one can show that the polaron transform acts on the bosonic and fermionic operators as

UbU † = b+ [c†c(αb− α∗b†), b] + . . . = b+ α∗c†c ,

Ub†U † = b† + αc†c ,

UcU † = ce−(αb−α∗b†) = d(α) ,

Uc†U † = c†e+(αb−α∗b†) = d†(α) . (4.22)

Here, the new operators d(α) and d†(α) obey fermionic statistics. To diagonalize our Hamilto-
nian, we can therefore choose α such that all couplings vanish

UHU † = εc†c+ λ(b+ α∗c†c+ b† + αc†c)c†c+ Ω(b† + αc†c)(b+ α∗c†c) , (4.23)

which decouples when

α = −λ
Ω
, (4.24)
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Figure 4.4: Bottom: Plot of electronic expec-

tation values
〈
c†c
〉

(black), phonon expecta-
tion values

〈
b†b
〉

(red) versus coupling strength.
Top: Plot of the total energy 〈H〉 and the inter-
action energy

〈
λc†c(b+ b†)

〉
. Other parameters:

βε = 1 = βΩ. The total energy is dominated
by the interaction Hamiltonian at stronger cou-
plings and is negative despite an increase in the
phonon number (with a positive contribution).

and yields the Hamiltonian

UHU † =

[
ε− λ2

Ω

]
c†c+ Ωb†b =

[
ε− λ2

Ω

]
d†
(
−λ

Ω

)
d

(
−λ

Ω

)
+ Ωb†b . (4.25)

Effectively, the energy of the dressed fermionic quasiparticle – a mini-polaron – described by
the d(α) on the dot is reduced in comparison to the single electron energy ε – for free electrons
with dispersion relation E = ~2k2/(2m) this could be interpreted as a larger mass. When we
add a coupling Hamiltonian to some fermionic lead

HI =
∑
k

tkcc
†
k + h.c. , (4.26)

we see that an electron jumping into the system creates a mini-polaron instead

UHIU
† =

∑
k

[
tkd(α)c†k + t∗kckd

†(α)
]
. (4.27)

We learn from this example that the polaron has a renormalized electronic energy.
To calculate mean expectation values, it is useful to compute the partition function, for

which it is helpful to employ the polaron transform (we do not fix the mean particle number
and do not use a chemical potential)

Zcan = Tr
{
e−βH

}
= Tr

{
Ue−βHU †

}
= Tr

{
exp

{
−β
[(
ε− λ2

Ω

)
c†c+ Ωb†b

]}}

=

[
1 + exp

{
−β
(
ε− λ2

Ω

)}]
1− e−βΩ

= Z̄elZph . (4.28)

This shows that for these types of models the polaron transform leads to a factorization of the
partition function.

Computing derivatives of the partition function with respect to all parameters in the Hamil-
tonian, we can e.g. compute mean electron and phonon occupations, see Fig. 4.4.

Let us compute the Hamiltonian of mean force. We first note that the unitary of the polaron
transform can also be written as

U = e−
λ
Ω
c†c(b−b†) = 1 + c†c

(
e
λ
Ω

(b†−b) − 1
)

= cc† + c†ce
λ
Ω

(b†−b) = cc† + c†cUph . (4.29)
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This decomposition can be helpful to evaluate the reduced density matrix of the electronic part
only. Defining H̄el = (ε− λ2/Ω)c†c, we get

ρel =
1

Zgc
Trph

{
U †Ue−βHU †U

}
=

1

Zgc
Trph

{
U †e−βH̄ele−βΩb†bU

}
=

1

Zgc
Trph

{[
cc† + c†cU †ph

]
e−βH̄ele−βΩb†b

[
cc† + c†cUph

]}
=

1

Zgc

[
e−βH̄elcc†Trph

{
e−βΩb†b

}
+ e−βH̄elc†cTrph

{
U †phe

−βΩb†bUph

}]
= e−βH̄el

Zph
Z̄elZph

=
e−βH̄el

Z̄el

. (4.30)

Here, we have used that [c†c, H̄el] = 0 = [cc†, H̄el] and also the fermionic properties. From this
we conclude that in this case, the Hamiltonian of mean force is actually independent of the
temperature

H∗el = H̄el =

[
ε− λ2

Ω

]
c†c . (4.31)

4.2.2 Example: Phonon-coupled double quantum dot

We can revisit our example of the Hartree-Fock treatment of a double quantum dot from
Sec. 3.2.4, now augmented by an electron-phonon interaction with a single phonon mode

H = ε(d†LdL + d†RdR) + Ucd
†
LdLd

†
RdR + T (d†LdR + d†RdL)

+ λ(d†LdL + d†RdR)(b+ b†) + Ωb†b

= (ε− T )c†1c1 + (ε+ T )c†2c2 + Ucc
†
1c1c

†
2c2

+ λ(c†1c1 + c†2c2)(b+ b†) + Ωb†b . (4.32)

Here, we have used the Bogoliubov transform from Sec. 3.2.4, such that c1 = (dL−dR)/
√

2 and
c2 = (dL + dR)/

√
2 and correspondingly for c†i . Now, the required polaron transform becomes

U = exp

{
λ

Ω
(c†1c1 + c†2c2)(b† − b)

}
, (4.33)

which acts on the operators as

UbU † = b− λ

Ω
[c†1c1 + c†2c2] , Ub†U † = b† − λ

Ω
[c†1c1 + c†2c2] ,

UciU
† = ci exp

{
−λ

Ω
(b† − b)

}
= di , Uc†iU

† = c†i exp

{
+
λ

Ω
(b† − b)

}
= d†i . (4.34)

Inserting this in the full Hamiltonian, we get

UHU † = (ε− T )c†1c1 + (ε+ T )c†2c2 + Ucc
†
1c1c

†
2c2 + Ω

(
b† − λ

Ω
(c†1c1 + c†2c2)

)(
b− λ

Ω
(c†1c1 + c†2c2)

)
+ λ(c†1c1 + c†2c2)

[
b+ b† − 2

λ

Ω
(c†1c1 + c†2c2)

]
= (ε− T )c†1c1 + (ε+ T )c†2c2 + Ucc

†
1c1c

†
2c2 + Ωb†b− λ2

Ω

[
c†1c1 + c†2c2

]2

=

(
ε− T − λ2

Ω

)
c†1c1 +

(
ε+ T − λ2

Ω

)
c†2c2 +

(
Uc − 2

λ2

Ω

)
c†1c1c

†
2c2 + Ωb†b . (4.35)
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Figure 4.5: Same as Fig. 4.4(thin dotted curves)
but for the double quantum dot with a sin-
gle phonon mode. Other parameters: βε =
1 = βΩ, βUc = 5, βT = 1. At strong cou-
plings, the electronic occupation reaches 2 indi-
cating that the phonons mediate an attractive
electron-electron interaction.

Since after the transformation – which due to its unitarity leaves the eigenvalues invariant –
the Hamiltonian can be written as a sum of decoupled modes, we can directly compute the
spectrum

E−,n = ε− T − λ2

Ω
+ nΩ , E+,n = ε+ T − λ2

Ω
+ nΩ ,

E0,n = +nΩ , E2,n = 2ε+ Uc − 4
λ2

Ω
+ nΩ . (4.36)

This now tells us that since the effective Coulomb interaction energy between the modes can
become negative, i.e., attractive Ueff = E2,0 − E+,0 − E−,0 = Uc − 2λ

2

Ω
, the doubly occupied

state need not be the energetically highest one in particular for large couplings λ. We learn
from this example that the phonons may mediate an attractive interaction between electrons
that can overcome the Coulomb repulsion at strong electron-phonon couplings.

In a similar fashion as before we can compute the partition function and derive from suitable
derivatives the expectation values of desired quantities in thermal equilibrium, see Fig. 4.5

However, one can also understand this using the Hamiltonian of mean force. Representing
the polaron transform as

U =
[
c1c
†
1 + c†1c1Uph

] [
c2c
†
2 + c†2c2Uph

]
, Uph = e

λ
Ω

(b†−b) , (4.37)

and defining furthermore H̄el =
(
ε− T − λ2

Ω

)
c†1c1 +

(
ε+ T − λ2

Ω

)
c†2c2 +

(
Uc − 2λ

2

Ω

)
c†1c1c

†
2c2 ,

we can follow the same lines of calculation as in the previous section to arrive at (exercise)

ρel =
e−βH̄el

Trel
{
e−βH̄el

} , (4.38)

such that we conclude again that the Hamiltonian of mean force is temperature-independent
and has an effective possibly attractive Coulomb interaction in the strong coupling limit

H∗el =

(
ε− T − λ2

Ω

)
c†1c1 +

(
ε+ T − λ2

Ω

)
c†2c2 +

(
Uc − 2

λ2

Ω

)
c†1c1c

†
2c2 . (4.39)

4.2.3 Example: Chain of electrons

Let us consider a chain of N sites, with each of the sites coupling to the same phonon mode

H = ε

N∑
i=1

d†idi + T

N−1∑
i=1

[
d†idi+1 + d†i+1di

]
+ λ

N∑
i=1

d†idi(b+ b†) + Ωb†b . (4.40)
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Here, ε is the on-site energy, T the next-neighbour hopping amplitude, λ represents the cou-
pling to the phonons, and Ω is the phonon frequency. We neglected the Coulomb interaction
completely (e.g. due to screening effects).

The transform that diagonalizes the free (quadratic) part of the system is now given by
(compare the open chain example in Sec. 2.4.2)

di =

√
2

N + 1

N∑
k=1

sin
πik

N + 1
ck , d†i =

√
2

N + 1

N∑
k=1

sin
πik

N + 1
c†k . (4.41)

We can use that for integer 1 ≤ k, q ≤ N one has

δkq =
2

N + 1

N∑
i=1

sin

(
πik

N + 1

)
sin

(
πiq

N + 1

)
,

δkq2 cos

(
πk

N + 1

)
=

2

N + 1

N−1∑
i=1

[
sin

(
π(i+ 1)k

N + 1

)
sin

(
πiq

N + 1

)
+ sin

(
πik

N + 1

)
sin

(
π(i+ 1)q

N + 1

)]
.

(4.42)

This means that the Hamiltonian reads in terms of the new operators

H =
N∑
k=1

[
ε− 2T cos

πk

N + 1

]
c†kck + λ

N∑
k=1

c†kck(b+ b†) + Ωb†b . (4.43)

Now, we again invoke the polaron transform

U = exp

{
λ

Ω

N∑
k=1

c†kck(b
† − b)

}
, (4.44)

which acts on the operators as

UbU † = b− λ

Ω

N∑
k=1

c†kck , Ub†U † = b† − λ

Ω

N∑
k=1

c†kck ,

UckU
† = ck exp

{
−λ

Ω
(b† − b)

}
, Uc†kU

† = c†k exp

{
+
λ

Ω
(b† − b)

}
. (4.45)

Alltogether, we see that the the Hamiltonian becomes

UHU † =
N∑
k=1

[
ε− 2T cos

πk

N + 1

]
c†kck + Ωb†b− λ2

Ω

(
N∑
k=1

c†kck

)2

= ε

N∑
i=1

d†idi + T

N−1∑
i=1

[
d†idi+1 + d†i+1di

]
+ Ωb†b− λ2

Ω

(
N∑
i=1

d†idi

)2

. (4.46)

This Hamiltonian again exhibits an effective negative (attractive) Coulomb interaction between
the electrons. From this example, we learn that the electron-phonon interaction need not nec-
essarily be strong to generate an effective attractive inter-electronic interaction: By increasing
the number of electrons N , the attractive term scales as N2, whereas the Coulomb repulsion
will scale more mildly (e.g. only as N if we considered next-neighbour interactions). However,
these examples only consider a single phonon mode and also the electron-phonon interaction
does not change the electronic nor phononic wave numbers (conserves the quasi-momentum).
Therefore, it is not very representative for the realistic situation in solids.
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4.3 Attractive electron-electron interaction

It is possible to discuss the effective attraction between electrons in the same way as we did for
the Thomas-Fermi screening theory, i.e., by treating the ions classically and computing their
polarization. The only difference [1] is that the retardation of the response needs to be taken
into account. One then obtains further corrections to the Yukawa-screening potential. By
analyzing them, one can see that the effective interaction may become attractive under certain
conditions.

We will rather follow the polaron approach here. We recall the part of the full Hamilto-
nian (4.11) and neglect phonon branches j, electron bands ν, Umklapp processes (G = 0),
electron-electron interaction as well as electron spin σ

H =
∑
k

εkc
†
k
ck +

∑
q

~ω(q)

(
b†qbq +

1

2

)
+
∑
kq

Mk,q

(
bq + b†−q

)
c†
k+q

ck . (4.47)

Therefore, the difference to the previous treatments is that we now take the wave numbers
of the phonons into account. For this case, it is not possible to come up with a simple po-
laron transform that completely decouples phonons and electrons at all values of the coupling
strength.

However, we may proceed perturbatively [13, 3, 1]. Recalling the formula

e+SHe−S =
∑
m=0

1

m!
[S,H]m = H + [S,H] +

1

2!
[S, [S,H]] +

1

3!
[S, [S, [S,H]]] + . . . , (4.48)

we see that upon the splitting H = H0 + H1 we can find a particular transform S = O{H1}
that approximately decouples the subsystems

e+S(H0 +H1)e−S = H0 +H1 + [S,H0] + [S,H1] +
1

2
[S, [S,H0]] +O{H3

1} . (4.49)

The trick is now to choose the particular transform S such that

[S,H0] = −H1 (4.50)

is fulfilled. Obviously, this requires S = O{H1}, and then, we have

e+S(H0 +H1)e−S = H0 + [S,H1] +
1

2
[S, [S,H0]]︸ ︷︷ ︸

O{H2
1}

+O{H3
1}

= H0 +
1

2
[S,H1]︸ ︷︷ ︸
O{H2

1}

+O{H3
1} . (4.51)

Specifically, we use the partition

H0 =
∑
k

εkc
†
k
ck +

∑
q

~ω(q)

(
b†qbq +

1

2

)
,

H1 =
∑
kq

(
Mk,qc

†
k+q

ckbq +Mk,−qb
†
qc
†
k−q

ck

)
. (4.52)

Still, it is not straightforward to obtain the transformation that obeys [S,H0] = −H1. However,
as H0 is decoupled, it is convenient to compute it via its matrix elements. With the eigenstates
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of H0 |n〉 = En |n〉, we formally obtain from Eq. (4.50) for the matrix elements of S in the
unperturbed eigenbasis

〈n|S |m〉 =
〈n|H1 |m〉
En − Em

, (4.53)

which yields for our expansion

H ′ = e+SHe−S ≈ H0 +
1

2

∑
`

|`〉 〈`|S
∑
m

|m〉 〈m|H1

∑
n

|n〉 〈n|

− 1

2

∑
`

|`〉 〈`|H1

∑
m

|m〉 〈m|S
∑
n

|n〉 〈n|

= H0 +
1

2

∑
`mn

[
〈`|H1 |m〉
E` − Em

〈m|H1 |n〉 − 〈`|H1 |m〉
〈m|H1 |n〉
Em − En

]
|`〉 〈n|

= H0 −
1

2

∑
`mn

〈`|H1 |m〉 〈m|H1 |n〉
[

1

Em − En
− 1

E` − Em

]
|`〉 〈n| . (4.54)

Now, specifically for our problem the eigenstates of H0 are many-particle Fock states |n〉 =∣∣{nk}, {nq}〉 with nk ∈ {0, 1} and nq ∈ {0, 1, 2, 3, . . .}. This leads to an effective interaction
Hamiltonian transforming the state |n〉 into the state |`〉. To obtain an effective Hamiltonian
for the electrons only, we have to trace over the phonons. This requires that the incoming
states |n〉 and the outgoing states |`〉 must have the same phonon configurations. Therefore,
when the first process 〈m|H1 |n〉 describes the absorbtion of a particular phonon, the second
〈`|H1 |m〉 must include an emission process of a phonon with the same wavenumber and vice
versa.

For example, when the incoming state |n〉 has two electrons with k and k′, and the first
process describes the absorbtion of a phonon of wavenumber q, the intermediate state |m〉 has
two electrons with k + q and k′. The second process is then the emission of a phonon with
the same wavenumber q, such that in the outgoing state |`〉 one now has two electrons with
wavenumbers k + q and k′ − q . For this process, the energy differences are given by

|n〉=̂ |k,k′〉 ⊗
∣∣nq〉→ |m〉 =̂ |k + q,k′〉 ⊗

∣∣nq − 1
〉
→ |`〉 =̂ |k + q,k′ − q〉 ⊗

∣∣nq〉 :

Em − En = εk+q − εk − ωq , E` − Em = εk′−q − εk′ + ωq . (4.55)

Likewise, the first process could describe the emission of a phonon with wavenumber q by
the incoming electron with wavenumber k, leading to an intermediate state with an electron at
k− q and an additional phonon. This must then be absorbed by the second incoming electron
at k′, leading to electrons at k − q and k′ + q in the outgoing state

|n〉=̂ |k,k′〉 ⊗
∣∣nq〉→ |m〉 =̂ |k − q,k′〉 ⊗

∣∣nq + 1
〉
→ |`〉 =̂ |k − q,k′ + q〉 ⊗

∣∣nq〉 :

Em − En = ωq + εk−q − εk , E` − Em = εk′
+q − εk′ − ωq . (4.56)

Now, depending on the number of phonons already present in mode q, we will get factors of
nq (for phonon absorbtion followed by emission) and 1 + nq (for phonon emission followed by
absorbtion), respectively. Altogether, the Hamiltonian reads

H ′ = H0 −
1

2

∑
kk′q

[
Mk,qMk′

,−qnq

(
1

εk+q − εk − ωq
− 1

εk′−q − εk′ + ωq

)
c†
k+q

ckc
†
k′−q

ck′

+Mk,−qMk′
,+q(1 + nq)

(
1

εk−q − εk + ωq
− 1

εk′
+q − εk′ − ωq

)
c†
k−q

ckc
†
k′

+q
ck′
]
.

(4.57)
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Imposing energy conservation

εk′±q − εk′ = εk∓q − εk , (4.58)

we can join the fractions and upon renaming q → −q we eventually get the effective electron-
electron interaction in presence of phonons (the occupation number nq cancels)

H ′ = H0 +
∑
kk′q

Mk,qMk′
,−q

ωq

(εk+q − εk)2 − ω2
q
c†
k+q

ckc
†
k′−q

ck′ , (4.59)

which is the final result for effective phonon-mediated electron-electron interaction. Typically,
one approximates that the matrix element in front only depends on q, such thatMk,qMk′

,−q →
|M(q)|2 ≥ 0. The spectrum of H ′ is the same as the spectrum of the original Hamiltonian, and
we see that the electron-electron interaction may become attractive when∣∣∣εk+q − εk

∣∣∣ < ωq . (4.60)

This affects a small region near the Fermi surface, and one often strongly simplifies by approx-
imating the complicated qkk′ dependence with a single constant V > 0

H ′ = H0 −
V

2

∑
kk′q

c†
k+q

ckc
†
k′−q

ck′δ(εk+q − εk, εk′−q − εk′)Θ
(
ωq −

∣∣∣εk+q − εk
∣∣∣) .

(4.61)

To have a net attractive effect, this contribution must overcome the intrinsic electronic Coulomb
repulsion (which we neglected in our treatment so far).

4.4 Scaling of electric Resistance

To get an idea on the temperature dependence of the electric conductivity of metals, the simplest
models just analyze single electron-phonon scattering events [4]. For example, when a single
phonon of crystal momentum q = k − k′ is absorbed, or emitted, energy conservation and
crystal momentum conservation require that

εk = εk′ ± ~ωk−k′ . (4.62)

Here, we have neglected Umklapp pocesses. Compared to the electronic energy scales εk, the
phonon contribution – which is bounded by ~ωD – is minute. To obey the conservation of
both energy and total crystal momentum with the constraint that the allowed phonon energies
are bound by the Debye frequency, it follows that the energies of the incoming and outgoing
electron are approximately equal. Further, one has to take the dependence of the electron-
phonon matrix element on the phonon energy into account and also that scattering processes
perpendicular to the original momentum are most effective in reducing the current.

First, we can address the high-temperature regime (defined by kBT � ~ωD) by directly
expanding the Bose-Einstein distribution for the phonons

nq =
1

e
β~ωq − 1

≈ kBT

~ωq
. (4.63)

Accordingly, the number of phonons scales linearly with temperature, and so does the resistance,
as the number of scattering events is directly proportional to the number of phonons

R ∝ T , kBT � ~ωD . (4.64)
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Figure 4.6: Sketch of the constraints on
electron-phonon scattering in k space. The
wave vectors of incoming and outgoing electrons
k and k′ must have very similar energies close
to the Fermi energy, since the phonon energies
are bounded by ~ωD (ring). At low tempera-
tures, only acoustic phonons are occupied with
ωq = cq (smaller black circle), and in three di-
mensions the area of the resulting region scales
as q2 ∝ T 2 (red).

When the temperature is significantly below the so-called Debye temperature kBT � ~ωD =
kBTD, one will actually only occupy the low-energy phonon modes. Therefore, only these
phonon modes can be absorbed. The same actually holds true for emission, since we assume
that the electrons and phonons are in thermal equilibrium, such that electrons emitting a
phonon can only relax by small amounts of energy as all sites below the Fermi surface are
practically blocked. We discussed before that these are just the acoustic modes obeying

ωq = cq , (4.65)

where c was the velocity of sound. Therefore, in this limit, only phonon modes with

q ≈ kBT

~c
(4.66)

will participate in these scattering events. Compared to the full Fermi surface, the area in
q-space that provides suitable phonons scales quadratically in q and hence quadratically in
T , see Fig. 4.6. A further factor of q (and hence T ) comes in as the square of the effective
electron-phonon coupling matrix element scales linearly in the phonon frequency for small
phonon frequencies, such that the inverse electron-phonon scattering rate scales as

1

τel−ph

∝ T 3 , kBT � ~ωD . (4.67)

However, we are still not done. The effective scattering rate will sensitively depend on the angle
between incoming and outgoing electrons. For example, when electrons were scattered only in
forward and backward directions, on average these effects would cancel and the net effect of
phonon scattering would not reduce the electronic current. Therefore, the effective scattering
rate is given by

1/τeff = (1− cos(θ))/τel−ph , (4.68)
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where we further compute

(1− cos(θ)) = 2 sin2(θ/2) ≈ 2

(
q/2

kF

)2

=
1

2

q2

k2
F

∝ T 2 . (4.69)

From these simple power-counting arguments, we conclude the Bloch T 5 law at low tempera-
tures

R ∝ T 5 , kBT � ~ωD . (4.70)

4.5 Superconductivity

The electric resistance in metals is controlled by impurities, electron-electron, and electron-
phonon scattering. Normally, one would expect a resistance to scale with temperature as

R(T ) = R0 + aT 2 + bT 5 . (4.71)

Here, R0 depends on the concentration of impurities, a describes the electron-electron interac-
tion, and b the electron-phonon scattering.

In 1908, Heike Kamerlingh-Onnes 2 succeeded in putting helium in its fluid state and further
cooling it down to 1K. In 1911, his lab reported to complete vanishing of electric resistance in
mercury at a temperature of Tc = 4.15K, whereas it followed the empirical curve for tempera-
tures above Tc pretty well

RHg(T < 4.15K) = 0 , (4.72)

see Fig. 4.7.
This discovery, which led to many investigations later-on, had tremendous impact, since

without resistance, one can transport electric currents without losses. Soon many other metals
were investigated for superconductivity, but up until 1986 he highest critical temperature was
at Tc ≈ 23K. This was a hurdle for technological application, since liquid helium had to be
used for cooling, which was expensive. In 1986, high-temperature superconductivity has been
reported by Bednorz and Müller, which with a critical temperature of Tc ≈ 35K allowed to cool
with liquid hydrogen (which was cheaper). Shortly after, other materials were found, and today
the critical temperature is around Tc ≈ 135K for high-temperature ceramic superconductors,
which allows cooling these materials with liquid nitrogen.

Beyond the breakdown of electric resistance, superconductors also exhibit the Meißner-
Ochsenfeld effect: Superconductors exhibit perfect diamagnetism. An applied external mag-
netic field induces ring currents in a superconductor, which can – due to the missing electric
resistance – in principle be arbitrarily strong and thus is able to completely compensate the
external field H

B = H + 4πM = 0 . (4.73)

This will only work up to a critical field strength, which can be phenomenologically related to
the critical temperature in absence of a magnetic field via

Hc(T ) = Hc(0)

[
1− T 2

T 2
c

]
. (4.74)

The qualitative understanding of this formula is that the magnetic field provides the energy to
split Cooper pairs, leading to the breakdown of superconductivity, as we shall see later.

2H. Kamerling-Onnes (1853–1926) was a dutch physicist.
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Figure 4.7: Electric resistance of mercury
versus temperature, original publication of
Kamerlingh-Onnes (1911), KAWA, December
30, 1911; scanned from Boston Studies in the
Philosophy of Science volume 124 (page 269).
Secondary source: Wikipedia.

Depending on the dependence of the magnetic field, one generally distinguishes between
type I and type II superconductors. In Type I superconductors, superconductivity breaks
down completely (i.e., both magnetic field behaviour and resistance return to their normal
value) when the critical field strength is exceeded. In type II superconductors, the electric
resistance still vanishes beyond a first critical field strength, but the magnetic field becomes
finite within the superconductor. In this phase, the material is split: Within small flux tubes,
the material is pierced by regions of finite magnetic field, and superconductivity breaks down
completely when the flux tubes cover the whole material, which defines a second critical field
strength.

4.5.1 Formation of Cooper pairs

In the previous discussions, we learned that the effective interaction of electrons may be attrac-
tive. It has also become plausible that the interaction is attractive only between a fraction of
electrons, particularly those with wavenumbers obeying both∣∣∣εk+q − εk

∣∣∣, ∣∣∣εk′−q − εk′

∣∣∣ < ~ωD , (4.75)

while conserving the total momentum K

K = k + k′ = k + q + k′ − q . (4.76)

The first condition constrains the energy of the participating electrons onto a thin shell around
the Fermi surface

EF ≤ εk, εk′ ≤ EF + ~ωD . (4.77)

The thickness of this shell is constrained by the participating phonon branches and the matrix
element of the electron-phonon interaction. The second (momentum-conserving) condition
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Figure 4.8: Visualization of the energy conser-
vation condition (4.75) – green shells – and
the momentum conservation condition (4.76) –
black arrows. The inner circles denote the Fermi
surface, and the shell thickness the maximum
phonon energy. For general total momenta K,
only a small fraction of all electrons will par-
ticipate in the attractive interaction (red re-
gions), only for K = 0 the complete shells will
contribute.

shows that if K is chosen arbitrary, only a small fraction of all electrons in k-space are obeying
some attractive interaction, see Fig. 4.8. There, it is visible that processes with K = 0 will
yield the dominant contribution to the attractive interaction. We can therefore eliminate the
variable k′ by considering only the dominant contribution with k′ = −k. Equipping Eq. (4.61)
with spin degrees of freedom, we get

H ′ = H0 −
V

2

∑
kq

∑
σσ′

c†
+k+q,σ

ck,σc
†
−k−q,σ′

c−k,σ′δ(εk+q − εk, ε−k−q − ε−k)Θ(~ωq −
∣∣∣εk+q − εk

∣∣∣)
= H0 −

V

2

∑
kq

∑
σσ′

c†
+k+q,σ

c†
−k−q,σ′

c−k,σ′ck,σΘ(~ωq −
∣∣∣εk+q − εk

∣∣∣) . (4.78)

Here, H0 =
∑
k
∑

σ ε(k)c†
kσ
ckσ contains the free Hamiltonian of the considered electronic band

and V > 0 is a simplified interaction constant. We would like to find the ground state energy of
this interacting Hamiltonian. To obtain it, we use an ansatz for the ground state wave function
and minimize the expectation value of the energies with respect to the free parameters. Our
ansatz for the ground state is that all states up to the Fermi surface are filled, and in addition
we allow for two additional electrons (the Cooper 3 pair)

|Ψσσ′〉 =
∑
k

aσσ′(k)c†
+kσ

c†
−k,σ′

|Ψ0〉 , |Ψ0〉 =

[∏
σ′′

∏
k′≤kF

c†
k′
,σ′′
|0〉

]
. (4.79)

In this ansatz, summation over k only runs over the states of the shell around the Fermi
surface. Further, the coefficients aσσ′(k) ∈ C are a priori unknown, but by minimizing the
energy functional

E = 〈Ψσσ′ |H ′ |Ψσσ′〉 (4.80)

under the side-constraint of unit normalization 〈Ψσσ′ |Ψσσ′〉 = 1, which leads to∑
k

|aσσ′(k)|2 = 1 , (4.81)

we obtain a reasonable estimate of the ground state energy. In particular, we have (we set the
energy scale such that the filled states up to the Fermi energy have energy zero)

〈Ψσσ′ |H ′ |Ψσσ′〉 =
∑
k

(εk + ε−k)|aσσ′(k)|2 − V

2

∑
σ̄σ̄′

∑
kq

〈Ψσσ′| c†k+q,σ̄
c†
−k−q,σ̄′

c−k,σ̄′c+k,σ̄ |Ψσσ′〉

= +
∑
k

2εk|aσσ′(k)|2 − V
∑
kq

a∗σσ′(k + q)aσσ′(k) . (4.82)

3Leon N. Cooper (1930–) is an American physicist and Nobel Prize laureate.
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Here, the first term denotes the energy from the two additional electrons created with opposite
momenta, and the last term comes from the expectation value of the interaction with our ansatz
wave function. The factor of 2 has cancelled in the evaluation of the last line, since we have
the two pairing possibilities of k + q = k′ and σ̄ = σ and σ̄′ = σ′ or −k − q = k′ and σ̄′ = σ
and σ̄ = σ′, where k′ is the summation index in our wave function ansatz and σ and σ′ are its
spin indices.

Adding the normalization condition with a Lagrange multiplier, we eventually have to min-
imize

E = +
∑
k

2εka
∗
σσ′(k)aσσ′(k)− V

∑
kq

a∗σσ′(k + q)aσσ′(k)

+ λ

1−
∑
k

a∗σσ′(k)aσσ′(k)

 (4.83)

with respect to the parameters λ and aσσ′(k). Now, a derivative with respect to λ does of
course just reproduce the normalization condition. In contrast, derivatives with respect to
a∗σσ′(k) yield

0 = (2εk − λ)aσσ′(k)− V
∑
k′

aσσ′(k
′) . (4.84)

Defining cσσ′ =
∑
k aσσ′(k), we can write

aσσ′(k) =
V cσσ′

2εk − λ
, (4.85)

and by simply summing over k we get

cσσ′ = cσσ′
∑
k

V

2εk − λ
. (4.86)

When cσσ′ 6= 0 – we will discuss later hat this implies σ 6= σ′, we can divide by this quantity,
which eventually results into the constraint

1 =
∑
k

V

2εk − λ
. (4.87)

We still have to determine the Lagrange parameter. From multiplying the equation (4.84) with
a∗σσ′(k) and performing a subsequent summation over k, we obtain (compare Eq. (4.82))

0 =
∑
k

(2εk − λ)|aσσ′(k)|2 − V
∑
kk′

a∗σσ′(k)aσσ′(k
′)

= E − λ
∑
k

|aσσ′(k)|2 = E − λ , (4.88)

which means that the Lagrange multiplier is just the energy. This implies that the energy is
implicitly determined by the equation

1 =
∑
k

V

2εk − E
= V

∫ EF+~ωD

EF

ρ(ε)

2ε− E
dε ≈ V ρ(EF )

1

2
ln

2EF + 2~ωD − E
2EF − E

, (4.89)
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where we have used that the electronic density of states hardly changes over the small energy
interval defined by ~ωD. The Debye freqency ωD represents some characteristic energy cutoff
for the maximum frequency of the participating phonons. Exponentiating the equation yields

e2/(V ρ(EF )) =
2EF + 2~ωD − E

2EF − E
, (4.90)

which yields for the energy

E = 2EF +
2~ωD

1− e2/(V ρ(EF ))
≈ 2EF − e

− 2
V ρ(EF ) 2~ωD . (4.91)

Here, we have used that the electron-phonon interaction is typically small and approximated
the fraction accordingly. Since the first term corresponds to the energy that the free electron
pair would have in absence of any attractive interaction, we get that the energy of the ground
state is reduced in comparison to the free electron case. The energy decrease of the Cooper
pair becomes [14]

∆E = −2~ωD exp

{
− 2

V ρ(EF )

}
. (4.92)

This depends on the characteristic energy of the mediating phonon ~ωD, the electronic density
of states at the Fermi surface ρ(EF ), and the coupling constant V . In particular, we find
that the dependence on V is non-analytic at V = 0, such that this phenomenon cannot be
understood perturbatively.

In principle, a Cooper pair mechanism would work for arbitrary spin configuration σσ′.
However, in the course of the derivation we used that cσσ′ 6= 0. The total wave function
must be anti-symmmetric under exchange of both electrons (i.e., r1 ↔ r2 and σ ↔ σ′). For
equal spins, the spin contribution is obviously symmetric under exchange, such that the spatial
component of the wavefunction must be antisymmetric. Specifically, it must vanish when the
two electrons are at the same place. Since one generally has

Ψσσ′(r1 − r2) = 〈r1r2|Ψσσ′〉 ∝
∑
k

aσσ′(k)e+ikr1e−ikr2 , (4.93)

we would get for equal spins from Ψσσ(0) = 0 that cσσ =
∑
k aσσ(k) = 0, which is a contradic-

tion with the assumption used in the derivation. Therefore, the spins in a standard Cooper
pair are different

|Ψ↑↓〉 =
∑
k

a↑↓(k)c†
+k↑

c†
−k↓
|Ψ0〉 , (4.94)

which in general describes an entangled superposition of states with single electron pairs above
the Fermi sea with opposite momenta and different spin. Note though that more sophisticated
pairing mechanisms are conceivable, allowing in principle also for pairing of electrons with equal
spins.

4.5.2 BCS theory

Shortly after the pioneering work of Cooper, in 1957 Bardeen 4, Cooper and Schrieffer 5 (BCS)
published a paper [15] which shaped our understanding of superconductivity in metals and

4J. Bardeen (1908–1991) was an american physicist and Nobel laureate.
5J. R. Schrieffer (1931–) is an americal physicist and Nobel laureate.
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which earned them the Nobel price in 1972. Superconductivity in high-temperature (ceramic)
superconductors is still not satisfactorily understood.

The Hamiltonian for BCS theory is given by

H =
∑
k

∑
σ

εkc
†
kσ
ckσ − V

∑
kk′

c†
+k′↑

c†
−k′↓

c−k↓c+k↑ . (4.95)

It shall include electron-electron as well as electron-phonon interaction to the extent that V > 0
is an effective attractive interaction. Here, the energy of the Fermi surface is set to zero EF = 0,
and the summations in this section will always include only modes fulfilling the constraints
εk ≤ ~ωD and εk′ ≤ ~ωD, with ωD denoting the Debye frequency. The Debye 6 frequency is
a characteristic phonon frequency (e.g. cutoff due to a narrow phonon branch that couples via
the Fröhlich interaction). We could try to treat this BCS Hamiltonian using the Hartree-Fock
theory presented in Sec. 3.2.3. However, superconductivity is no single-particle effect, and we
will thus from the beginning expect that a single-particle Hamiltonian will not be suitable to
treat the phenomenon of superconductivity. Formally, the interaction is not of the simple type
of products of particle number operators that we encountered before (unless k = k′). Instead,
we still like to follow a mean-field approach. We can always write the product of any two
operators as

AB = 〈A〉B + 〈B〉A− 〈A〉 〈B〉+ (A− 〈A〉) (B − 〈B〉) . (4.96)

Here, the last term describes the fluctuations, and it is neglected within the mean-field approx-
imation

(A− 〈A〉) (B − 〈B〉) ≈ 0 . (4.97)

The art is to identify the correct splitting into operators A and B correctly: Whereas in the
conventional Hartree-Fock treatment in Sec. 3.2.3, these were both hermitian operators, here
this is no longer the case. Thus, we factorize the BCS Hamiltonian in a different way, expressed
by the effective Hamiltonian

Heff =
∑
k

∑
σ

εkc
†
kσ
ckσ

− V
∑
kk′

〈
c†

+k′↑
c†
−k′↓

〉
eff
c−k↓c+k↑ − V

∑
kk′

〈
c−k↓c+k↑

〉
eff
c†

+k′↑
c†
−k′↓

+ V
∑
kk′

〈
c†

+k′↑
c†
−k′↓

〉
eff

〈
c−k↓c+k↑

〉
eff

=
∑
k

∑
σ

εkc
†
kσ
ckσ −∆∗

∑
k

c−k↓c+k↑ −∆
∑
k

c†
+k↑

c†
−k↓

+
|∆|2

V
,

∆ = V
∑
k

〈
c−k↓c+k↑

〉
eff
, (4.98)

where ∆∗ is the complex conjugate of ∆. The last term expresses a shift of the Hamiltonian
and is necessary to avoid overcounting. The only difference to the conventional Hartree-Fock
procedure is that we allow now for anomalous expectation values that apparently do not con-
serve the total particle number. The expectation value ∆ will later-on turn out to be the
order parameter for the superconductivity. To compute the energy eigenvalues of this effective

6Peter Joseph William Debye (1884–1966) was a Dutch-American physicist and Nobel laureate.
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Hamiltonian, we can bring it into the conventional form by using a Bogoliubov 7 transform,
i.e., we perform a symplectic transform to new fermionic creation α†

k
and β†

k
and annihilation

operators αk and βk that also obey fermionic anticommutation relations. With (in general
complex-valued) expansion coefficients uk and vk, the transformation reads

αk = ukc+k↑ − vkc
†
−k↓

, α†
k

= u∗kc
†
+k↑
− v∗kc−k↓ ,

βk = ukc−k↓ + vkc
†
+k↑

, β†
k

= u∗kc
†
−k↓

+ v∗kc+k↑ . (4.99)

It should be kept in mind that Bogoliubov transforms need to preserve the fermionic anti-
commutation relations, which imposes further constraints on the coefficients. Fermionic and
bosonic Bogoliubov transforms can be generalized to transformations between an arbitrary
number of modes, but here we see that it suffices to couple only two modes of positive and
negative momenta. With the above transform, one can now check that

{αk, βk′} = 0 , {αk, β
†
k′} = 0 , {αk, α

†
k′} = {βk, β

†
k′} = (|uk|2 + |vk|2)δkk′ ,

(4.100)

where we see that we need to demand

|uk|2 + |vk|2 = 1 (4.101)

to preserve the anticommutation relations. Furthermore, one can actually see that although
the effective Hamiltonian does not commute with the total particle number operator, the ex-
pectation value of the commutator vanishes, which means that the expectation value of the
particle number is indeed conserved also under the evolution of the effective Hamiltonian〈Heff ,

∑
q

(
c†q↑cq↑ + c†q↓cq↓

)〉 =

〈
−2∆∗

∑
k

c−k↑c+k↓ + 2∆
∑
k

c†
+k↓

c†
−k↑

〉
= 0 . (4.102)

The general strategy is now to invert the transformation (4.99), we just state the results for
two annihilation operators (the rest follows from general symmetry arguments)

ck↑ = u∗kαk + vkβ
†
k
, c−k↓ = −vkα

†
k

+ u∗kβk . (4.103)

Not having any idea on the mean-field Hamiltonian, we would have started from such a mapping
with a priori unknown coefficients and would then that the Hamiltonian assumes the form

Heff =
∑
k

[
λkαα

†
k
αk + λkββ

†
k
βk

]
+ σ . (4.104)

The additional requirement that there are not terms proportional to quasi-particle non-conserving
terms such as αkβk eventually fixes the transform and determines the uk and vk parameters.
We just state the result here. In fact, it is possible to choose the Bogoliubov coefficients real
and positive

u2
k =

1

2

1 +
εk√

ε2k + |∆|2

 , v2
k =

1

2

1− εk√
ε2k + |∆|2

 . (4.105)

7Nikolai Nikolajewitsch Bogoljubow (1909–1992) was a soviet theoretical physicist and mathematician.
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With these parameters, the effective Hamiltonian becomes diagonal

Heff =
∑
k

√
ε2
k

+ |∆|2
(
α†
k
αk + β†

k
βk

)
+
∑
k

(
εk −

√
ε2
k

+ |∆|2
)

+
|∆|2

V
. (4.106)

This means that we can approximately describe the effective dynamics under the full BCS
Hamiltonian (4.95) just with an effective single-particle Hamiltonian, just within a rotated
particle basis. If ∆ 6= 0 can be found, this means that all effective electron-electron interactions
will be gone, from which we can intuitively understand that such scattering processes will no
longer hinder electronic transport. Formally, non-vanishing ∆ means that the quasiparticle
excitation energy is always bounded by value |∆| from below.

However, the single-particle excitation energies
√
ε2
k

+ |∆|2 (which depend on the order

parameter ∆), still have to be determined self-consistently. This is most easily calculated by
inserting the corresponding Bogoliubov transform in the order parameter

∆ = V
∑
k

〈
c−k↓c+k↑

〉
eff

= V
∑
k

〈(
−vkα

†
k

+ u∗kβk

)(
u∗kαk + vkβ

†
k

)〉
eff

= V
∑
k

[
−u∗kvk

〈
α†
k
αk

〉
eff

+ u∗kvk

〈
1− β†

k
βk

〉
eff

]

= V
∑
k

∆√
ε2
k

+ |∆|2

(
1

2
− f(

√
ε2
k

+ |∆|2)

)
=
V∆

2

∑
k

1√
ε2
k

+ |∆|2
tanh

β
√
ε2
k

+ |∆|2

2
.

(4.107)

In the last step, we have inserted the Fermi function with µ = 0 (also all energies are counted
with respect to the Fermi energy). This equation is always trivially solved by ∆ = 0. Inserting
∆ = 0 in the coefficients of the Bogoliubov transform (4.105), we see that uk → 1 and vk → 0,
such that the trivial quasi-particles described by αk → c

+k↑ and βk → c−k↓ are just the usual
electrons with spin up and spin down, respectively. To find a non-trivial solution, we divide by
∆, which eventually yields the self-consistency BCS equation (also called BCS gap equation).

Box 17 (BCS self-consistency equation) The non-trivial value of the BCS order parame-
ter is implicitly determined by the solution of

1 =
V

2

∑
k

1√
ε2
k

+ |∆|2
tanh

β
√
ε2
k

+ |∆|2

2
. (4.108)

Nontrivial solutions of this equation do not always exist. For example, at high temperatures
(β → 0), the r.h.s. of the above equation will always be small, such that the equality cannot
be fulfilled. To the contrary, for small temperatures, we can approximate the tanh function by
one, and a non-trivial solution can exist

1 ≈ V

2

∫ ~ωD

−~ωD

ρ(ε)√
ε2 + |∆|2

dε ≈ V ρ(EF )

∫ ~ωD

0

1√
ε2 + |∆|2

dε = V ρ(EF )arcsinh

(
~ωD
|∆|

)
.

(4.109)
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Figure 4.9: Plot of the order parameter ∆(T )
(in arbitrary units) versus temperature kBT (in
arbitrary units) for V ρ(EF ) = 0.5 and ~ωD =
10 a.u. Horizontal and vertical dashed lines rep-
resent analytical estimates (4.110) (with sinh)
and (4.112), respectively.

Here, ρ(EF ) is the unperturbed electronic density of states at the Fermi energy. Solving for the
order parameter we get

|∆| = ~ωD
sinh(1/(V ρ(EF )))

≈ 2~ωDe
− 1
V ρ(EF ) . (4.110)

The fact that for large temperatures, ∆ strictly vanishes, whereas for small temperatures, it
may have a finite value, means that there must be some critical temperature, at which also the
non-trivial solution for ∆ vanishes. To find it, we consider ∆ = 0 in Eq. (4.108) and solve for
the temperature

1 = V ρ(EF )

∫ ~ωD

0

tanh(βcε/2)

ε
dε =

∫ βc~ωD

0

tanh(x)

x
dx . (4.111)

Since βc~ωD � 1, we can solve this perturbatively, which eventually yields [3] with the Euler
constant γ

kBTc ≈
2eγ

π
~ωDexp

{
− 1

V ρ(EF )

}
≈ 1.14~ωD exp

{
− 1

V ρ(EF )

}
. (4.112)

First, we see that the critical temperature is proportional to the Debye frequency. This fre-
quency in turn is proportional to the root of the inverse ion mass ωD ∝M−1/2. When the ions
in a crystal are replaced by a different isotope of the same element, the masses will change but
all other things will remain the same – as the isotopes of an element have the same chemical
properties. This dependence of the critical temperature on the ion mass is known as isotope
effect, and it was a major success of BCS theory to explain it. Second, we also see that
when the electron-phonon coupling V ρ(EF ) is small, the critical temperature is exponentially
suppressed. This explains that good metals (in the sense of good conductors) with a small
electron-phonon coupling are bad superconductors (with a low critical temperature).

In the general case, the BCS self-consistency equation has to be solved numerically, see
Fig. 4.9.
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Eventually, we would like to compute the ground state energy of the effective Hamiltonian

Eeff
0 =

∑
k

(
εk −

√
ε2
k

+ |∆|2
)

+
|∆|2

V

≈ ρ(EF )

∫ ~ωD

−~ωD

(
ε−

√
ε2 + |∆|2

)
dε+

|∆|2

V

= ρ(EF )

[
−~ωD

√
(~ωD)2 + |∆|2 − |∆|2arcsinh

(
~ωD
|∆|

)]
+
|∆|2

V

= −ρ(EF )(~ωD)2

√
1 +

|∆|2

(~ωD)2
≈ −ρ(EF )(~ωD)2

(
1 + 2e

− 2
V ρ(EF )

)
. (4.113)

This is not quite the same as our approximate result (4.92). Although we get the same non-
analytic dependence on the electron-phonon coupling strength, the energy shift predicted by
BCS theory is different from that which we obtained via minimizing the ground state energy
with a variational ansatz. However, this is not too surprising as both approaches are approx-
imate ones. When consistently applied however it is possible to get exactly the same ground
state energy with both approaches [16].

4.5.3 Remarks on generalized Mean-Field approximations

We arrived at these results from the BCS Hamiltonian that was made plausible. On top of this,
we performed the mean-field approximation by replacing the interacting part of the Hamiltonian
with suitable single-particle operators (mean-field approximation). This procedure turned out
successful later-on, but at that moment seemed a bit miraculous. Recalling the general approch
of the Hartree-Fock treatment in Sec. 3.2.3, we see that the general strategy is to approximate
the interacting BCS Hamiltonian (4.95)

H =
∑
k

εk

[
c†
k↑
ck↑ + c†

k↓
ck↓

]
− V

∑
kk′

c†
+k′↑

c†
−k′↓

c−k↓c+k↑ (4.114)

by a non-interacting single-particle Hamiltonian – with respect to which all expectation values
can be easily computed. In Sec. 3.2.3, we used a single-particle Hamiltonian in the same basis.
Now, we simply use an a priori unknown single-particle basis

Heff =
∑
k

χ1

kα
†
k
αk + χ2

kβ
†
k
βk + σ . (4.115)

Here, we just need to relate the new operators αk and βk to the old ones by some general-
ized Bogoliubov transform, and the single-particle energies χik as well as the energy shift σ
have to be determined self-consistently by minimizing the grand canonical potential. Fixing
the Bogoliubov transform (4.105) and minimizing only with respect to the single-particle ener-
gies and the shift actually recovers the gap equation (4.108) and as a solution the mean-field
Hamiltonian (4.106).

4.5.4 Magnetic field

An external magnetic field leads to a splitting of spin-up and spin-down contributions in the
original Hamiltonian, which both in the original and in the effective Hamiltonian amounts to
the additional term

∆Heff = µB
∑
k

(
c†
k↑
ck↑ − c

†
k↓
ck↓

)
. (4.116)
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Using the very same Bogoliubov transform from Eq. (4.103) with coefficients (4.105) still diag-
onalizes the Hamiltonian, such that we can express the additional Hamiltonian also with the
αk and βk annihilation operators as

∆Heff = µB
∑
k

(
α†
k
αk − β

†
k
βk

)
. (4.117)

Apparently, this will split the single-particle energies of the quasiparticles, since the Hamilto-
nian (4.106) is now modified to

Heff + ∆Heff =
∑
k

(√
ε2
k

+ |∆|2 + µB
)
α†
k
αk +

∑
k

(√
ε2
k

+ |∆|2 − µB
)
β†
k
βk

+
∑
k

(
εk −

√
ε2
k

+ |∆|2
)

+
|∆|2

V
. (4.118)

The gap equation (4.108) is now modified to

∆ = ∆
∑
k

V√
ε2
k

+ |∆|2

[
1

2
− 1

2
f
(√

ε2
k

+ |∆|2 − µB
)
− 1

2
f
(√

ε2
k

+ |∆|2 + µB
)]

. (4.119)

Similar arguments as before apply. At vanishing external field B = 0, we reproduce the
previous gap equation (4.108), such that – provided the temperature is also small enough – the
superconducting phase exists. Going to strong fields now has qualitatively similar effects as
going to high temperatures, since one of the Fermi functions approaches one and the other one
vanishes

lim
B→∞

f
(√

ε2
k

+ |∆|2 − µB
)

= 1 ,

lim
B→∞

f
(√

ε2
k

+ |∆|2 + µB
)

= 0 . (4.120)

This means that the r.h.s. of the above gap equation becomes vanishingly small, such that a
nontrivial solution (associated to the superconducting phase) does not exist. This fully explains
the observation that superconductivity breaks down above a critical field strength. In general
however, the treatment of the gap equation can be made more precise by making the single-
particle energy gap dependent on the mode ∆→ ∆k [16].

4.5.5 Remarks on thermodynamic properties

We can directly compute the canonical potential

Φ = −kBT ln Tr
{
e−βHeff

}
=
|∆|2

V
+
∑
k

(
εk −

√
ε2
k

+ |∆|2
)
− 1

β
ln Tr

{
e
−β
∑
k

√
ε2
k

+|∆|2(α†

k
αk+β†

k
βk)

}

=
|∆|2

V
+
∑
k

(
εk −

√
ε2
k

+ |∆|2
)
− 2

β

∑
k

ln

(
1 + e

−β
√
ε2
k

+|∆|2
)
. (4.121)

Here, we have first separated the shift of the effective Hamiltonian (4.106), and the factor of 2
resulted from the two particle species. As mentioned, the thermodynamic potential can be the
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starting point to obtain many useful quantities, and we will now demonstrate some of them
explicitly. We will assume below that all parameters in the potential are real.

First, when we minimize the potential with respect to the order-parameter ∆ (along the
real axis)

∂Φ

∂∆
=

2∆

V
+
∑
k

(−)∆√
ε2
k

+ ∆2
− 2

β

∑
k

(−)β∆√
ε2
k

+ ∆2
f(
√
ε2
k

+ ∆2)

=
2∆

V
−
∑
k

∆√
ε2
k

+ ∆2

[
1− 2f(

√
ε2
k

+ ∆2)
]

=
2∆

V

1− V

2

∑
k

1√
ε2
k

+ ∆2
tanh

(
β

2

√
ε2
k

+ ∆2

) = 0 , (4.122)

which precisely recovers the BCS gap equation (4.108). This is just a manifestation of the fact
that the self-consistent determination of the gap ∆ yields the best possible approximation (with
a minimal potential) to the full dynamics.

Second, when we compute the mean particle number

〈N〉 =
∑
k

∂Φ

∂εk
=
∑
k

1−
εk√

ε2
k

+ ∆2

− 2

β

∑
k

−β εk√
ε2
k

+ ∆2

 f(
√
ε2
k

+ ∆2)

=
∑
k

(1)−
∑
k

εk√
ε2
k

+ ∆2

[
1− 2f(

√
ε2
k

+ ∆2)
]
→ 2~ωDρ(EF ) , (4.123)

since the second term vanishes under the integral over the regime −~ωD ≤ ε ≤ +~ωD. There-
fore, the mean particle number does not depend on the order parameter ∆. Since the mean
particle number therefore is related to ~ωDρ(EF ) = N/2 we see that the ground state en-
ergy (4.113) actually describes the energy decrease due to N/2 Cooper pairs.

Third, by computing derivatives with respect to temperature kBT , we get the entropy. To
confirm this, we first write down the von-Neumann entropy (the thermodynamic entropy is
obtained by multiplying with kB)

S = −Tr {ρeff ln ρeff} = Tr {ρeff(βHeff + lnZeff)} = lnZeff + β 〈Heff〉eff . (4.124)

This can be equally obtained from the potential by computing derivatives with respect to kBT

− ∂Φ

∂kBT
= + lnZeff − kBT

Tr
{
− Heff

(kBT )2 e
−βHeff

}
Zeff

= + lnZeff + β 〈Heff〉eff

= −

2
∆

V
−
∑
k

∆√
ε2
k

+ ∆2
+ 2

∑
k

∆√
ε2
k

+ ∆2
f(
√
ε2
k

+ ∆2)


︸ ︷︷ ︸

=0

∂∆

∂(kBT )

+ 2
∑
k

[
ln

(
1 + e

−β
√
ε2
k

+∆2

)
+ β

√
ε2
k

+ ∆2f(
√
ε2
k

+ ∆2)

]
= −2

∑
k

[(1− f(Ek)) ln(1− f(Ek)) + f(Ek) ln f(Ek)] . (4.125)
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Here, we have used the gap equation (4.108) in the first line and the last line can be checked

by inserting Ek =
√
ε2
k

+ ∆2 and the definition of the Fermi function. This is the entropy that

one would naively write down for independent two-level systems with single-particle energies Ek
and occupations f(Ek) – the probability of the empty state is simply 1− f(Ek). Furthermore,
the factor of 2 just arises from the two particle species considered.

Fourth, by computing the derivative of the potential with respect to the inverse temperature
β, we get the internal energy

U =
∂Φ

∂β
=
|∆|2

V
+
∑
k

(
εk −

√
ε2
k

+ |∆|2
)

+ 2
∑
k

√
ε2
k

+ |∆|2f(
√
ε2
k

+ |∆|2)

=
|∆|2

V
+
∑
k

εk −
∑
k

√
ε2
k

+ |∆|2 tanh

(
β

2

√
ε2
k

+ |∆|2
)
. (4.126)

We could have guessed the first line of this expression from the effective Hamiltonian (4.106).
Computing the derivative of the energy with respect to temperature, we get the specific heat.
However, this is a bit lengthy, it is more convenient to calculate the specific heat from the
derivative of the entropy with respect to temperature.

4.5.6 Specific heat capacity

We can alternatively compute the specific heat capacity from

C = T
dS

dT
= −βdS

dβ
. (4.127)

Here, the thermodynamic entropy needs to be used, i.e., we multiply our previous result by kB
via S = kBSvN

S = −2kB
∑
k

[(1− f(Ek)) ln(1− f(Ek)) + f(Ek) ln f(Ek)] . (4.128)

This is a bit simpler since the ground state (condensate) contribution to the internal energy
does not vanish. We get

C = +2βkB
∑
k

d

dβ

[
(1− f(Ek)) ln(1− f(Ek)) + f(Ek) ln f(Ek)

]
= 2βkB

∑
k

[
− ln(1− f(Ek))− 1 + ln f(Ek) + 1

] df(Ek)

dβ

= 2βkB
∑
k

ln e
−βEk

df(Ek)

dβ
= −2kBβ

2
∑
k

Ek
df(Ek)

dβ
. (4.129)

Here, we have used that f(Ek)/(1 − f(Ek)) = e
−βEk . To further evaluate this expression, it

is important to note that the Fermi functions depend both explicitly on β but also implicitly

(via the temperature-dependence of the single-particle energies Ek =
√
ε2
k

+ ∆2). Therefore,

we get

C = −2kBβ
2
∑
k

Ek

(
∂f(Ek)

∂β
+
∂f(Ek)

∂Ek

1

2Ek
2∆

d∆

dβ

)

= −2kBβ
∑
k

∂f(Ek)

∂Ek

(
E2

k + β∆
d∆

dβ

)
. (4.130)
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Figure 4.10: Heat capacity (4.130) in the con-
tinuum limit, where sums become integrals, ver-
sus temperature. Whereas the heat capacity
of the normal metal varies smoothly (black),
the superconducting phase heat capacity (red
curve sampled at symbols) has a jump disconti-
nuity (4.139) at the critical temperature (green
bar) and is exponentially suppressed at low tem-
peratures. Other parameters ~ωD = 10 a.u.,
V ρ(EF ) = 0.5.
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Here, we have replaced
∂f(Ek)

∂β
=

∂f(Ek)

∂Ek

Ek
β

.

First, we see that the prefactor in this sum

∂f(Ek)

∂Ek
= −βf(Ek)[1− f(Ek)] (4.131)

is at low temperatures where Ek =
√
ε2
k

+ ∆2 � kBT exponentially suppressed everywhere:

It would for T → 0 become a δ-function −δ(Ek) in continuum representation. However, in

the superconducting phase the single particle energies Ek =
√
ε2
k

+ |∆|2 are always strictly

positive, such that we conclude for this regime, all terms in the sum, and therefore the complete
specific heat capacity is exponentially suppressed. As we learned already in our discussion of
the specific heat of insulators and semiconductors in Sec. 3.1.9, this is a general and typical
feature of systems with an excitation gap above their ground state.

Second, by forcing the gap ∆ to vanish throughout, only a simplified variant of the first
contribution remains, and we recover the electronic heat capacity of a normal metal that we
already discussed in Sec. 3.1.8.

We can numerically calculate the specific heat contribution, which reveals a jump at the
critical temperature, see Fig. 4.10. Although through the non-analytic gap solution both terms
are non-analytic at the critical temperature, the first term is continuous at the critical point.
Therefore, the second term must be responsible for the jump

∆C =
1

k2
BT

3

∑
k

f(Ek)[1− f(Ek)] lim
T→Tc−ε

d∆2

dβ
. (4.132)

We can compute the height of the jump analytically by looking at the behaviour of the gap
∆ near the critical point. To get this behaviour, we insert the deviation from the critical
temperature

β =
1

kBT
=

1

kB(Tc −∆T )
(4.133)

into the gap equation [16] and expand for small ∆T as well as for the critical gap ∆2. Up to
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first order in ∆T and ∆2 one gets

1 = V ρ(EF )

∫ ~ωD

0

tanh
(
β
2

√
ε2 + ∆2

)
√
ε2 + ∆2

dε

= V ρ(EF )

∫ ~ωD

0

tanh
(

ε
2kBTc

)
ε

dε+
V ρ(EF )∆T

2kBT 2
c

∫ ~ωD

0

dε

cosh2
(

ε
2kBTc

)
+
V ρ(EF )∆2

c

4kBTc

∫ ~ωD

0

dε

ε2

 1

cosh2
(

ε
2kBTc

) − 2kBTc tanh
(

ε
2kBTc

)
ε

+ . . . . (4.134)

In the second line, the first term on the r.h.s. must equal one as it yields the usual gap equation
at the critical point, such that the other terms have to add up to zero. The second term results
from the explicit dependence on temperature and can be analytically estimated using that
kBTc � ~ωD

I1 =

∫ ~ωD

0

dε

cosh2
(

ε
2kBTc

) ≈ 2kBTc

∫ ∞
0

dx

cosh2(x)
= 2kBTc . (4.135)

The last term comes from the implicit dependence via the gap ∆, and it can be estimated with
the same assumptions as

I2 =

∫ ~ωD

0

dε

ε2

 1

cosh2
(

ε
2kBTc

) − 2kBTc tanh
(

ε
2kBTc

)
ε


≈ 1

2kBTc

∫ ∞
0

dx

x2

(
1

cosh2(x)
− tanh(x)

x

)
=

1

2kBTc

7ζ(3)

π2
. (4.136)

Here, ζ(3) is the Riemann-Zeta function. Since the last terms have to cancel, the resulting
constraint yields a relation between ∆2

c and ∆T

∆2
c ≈

8π2

7ζ(3)
kBTckB∆T . (4.137)

From this, we get the desired derivative

lim
∆T→0

d∆2
c

dβ
= lim

∆T→0

d∆2
c

d∆T
dβ
d∆T

=

8π2

7ζ(3)
kBTckB

1
kBT 2

c

=
8π2

7ζ(3)
k3
BT

3
c . (4.138)

Eventually inserting this into the specific heat we obtain

∆C ≈ 8π2

7ζ(3)
kB

∫ +~ωD

−~ωD
f(ε)[1− f(ε)]dε ≈ 8π2

7ζ(3)
kB

∫ +∞

−∞
f(ε)[1− f(ε)]dε =

8π2

7ζ(3)
k2
BTc .

(4.139)

Accordingly, the jump in the specific heat is linear in the critical temperature. This is the
vertical green line shown in Fig. 4.10. It should be noted that we computed here the specific
heat per mode, to get the specific heat per volume we need to multiply by the particle density.
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Chapter 5

Magnetism

Being composed of magnetically active components (nuclei, electrons), all matter somehow re-
acts on the presence of an external magnetic field. For the case of superconductors, we already
mentioned that they are perfect diamagnets. Diamagnetic materials tend to reduce the ex-
ternally applied field in the medium. In contrast, in paramagnetic materials the magnetic
moments align with the magnetic field, such that the field inside the medium is enhanced.
Ferromagnetism is a special case where the magnetic moments inside a medium align with
themselves, i.e., a magnetic field may exist inside the medium without an externally applied
field (as is the case in permanent magnets). Therefore, in a ferromagnet the field inside a
medium may be directed in any direction – depending on the orientation. Ferromagnetism
breaks down beyond a critical field strength.

5.1 Interactions with the magnetic field

An external magnetic field can couple in two ways to matter. First, we have the coupling via
the minimal coupling procedure used to include the electromagnetic field, where the momentum
is shifted by the vector potential A

p→ p− q

c
A (5.1)

with electron charge q (for electrons q = −e) and velocity of light c. The magnetic field is
related to the vector potential via B = ∇ ×A. This minimal coupling is sometimes termed
diamagnetic coupling.

Additionally, an electron has a magnetic moment, linked to the spin S via

µ = g
e

2mc
S , g = 2.002 . . . (5.2)

Here, m is the electron mass and g the electronic g-factor. This leads to an additional term in
the Hamiltonian, which for electrons with g ≈ 2 becomes

∆H = −µB = µBσB , µB =
|e|~
2mc

. (5.3)

Here, µB is the Bohr magneton and the electronic spin operator can be expressed with the
vector of Pauli matrices via S = ~

2
σ . This coupling leads to a Zeemann 1 splitting, which

is responsible for paramagnetism. Here, we note that ∆H = −µB is the general Zeemann
coupling in the Hamiltonian for arbitrary magnetic moments.

1P. Zeemann (1865–1943) was a dutch physist and Nobel laureate.
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5.2 Paramagnetism of localized magnetic moments

Let us assume that we have N atoms and that the electrons are tightly bound to the atoms.
Then, the total angular momentum J for an electron at each site is obtained by coupling the
electronic spin S and the angular momentum L

J = L+ S , (5.4)

which implies a total magnetic moment

µ = g
e

2mc
J , (5.5)

where according to the rules of quantum mechanics the g-factor is computed via

g = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. (5.6)

Since this can depend on the position, the total Hamilton operator is given by

H = −
N∑
i=1

µiB(Ri) , (5.7)

where B(Ri) is the magnetic field at the position of the ith atom. It is now conventional to
choose the magnetic field in z-direction, such that

H =
N∑
i=1

giµBBJ
i
z , (5.8)

where Jz is a large-spin operator for the i-th lattice position and gi denotes the corresponding
g-factor of site i.

Since these magnetic moments do not interact, we can compute the partition function from
that of the individual components

Z = Tr
{
e−βH

}
=
∏
i

Tr
{
e−βgµBBJ

i
z

}
=
∏
i

Zi , (5.9)

which we best evaluate in the angular momentum eigenbasis. This can be done also for different
magnetic moments and site-dependent magnetic fields, but for simplicity we will be content
with the homogeneous case. For a single-component partition function we get (we abbreviate
b = gµBB below)

Zi =
+J∑

m=−J

e−βbm = e+βbJ

2J∑
`=0

e−βb` = e+βbJ 1− e−βb(2J+1)

1− e−βb

=
e+βb(J+1/2) − e−βb(J+1/2)

e+βb/2 − e−βb/2
. (5.10)

Therefore, the logarithm of the partition function (related to the free energy via F = −kBT lnZ)
becomes

lnZ = N ln
sinh(βgµBB(J + 1/2))

sinh(βgµBB/2)
. (5.11)
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The total magnetization can be computed via (recall that ∆Hi = −µiB(Ri))

M = gµB

〈∑
i

J iz

〉
= kBT∂B lnZ

= NgµB

[(
J +

1

2

)
coth

(
βgµBB(J +

1

2
)

)
− 1

2
coth

(
β

2
gµBB

)]
. (5.12)

Specifically, for electrons without angular momentum that just have the electron spin J = 1/2,
this would further reduce to M = gµBN

2
tanh

(
βgµBB

2

)
≈ NµB tanh(βµBB).

Generally however, we see that the magnetization is linear at small external fields (coth(x) =
1/x+ x/3 + . . .)

lim
B→0

M =
NJ(J + 1)

3
(gµB)2βB ≡ χMB , (5.13)

and becomes saturated for strong external fields

lim
B→∞

M = NgµBJ . (5.14)

Since the magnetic susceptibility χM is positive, this is paramagnetic. Hence, coupling the
magnetic field directly to the localized magnetic moments induces paramagnetic behaviour.

5.3 Paramagnetism of delocalized electrons

For delocalized electrons – e.g. the conduction band electrons in metals, we can consider the
paramagnetic Zeeman coupling as well, we just use g = 2 and J = 1/2, and the z-component
of the total spin becomes

Sz =
~
2

∑
R

(
c†
R↑
cR↑ − c

†
R↓
cR↓

)
=

~
2

∑
k

(
c†
k↑
ck↑ − c

†
k↓
ck↓

)
, (5.15)

where we used that the diagonalization leaves the total particle number operator invariant.
Eventually, the Hamiltonian becomes

H =
∑
k

(
εk + µBB

)
c†k↑ck↑ +

∑
k

(
εk − µBB

)
c†k↓ck↓ , (5.16)

such that a magnetic field just breaks the degeneracy of the single-particle energies. The
magnetization is just given by the expectation value of

M = 〈µz〉 = −µB

〈∑
k

(
c†k↑ck↑ − c

†
k↓ck↓

)〉

= −µB
∫

[ρ(ε+ µBB)f(ε+ µBB)− ρ(ε− µBB)f(ε− µBB)] dε

≈ −µB
∫
ρ(ε) [f(ε+ µBB)− f(ε− µBB)] dε . (5.17)

Now, linearizing for small magnetic fields yields

M = −2µ2
BB

∫
ρ(ε)

df

dε
dε

T→0→ +2µ2
Bρ(EF )B , (5.18)

where we have used that at low temperatures the derivative of the Fermi function becomes a
negative Dirac-Delta function. Accordingly, the magnetic susceptibility becomes

χp = 2µ2
Bρ(EF ) , (5.19)

and the free conduction band electrons behave paramagnetically. However, there is also another
contribution coming from the diamagnetic coupling to the vector potential.
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5.4 Landau diamagnetism

We now consider the effect of minimal coupling [3], best treated in first quantization. A
homogeneous magnetic field in z direction is generated by the vector potential

A =

 0
Bx
0

 , B =

 0
0
B

 . (5.20)

Since we will not consider interactions, we just include one electron and in the end will extrap-
olate the result to many. The Hamiltonian of a single electron reads

H =
1

2m

(
p− e

c
A
)2

=
1

2m

(
p2
x + p2

z + p2
y −

eB

c
pyx−

eB

c
xpy +

e2B2

c2
x2

)
=

p2
x

2m
+
m

2
ω2

0

(
x− py

mω0

)2

+
p2
z

2m
, (5.21)

where we have introduced the cyclotron frequency

ω0 =
eB

mc
. (5.22)

The stationary Schrödinger equation can now be solved with the ansatz

Ψ(r) = cφ(x)e+ikyye−ikzz , (5.23)

which yields(
p2
x

2m
+
m

2
ω2

0

(
x− ~ky

mω0

)2

+
~2k2

z

2m

)
cφ(x)e+ikyye−ikzz = Ecφ(x)e+ikyye−ikzz . (5.24)

This is apparently just a 1d Schrödinger equation for φ(x)(
p2
x

2m
+
m

2
ω2

0

(
x− ~ky

mω0

)2

+
~2k2

z

2m

)
φ(x) = Eφ(x) . (5.25)

However, there is a shift term ~2k2
z/(2m) (which does of course affect the energies), and there is

also a displacement of the equilibrium position (which does not affect the energies). Therefore,
the energies are degenerate in the quantum number ky

En,ky ,kz = En,kz = ~ω0

(
n+

1

2

)
+

~2k2
z

2m
. (5.26)

However, this solution holds strictly speaking only when there are no spatial constraints in
x-direction. Assuming periodic boundary conditions in y and z directions yields quantization
of ky and kz

ky =
2πly
Ly

, kz =
2πlz
Lz

, ly/z ∈ Z . (5.27)

However, whereas the number of kz values leading to different physics is finite, this is different
for ky. As it enters also in the Schrödinger equation displacement, we have to demand that the
equilibrium position of the oscillator is inside the considered volume

x0 =
~ky
mω0

=
2π~ly
mω0Ly

≤ Lx , (5.28)
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which constrains the possible values of ky via

ly ≤
mω0LxLy

2π~
. (5.29)

Strictly speaking, since we have used the free solution of the infinitely extended harmonic
oscillator, we are not allowed to impose periodic boundary conditions in x direction. However,
the eigenfunctions of the harmonic oscillator decay exponentially in the far-field, such that it
should be justified to perform this approximation when Lx is large. Therefore, the degeneracy of
the energies resulting from the quantization of ky is roughly given by (an integer approximation
of)

Ny =
mω0LxLy

2π~
. (5.30)

It should be noted that the energies Enkykz are the excitation energies of a single electron – if
it is present. Quite generally, the electronic Hamiltonian in second quantization can therefore
be written as (this now includes many non-interacting electrons)

H =
∞∑
n=0

Ny∑
ky=1

∑
kz∈1.BZ

∑
σ

En,kzc
†
nkykzσ

cnkykzσ . (5.31)

The grand potential is now defined via the log of the partition function, where we can use the
degeneracy in ky and convert the sum over the allowed kz values into an integral

Φ = −kBT ln Tr
{
e−β(H−µN)

}
= −2kBT

∞∑
n=0

Lz
2π

∫ +π

−π
dkz

mω0LxLy
2π~

ln
(
1 + e−β(Enkz−µ)

)
(5.32)

Here, the factor of 2 results from the spin, and we have converted the sum over kz into an
integral in the usual way. The dependence on the magnetic field is via the cyclotron frequency
ω0 and the energy Enkz (which also depends on ω0). Making this explicit, we can write the
grand potential with V = LxLyLz as

Φ = −kBTV mω0

2π2~

∞∑
n=0

g

(
µ− ~ω0

(
n+

1

2

))
, g(µ− x) =

∫ +π

−π
ln

(
1 + eβ(µ−x− ~2k2

z
2m

)

)
dkz .

(5.33)

To evaluate the sum over n we can use the Euler-McLaurin summation formula [17]

∞∑
n=0

f(n) =
f(0)

2
+

∫ ∞
0

f(x)dx− f ′(0)

12
+ . . . , (5.34)

which holds when the derivatives of f(x) vanish at infinity. However, we actually need a relation
for f(n+ 1/2)

∞∑
n=0

f(n+ 1/2) =
f(1/2)

2
+

∫ ∞
0

f(x+ 1/2)dx− f ′(1/2)

12
+ . . .

=

∫ ∞
0

f(x)dx−
∫ 1/2

0

f(x)dx+
f(1/2)

2
− f ′(1/2)

12
+ . . .

=

∫ ∞
0

f(x)dx− f(0)
1

2
− f ′(0)

∫ 1/2

0

xdx+ f(0)
1

2
+ f ′(0)

1

4
− f ′(0)

1

12
+O{f ′′(0)}

=

∫ ∞
0

f(x)dx+
f ′(0)

24
+O{f ′′(0)} , (5.35)
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where we have taylor expanded all terms around x = 0 (except under the infinite integral).
Applying it to our case we have

∞∑
n=0

g (µ− ~ω0(n+ 1/2)) =

∫ ∞
0

dxg(µ− ~ω0x)dx+
1

24

d

dx
g(x)

∣∣∣
x=0

=
1

~ω0

∫ µ

−∞
g(y)dy − ~ω0

24

d

dy
g(y)

∣∣∣
y=µ

, (5.36)

where we have transformed variables to y = µ− ~ω0x. The potential accordingly becomes

Φ = −kBTV mω0

2π2~

[
1

~ω0

∫ µ

−∞
g(y)dy − ~ω0

24

d

dy
g(y)

∣∣∣
y=µ

]
,

= −kBTV m
2π2~2

[∫ µ

−∞
g(y)dy − (~ω0)2

24

d

dy
g(y)

∣∣∣
y=µ

]
, (5.37)

and we see that the dependence on ω0 (and hence, the magnetic field) will drop out in the first
term. Using that

g′(µ) =
∂2

∂µ2

∫ µ

−∞
g(y)dy , (5.38)

we can write the potential also as

Φ = Φ0 −
~2e2B2

24m2c2

∂2

∂µ2
Φ0 , (5.39)

where Φ0 denotes the grand potential in absence of any field. This can be calculated explic-
itly, and for our purposes it is more convenient to represent the potential using the usual k
summation

Φ0 = −2kBT
∑
k

ln
(

1 + e
−β(εk−µ)

)
. (5.40)

Performing the derivative with respect to µ yields

∂Φ0

∂µ
= −2

∑
k

e
−β(εk−µ)

1 + e
−β(εk−µ)

= −2
∑
k

f(εk) , (5.41)

and for the second derivative we get

∂2Φ0

∂µ2
= −2

∑
k

∂f(εk)

∂µ
= +2

∑
k

∂f(εk)

∂εk
= 2

∫
ρ(ε)

df

dε
dε

T→0→ −2ρ0(EF ) , (5.42)

where in the last step we have again used that the Fermi function becomes (reversed) Heaviside
function, such that its derivative converges to a δ function at the Fermi energy.

Now, we can compute the magnetization

M = −∂Φ

∂B
= +

e2~2

12m2c2
B
∂2Φ0

∂µ2

= −2ρ(EF )
e2~2

12m2c2
B . (5.43)
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We can read off the corresponding susceptibility

χ = −2ρ(EF )
e2~2

12m2c2
= −2ρ(EF )

1

3
µ2
B = −1

3
χp , (5.44)

where we have inserted the Bohr magneton µB = |e|~/(2mc) and compared with Eq. (5.19).
Accordingly, the minimal coupling procedure leads for otherwise free electrons to a diamagnetic
behaviour. If one considers the conduction band electrons as quasi-free and adds up both cou-
plings, the total susceptibility at low temperatures is still paramagnetic, since the paramagnetic
contribution is larger, and one gets χtotal = 2/3χp.

5.5 Interaction of magnetic moments

To explain ferromagnetism, one may easily be tempted to simply write down a Hamiltonian of
the form H = −gijµiµj, where gij would depend on the distance of the magnetic moments.
From electrodynamics, we could conjecture that a dipolar interactionH = 1

r3 [µiµj − 3(µie)(µje)]
could lead to similar dynamics. However, this would lead to anti-aligned magnetic moments
and for realistic parameters this interaction is too weak to explain the observed ferromagnetism.
The real origin of interaction of localized magnetic moments is the exchange interaction.

To motivate it, we consider two electrons [3] in tight-binding representation (similar argu-
ments hold when solving the H2 problem [1])

H = εa

(
c†a↑ca↑ + c†a↓ca↓

)
+ εb

(
c†b↑cb↑ + c†b↓cb↓

)
+ Uac

†
a↑ca↑c

†
a↓ca↓ + Ubc

†
b↑cb↑c

†
b↓cb↓

+ V
(
c†a↑ca↑ + c†a↓ca↓

)(
c†b↑cb↑ + c†b↓cb↓

)
+ J

(
+c†a↑c

†
b↑ca↑cb↑ + c†a↓c

†
b↓ca↓cb↓ + c†a↑c

†
b↓ca↓cb↑ + c†a↓c

†
b↑ca↑cb↓ + c†a↑c

†
a↓cb↓cb↑ + c†b↑c

†
b↓ca↓ca↑

)
.

(5.45)

Here, the first line describes the individual Hamiltonian of the two sites with on-site energies εa
and εb as well as intra-orbital Coulomb interactions Ua and Ub. We are mainly interested in the
case ε = εa = εb and U = Ua = Ub, but for the purpose of bookkeeping it is convenient to keep
the distinction for now. The second line includes the inter-orbital Coulomb interaction V , and
the third line is an exchange term J , which describes all exchange processes under which the
resulting wave function must be anti-symmetric. The Hamiltonian commutes with the total
particle number operator, and therefore we can group the eigenstates of the different particle
numbers into blocks. In principle, we have 16 eigenstates, since the total basis is constructed
by the Fock states

|na↑na↓nb↑nb↓〉 , niσ ∈ {0, 1} . (5.46)

• There is just one eigenvector with zero particles |v1〉 ≡ |0000〉 with energy E1 = 0.

• Then, there are four eigenstates with a single electron

|v2〉 = c†a↑ |0〉 , |v3〉 = c†a↓ |0〉 with E2 = E3 = εa ,

|v4〉 = c†b↑ |0〉 , |v5〉 = c†b↓ |0〉 with E4 = E5 = εb . (5.47)

• The nontrivial part of the Hamiltonian is in the subspace where we have two electrons,
since this block is not diagonal. The basis of the two-electron subspace is spanned by
the states c†a↑c

†
b↑ |0〉, c

†
a↓c
†
b↓ |0〉, c

†
b↑c
†
b↓ |0〉, c

†
a↑c
†
a↓ |0〉, c

†
a↑c
†
b↓ |0〉, c

†
a↓c
†
b↑ |0〉. Of these, the



124 CHAPTER 5. MAGNETISM

first two are already eigenstates with energies E6 = E7 = εa + εb + V − J , since two
terms of the exchange interaction are already diagonal. In the remaining four states
{c†b↑c

†
b↓ |0〉 , c

†
a↑c
†
a↓ |0〉 , c

†
a↑c
†
b↓ |0〉 , c

†
a↓c
†
b↑ |0〉}, the Hamiltonian has the matrix representation

H4 =


2εb + Ub J

J 2εa + Ua
εa + εb + V −J
−J εa + εb + V

 , (5.48)

which again further decomposes into two blocks that can be diagonalized. Altogether, we
get the states

|v6〉 = c†a↑c
†
b↑ |0〉 , E6 = εa + εb + V − J ,

|v7〉 = c†a↓c
†
b↓ |0〉 , E7 = εa + εb + V − J ,

|v8〉 ∝
(

2εb − 2εa + Ub − Ua +
√

4J2 + (Ua − Ub + 2εa − 2εb)2
)
c†a↑c

†
a↓ |0〉 − 2Jc†b↑c

†
b↓ |0〉 ,

E8 = εa + εb +
1

2

(
Ua + Ub −

√
4J2 + (Ua − Ub + 2εa − 2εb)2

)
,

|v9〉 ∝ 2Jc†a↑c
†
a↓ |0〉+

(
2εb − 2εa + Ub − Ua +

√
4J2 + (Ua − Ub + 2εa − 2εb)2

)
c†b↑c

†
b↓ |0〉 ,

E9 = εa + εb +
1

2

(
Ua + Ub +

√
4J2 + (Ua − Ub + 2εa − 2εb)2

)
,

|v10〉 =
1√
2

[
c†a↑c

†
b↓ + d†a↓c

†
b↑

]
|0〉 , E10 = εa + εb + V − J ,

|v11〉 =
1√
2

[
c†a↑c

†
b↓ − d

†
a↓c
†
b↑

]
|0〉 , E11 = εa + εb + V + J . (5.49)

Specifically in the limit ε = εa = εb and U = Ua = Ub one can now see that

E8/9 = 2ε+ U ± J , (5.50)

and when we assume that the on-site Coulomb interaction is significantly larger than the
intra-orbital and exchange interaction U � V, J , we can completely neglect the states |v8〉
and |v9〉 from the dynamics, since due to their large energy, they can never be occupied and
hardly particate in the dynamics. The remaining, relevant, four states form a degenerate
triplett

|v6〉 = c†a↑c
†
b↑ |0〉 , |v7〉 = c†a↓c

†
b↓ |0〉 , |v10〉 =

1√
2

[
c†a↑c

†
b↓ + c†a↓c

†
b↑

]
|0〉 , (5.51)

with the energy E6 = E7 = E10 = εa + εb + V − J and a singlett

|v11〉 =
1√
2

[
c†a↑c

†
b↓ − c

†
a↓c
†
b↑

]
|0〉 (5.52)

with energy E11 = εa + εb + V + J .

• Again, there are four eigenstates with three electrons (or a single hole)

|v12〉 = c†a↓c
†
b↑c
†
b↓ |0〉 , |v13〉 = c†a↑c

†
b↑c
†
b↓ |0〉 with E12 = E13 = εa + 2εb + Ub + 2V − J ,

|v14〉 = c†a↑c
†
a↓c
†
b↓ |0〉 , |v15〉 = c†a↑c

†
a↓c
†
b↑ |0〉 with E14 = E15 = 2εa + εb + Ua + 2V − J ,

(5.53)

which we can neglect for large Ua = Ub = U .
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• Finally, there is one eigenstate with four electrons |v16〉 = c†a↑c
†
a↓c
†
b↑c
†
b↓ |0〉 with energy

E16 = 2εa + 2εb + Ua + Ub + 4V − 2J , which can be neglected as well.

We will now concentrate on the subspace with two electrons, assuming that the number
of particles is fixed. Further, we will eliminate the states with on-site Coulomb interaction
(U → ∞), leaving only the triplett and the singlett states. Our observation is that when
J > 0, the energetically degenerate triplett states are energetically lower than the singlett
state. We are now looking for an interaction between local magnetic moments that reproduces
this behaviour.

We can introduce spin operators for every site α ∈ {a, b}

Sxα =
1

2

(
d†α↑dα↓ + d†α↓dα↑

)
=̂

1

2
σxα ,

Syα =
−i

2

(
d†α↑dα↓ − d

†
α↓dα↑

)
=̂

1

2
σyα ,

Szα =
1

2

(
d†α↑dα↑ − d

†
α↓dα↓

)
=̂

1

2
σzα , (5.54)

which fulfil the known commutation relations

[Siα, S
j
β] = δαβiεijkS

k
α (5.55)

and yield for the total spin in the allowed subspace an eigenvalue of Sα
2 = (Sxα)2 + (Syα)2 +

(Szα)2 = 3/4 = 1/2(1/2 + 1). Of course, these operators are – when represented on the basis
for a single site – 4× 4 matrices, but since we consider only the singly occupied sector per site
(via U →∞), they become Pauli matrices in the allowed subspace.

By direct inspection we can now compute the eigenvalues of SaSb. However, we can also
obtain it from the rules of angular momentum coupling: The total spin of both sites reads

S2 = S2 = (Sa + Sb)
2 = Sa

2 + Sb
2 + 2SaSb , (5.56)

and it can have eigenvalues s(s+ 1) with s = 0 or s = 1. In fact, one can check explicitly with
Eq. (5.51) and Eq. (5.52) that the triplett corresponds to total angular momentum s = 1 and
the singlett to angular momentum s = 0

〈v6|S2 |v6〉 = 〈v7|S2 |v7〉 = 〈v10|S2 |v10〉 = 1 · 2 , 〈v11|S2 |v11〉 = 0 · 1 . (5.57)

We can solve for the scalar product as SaSb = 1
2

[S2 − S2
a − S2

b ], which can have eigenvalues

1

2

[
s(s+ 1)− 1

2

(
1 +

1

2

)
− 1

2

(
1 +

1

2

)]
(5.58)

where the s assumes the values s ∈ {0, 1}. Therefore, the operator SaSb assigns the s = 1
states the eigenvalue +1/4 and the s = 0 state the eigenvalue −3/4.

We want the precise opposite, such that eventually, we conclude that the exchange interac-
tion between localized spins can be written as

Heff = −J̃Sa · Sb , J̃ > 0 , (5.59)

which tends to align the spins. Often, this is further generalized for many sites and supple-
mented by an external field (which can be chosen in a particular direction). The resulting
Hamiltonian

HHs = −
∑
ij

JijSi · Sj + gµB
∑
i

BSi (5.60)

is known as Heisenberg model. Variants of this model are an important playground in statis-
tical physics. Below, we will consider a reduced version of the Heisenberg model.
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5.6 The 1d quantum Ising model in a transverse field

The quantum Ising chain in a transverse field for N spins

H = −g
N∑
i=1

σxi − J
N∑
i=1

σzi σ
z
i+1 , N even (5.61)

where g ∝ B describes the coupling to an external magnetic field in x-direction, J the inter-
chain coupling to nearest neighbors, and periodic boundary conditions are assumed σzN+1 ≡ σz1 is
a paradigmatic model to describe quantum-critical behaviour [18]. Although rather a technical
constraint, we note explicitly that we consider here only the case where N is even. The model
is analytically diagonalizable for finite N and displays a second order quantum phase transition
at g = J . One can distinguish easily the behaviour in the simple cases where one coefficient
vanishes

• When J = 0, the model behaves either paramagnetic or diamagnetic, depending on how
the magnetic field enters the constant g.

• When g = 0, the model may describe ferromagnetic behaviour when J > 0 (in the ground
state, all spins are aligned) or anti-ferromagnetic behaviour when J < 0 (all spins tend
to anti-align)

We will just consider the paramagnetic-ferromagnetic transition here by assuming g ≥ 0 and
J ≥ 0.

We can introduce a dimensionless phase parameter by fixing Ωs = J and Ω(1− s) = g with
energy scale Ω

HS = −Ω(1− s)
N∑
i=1

σxi − Ωs
N∑
i=1

σzi σ
z
i+1 . (5.62)

The successive application of Jordan-Wigner, Fourier-, and Bogoliubov transforms maps the
system Hamiltonian into two mutually commuting parts H = H− +H+ with

H± =
∑
k

ε±k γ
†
k±γk± + σ± (5.63)

with fermionic annihilation operators γk that describe quasi-particles and shifts σ±. Here, the
quasi-momentum k may assume discrete values only, and the single-particle energies – that
correspond to excitation energies of the full model – can be explicitly computed.

5.6.1 Mean-field approximation

Although the mean-field approximation does not work well with the Ising model, we can apply
it to the quantum Ising model to get some first ideas on the model dynamics. With the mean-
field replacement (4.96) applied to the Pauli matrix products, we represent the Ising model by
an effective Hamiltonian

Heff = −Ω(1− s)
N∑
i=1

σxi − Ωs
N∑
i=1

〈σzi 〉eff σ
z
i+1 − Ωs

N∑
i=1

〈
σzi+1

〉
eff
σzi + Ωs

N∑
i=1

〈σzi 〉eff

〈
σzi+1

〉
eff

= −Ω(1− s)
N∑
i=1

σxi − Ωs
N∑
i=1

[〈
σzi−1

〉
eff

+
〈
σzi+1

〉
eff

]
σzi + Ωs

N∑
i=1

〈σzi 〉eff

〈
σzi+1

〉
eff
. (5.64)
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Figure 5.1: Self-consistent solutions of
Eq. (5.66) versus scale parameter s for
different temperatures. At zero temperature,
we see at s∗ = 1/3 a bifurcation, where two
solutions with 〈σz〉eff 6= 0 emerge. At larger
temperatures, the bifurcation point moves to
the right.

Here, the expectation value 〈σzi 〉eff has to be determined self-consistently from

〈σzi 〉eff = Tr

{
σzi

e−βHeff

Tr {e−βHeff}

}
. (5.65)

The periodic boundary conditions imply that 〈σzi 〉eff = 〈σz〉eff is homogeneous, which eventually
yields

〈σz〉eff = Tr

{
σz

e+βΩ(1−s)σx+2βΩs〈σz〉effσ
z

Tr
{
e+βΩ(1−s)σx+2βΩs〈σz〉effσ

z
}}

= 2s 〈σz〉eff

tanh

(
βΩ
√

1 + s(4s 〈σz〉2eff + s− 2)

)
√

1 + s(4s 〈σz〉2eff + s− 2)
. (5.66)

Here, we have on the r.h.s. computed the matrix exponential and normalized it for general
expectation values 〈σz〉eff . This resulting equation is always trivially solved by 〈σz〉eff = 0,
but further nontrivial solutions can be found numerically. At high temperatures, βΩ � 1,
we only have the trivial solution 〈σz〉eff = 0. At zero temperatures, we can approximate the

tanh by one, and we additionally have the two solutions 〈σz〉eff = ± 1
2s

√
(1 + s)(3s− 1). This

nonanalytic behaviour is found for zero temperatures at s = 1/3. For finite temperatures,
we have to solve the self-consistency equation numerically, and we also observe the additional
nontrivial branches, see Fig. 5.1. Since the non-analytic behaviour of the σz-observable is found
even at zero temperature as a function of the parameter s describing the competition between
external field and spin-spin interaction, the mean-field treatment thus predicts a quantum
phase transition. We will see that it is indeed correct that a quantum phase transition exists
for this model but that the correct position is at s∗ = 1/2, unlike the value obtained from the
mean-field treatment.

5.6.2 Exact Diagonalization of the closed system

First, we note that since[
σzi σ

z
i+1, σ

x
i σ

x
i+1

]
= σxi

[
σzi σ

z
i+1, σ

x
i+1

]
+
[
σzi σ

z
i+1, σ

x
i

]
σxi+1

= σxi σ
z
i (2iσyi+1) + (2iσyi )σ

z
i+1σ

x
i+1

= (−iσyi )(2iσyi+1) + (2iσyi )(+iσyi+1) = 0 , (5.67)
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it follows that the full Ising model Hamiltonian commutes with the operator

Σx =
N⊗
`=1

σx` , (5.68)

which means that H and Σx must have a common system of eigenvectors. Since the eigenvalues
of Σx are just ±1, we conclude that it must be possible to classify the eigenvalues of the
Hamiltonian into two groups.

Jordan-Wigner transform

We could directly use the representation of the Pauli matrices by fermions (5.54), to embed the
Ising model in a fermionic system of higher dimension. This procedure however would intro-
duce (unnecessary) degrees of freedom and – more problematic – would introduce interactions
between the fermions, inhibiting an exact solution. The mapping discussed below also maps to
fermionic particles, but in a different non-local way.

The Jordan-Wigner transform (JWT)

σxn = 1− 2c†ncn , σzn = −(cn + c†n)
n−1∏
m=1

(
1− 2c†mcm

)
(5.69)

maps the spin-1/2 Pauli matrices non-locally to spinless fermionic operators cm. Inserting the
JWT into the Ising Hamiltonian, one has to treat the boundary term with special care

H = −g
N∑
n=1

(1− 2c†ncn)− J
N−1∑
n=1

(cn + c†n)(cn+1 + c†n+1)(1− 2c†ncn)

− J(cN + c†N)

[
N−1∏
n=1

(1− 2c†ncn)

]
(c1 + c†1)

= −g
N∑
n=1

(1− 2c†ncn)− J
N−1∑
n=1

(c†n − cn)(c†n+1 + cn+1)

+ J(c†N − cN)(c†1 + c1)

[
N∏
n=1

(1− 2c†ncn)

]
, (5.70)

where we have extensively used the fermionic anticommutation relations. Introducing the
projection operators on the subspaces with even (+) and odd (-) total number of fermion
quasiparticles

P± ≡ 1

2
[1± Σx] =

1

2

[
1±

N∏
m=1

(1− 2c†mcm)

]
, (5.71)

we may also write the Hamiltonian (5.70) as H = (P+ +P−)H(P+ +P−). It is straightforward
to see that terms with different projectors and with n < N vanish

0 = P+(1− 2c†ncn)P− = P−(1− 2c†ncn)P+ ,

0 = P+(c†n − cn)(c†n+1 + cn+1)P− = P−(c†n − cn)(c†n+1 + cn+1)P+ . (5.72)

For the boundary terms one finds similarly

(P+ + P−)(c†N − cN)(c†1 + c1)

[
N∏
n=1

(1− 2c†ncn)

]
(P+ + P−)

= (P+ + P−)(c†N − cN)(c†1 + c1)(2P+ − 1)(P+ + P−)

= P+(c†N − cN)(c†1 + c1)P+ − P−(c†N − cN)(c†1 + c1)P− . (5.73)
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The prefactor of the last term with the P− is negative as it should be, but the first is positive.
We can correct for this by demanding anti-periodic boundary conditions in the even subspace.
Eventually, we can write the Hamiltonian (5.70) as the sum of two non-interacting parts with
either an even or an odd total number of fermionic quasiparticles

H = P+H+P+ + P−H−P−

= P+

[
−g

N∑
n=1

(1− 2c†ncn)− J
N∑
n=1

(c†n − cn)(c†n+1 + cn+1)

]
P+

+ P−
[
−g

N∑
n=1

(1− 2c†ncn)− J
N∑
n=1

(c†n − cn)(c†n+1 + cn+1)

]
P− . (5.74)

Although the Hamiltonians in the brackets look formally identical, we stress that to arrive at
this expression, we need to demand antiperiodic boundary conditions in the even (+) subspace
and periodic boundary conditions in the odd (-) subspace

cN+1,(+) ≡ −c1,(+) , cN+1,(−) ≡ +c1,(−) . (5.75)

Even subspace diagonalization

We first seek to diagonalize the even part of the Hamiltonian

H+ = −g
N∑
n=1

(1− 2c†ncn)− J
N∑
n=1

(c†n − cn)(c†n+1 + cn+1) (5.76)

with antiperiodic boundary conditions cN+1 = −c1. This is often the only part considered,
since it contains the ground state (with zero quasi-particles). Translational invariance suggests
to use the discrete Fourier transform (DFT, preserving the anticommutation relations due to
its unitarity by construction)

cn =
e−iπ/4

√
N

∑
k

c̃ke
+ikn 2π

N , (5.77)

which is a specific case of a Bogoliubov transformation. By construction, the DFT is unitary
and since it does not mix between annihilation and creation operators, it leaves the fermionic
anticommutation relations invariant (as one can check). The factor e−iπ/4 in front has just been
inserted for convenience (to obtain real-valued Bogoliubov coefficients later-on). The DFT is
compatible with the antiperiodic boundary conditions cN+1 = −c1 when k takes half-integer
values

k ∈ {±1

2
,±3

2
,±5

2
, . . .} , where |k| ≤ N − 1

2
. (5.78)

Therefore, for even N , we get N different k values. The DFT maps the Hamiltonian into

H+ = −gN1 +
∑
k

{
2[g − J cos(k2π/N)]c̃†kc̃k + J sin(k2π/N)

[
c̃†kc̃
†
−k + c̃−kc̃k

]}
. (5.79)

Now, the observation that only positive and negative frequencies couple (conservation of one-
dimensional quasi-momentum), suggests to use the reduced Bogoliubov transform

c̃k = u+kγ+k + v∗−kγ
†
−k , (5.80)
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which mixes positive and negative momenta and where the a priori unknown coefficients have
already been labeled suggestively (a more general ansatz would eventually of course yield the
same solution). Since the new operators γk should be fermionic, we obtain from the orthonor-
mality conditions and the fermionic anticommutation relations

1 = |u+k|2 + |v−k|2 , 0 = u+kv
∗
+k + u−kv

∗
−k = (v∗+k, v

∗
−k)

(
u+k

u−k

)
. (5.81)

Demanding that the Bogoliubov transform eliminates all non-diagonal terms (of the form
γ−kγ+k etc.) yields (by combining positive and negative k) the equation

0 = 2

[
g − J cos

(
k

2π

N

)]
(u+kv−k − u−kv+k) + 2J sin

(
k

2π

N

)
(u−ku+k + v−kv+k)

= (v−k, u−k)

(
+2
[
g − J cos

(
k 2π
N

)]
+2J sin

(
k 2π
N

)
+2J sin

(
k 2π
N

)
−2
[
g − J cos

(
k 2π
N

)] )( u+k

v+k

)
≡ (v−k, u−k)M

(
u+k

v+k

)
. (5.82)

All equations can be fulfilled when we choose (u+k, v+k)
T as the normalized positive energy

eigenstate of the matrix M with eigenvalue

ε+
k = +2

√
g2 + J2 − 2gJ cos(k2π/N) ≡ εk (5.83)

and (v∗−k, u
∗
−k)

T = (−v∗+k,+u∗+k)T as its negative energy eigenstate with eigenvalue

ε−k = −2
√
g2 + J2 − 2gJ cos(k2π/N). To be more explicit, we have

uk =
g − J cos(k2π/N) +

√
g2 + J2 − 2gJ cos(k2π/N)√[

g − J cos(k2π/N) +
√
g2 + J2 − 2gJ cos(k2π/N)

]2

+ [J sin(k2π/N)]2
,

vk =
J sin(k2π/N)√[

g − J cos(k2π/N) +
√
g2 + J2 − 2gJ cos(k2π/N)

]2

+ [J sin(k2π/N)]2
. (5.84)

As a sanity check, we see that when the interaction vanishes J → 0, we get that the modes no
longer mix uk → 1 and vk → 0.

Using these solutions, we obtain when N is even

H+ =
∑
k

2

√
g2 + J2 − 2gJ cos

(
k

2π

N

)(
γ†kγk −

1

2

)
. (5.85)

From this, we conclude the single-particle energies

ε+k = 2

√
g2 + J2 − 2gJ cos

(
k

2π

N

)
= 2Ω

√
(1− s)2 + s2 − 2s(1− s) cos

(
k

2π

N

)
. (5.86)

The ground state has zero quasi-particles, and we can compute the ground state energy for
large chain lengths N explicitly by converting the sum into an integral

E0 = −1

2

∑
k

ε+k
N→∞→ −Ω

N

2

∫ +1

−1

dκ
√

(1− s)2 + s2 − 2s(1− s) cos(πκ) , (5.87)
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Figure 5.2: Plot of the (negative) ground state
energy density ε(s) (black) and its first two
derivatives versus s. At the critical point s∗ =
1/2, the second derivative diverges.

where κ = 2k/N . Accordingly, the ground state energy density per spin becomes

ε(s) =
E0

N
= −Ω

∫ 1

0

dκ
√

(1− s)2 + s2 − 2s(1− s) cos(πκ) = −2Ω

π
ε(4s(1− s)) , (5.88)

where ε(x) is an elliptic integral of the second kind. This function has the peculiar property that
although its value at s = 1/2 is continuous, its second derivative diverges there logarithmically,
see Fig. 5.2. The next excited state in the subspace of an even quasiparticle number would be to
put two quasiparticles. To get the lowest excitation, we take the quasiparticles with k = ±1/2,
which yields for the excitation gap

G(s) = E1(s)− E0(s) = 2ε+1/2 = 4Ω

√
s2 + (1− s)2 − 2s(1− s) cos

( π
N

)
. (5.89)

By expanding the cos for large N and considering only the value of the gap at the critical point
s→ 1/2, the critical gap becomes

Gcrit ≈ 2Ω
π

N
. (5.90)

It is a general feature of quantum-critical models that the gap above the ground state vanishes
as N →∞. The scaling for the Ising model is rather mild, connected to the fact that it has a
second order quantum phase transition.

Odd subspace diagonalization

The procedure for the odd subspace is essentially analogous, except that the Fourier transform
should now be compatible with periodic boundary conditions cN+1 = +c1. The DFT

cn =
1√
N

∑
k

c̃ke
+ikn 2π

N (5.91)

is compatible with the periodic boundary conditions when k takes only integer values

k ∈ {0,±1,±2,±3, . . . ,±
(
N

2
− 1

)
,+

N

2
} , (5.92)

which holds for even values of N (we treat only this case) and then yields N different k-values.
From this choice, it also follows that c̃−N/2 = c̃+N/2. We get in analogy to the even subspace
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calculations the relations
N−1∑
i=1

cici+1 + cNc1 =
∑
k

c̃+kc̃−ke
−ik 2π

N ,

N−1∑
i=1

c†i+1c
†
i + c†1c

†
N =

∑
k

c̃†−kc̃
†
+ke

+ik 2π
N ,

N−1∑
i=1

c†ici+1 + c†Nc1 =
∑
k

c̃†+kc̃+ke
−ik 2π

N ,
N−1∑
i=1

c†i+1ci + c†1cN =
∑
k

c̃†+kc̃+ke
+ik 2π

N , (5.93)

and inserting them into the Hamiltonian H− we get

H− = gN1− 2g
∑
k

c̃†+kc̃+k − J
∑
k

[
c̃+kc̃−ke

−ik 2π
N + c̃†−kc̃

†
+ke

+ik 2π
N

]
+ J

∑
k

c̃†+kc̃+k

(
e+ik 2π

N + e−ik 2π
N

)
= gN1− 2(g − J)c†0c0 − 2(g + J)c†N/2cN/2 +

N/2−1∑
k=1

H−k . (5.94)

Here, the two additional terms arise from k = 0 and k = N/2, which is due to the different
boundary conditions in the odd subspace. The excitation energies of these modes can become
negative. The diagonalization of the quasimomentum pair Hamiltonian H−k proceeds in full
analogy to H+

k , we only have to take the different values of k into account

H−k =

[
2J cos

(
2πk

N

)
− 2g

]
c†+kc+k +

[
2J cos

(
2πk

N

)
− 2g

]
c†−kc−k

− 2iJ sin

(
2πk

N

)
c−kc+k + 2iJ sin

(
2πk

N

)
c†+kc

†
−k

= ε−k

[
γ†−kγ−k + γ†+kγ+k

]
+ ω−k 1 ,

ω−k = −2

(√
g2 + J2 − 2gJ cos

(
2πk

N

)
+ g − J cos

(
2πk

N

))
,

ε−k = 2

√
g2 + J2 − 2gJ cos

(
2πk

N

)
. (5.95)

After some rewriting, we can write the total Hamiltonian in the odd subspace as

H− = −2(g − J)

(
γ†0γ0 −

1

2

)
− 2(g + J)

(
γ†N/2γN/2 −

1

2

)
+

N/2−1∑
k=1

ε−k

[(
γ†+kγ+k −

1

2

)
+

(
γ†−kγ−k −

1

2

)]
. (5.96)

From these excitation energies we can succesively compute the full spectrum in the odd sub-
space. First, we compute the lowest energy eigenstate by putting a single (odd subspace)
quasiparticle with minimum energy (this is for our parameters the one with k = +N/2) into
the system. Further energies can be computed by putting quasiparticles with larger energies,
always obeying the constraint that in this subspace, the total number of quasi-particles must
be odd. Other odd branches are obtained by inserting three quasi-particles and so on.

Fig. 5.3 illustrates the analytic calculation of the eigenvalues for both even and odd subspaces
by comparing with a full-scale numerical solution for N = 10 spins, which yields in total
2N = 1024 eigenvalues. One can see that by knowing the single-quasiparticle energies and
the ground state energy in the separate subspaces, we can successively build up the complete
spectrum of the model – which numerically (dashed curves) requires the diagonalization of a
2N × 2N matrix.
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Figure 5.3: Comparison of analytical (bold, col-
ored) predictions with numerical (thin dashed,
black) results for the lower part of the spectrum
for N = 10. Other parameters have been cho-
sen as g = Ω(1 − s) and J = Ωs. At the crit-
ical point s∗ = 1/2, the indicated gap between
ground state and first excited state of the even
subspace closes in the continuum limit N →∞.

5.6.3 Equilibrium

To compute the heat capacity in the continuum limit, we do for simplicity only consider the
even subspace

H+ = E0 +
∑
k:even

ε+k γ
†
k+γk+ ,

E0 = −N
2

∫ +1

−1

dκ
√
g2 + J2 − 2gJ cos(πκ) = −2N(g + J)

π
ε

(
4gJ

(g + J)2

)
. (5.97)

From this, we can evaluate the logarithm of the partition function

lnZ+(β) = −βE0 +
∑
k:even

ln
[
1 + e−βε

+
k

]
= −βE0 +

N

2

∫ +1

−1

ln
[
1 + e−βε(κ)

]
dκ , (5.98)

where we have used an asymptotic convergence to an integral for large N with κ = 2k/N in
the last step and introduced continuous excitation energies

ε(κ) = 2
√
g2 + J2 − 2gJ cos (2πκ) . (5.99)

Now, the mean energy can be expressed by the derivative of the partition function with
respect to the inverse temperature

〈E+〉 = −∂β lnZ(β)

= E0 +
N

2

∫ +1

−1

ε(κ)

1 + e+βε(κ)
dκ , (5.100)

and we see that at zero temperature β →∞ it simply becomes the ground state energy of the
Ising model, which we computed before.

The heat capacity is given by the derivative of the energy with respect to temperature,
where the

C+ =
∂ 〈E+〉
∂T

= −β2∂ 〈E+〉
∂β

. (5.101)

Here, the contribution from the ground state drops out and we get an expression for the specific
heat capacity (per spin)

C+

N
=

1

2

∫ +1

−1

(
βε(κ)

2

)2

cosh2
(
βε(κ)

2

)dκ . (5.102)
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Figure 5.4: Plot of the crossover temperature
versus the paramagnetic-ferromagnetic transi-
tion parameter s, obtained by solving C(T ∗) =
C∗ for very small C∗. Below the curve, the heat
capacity vanishes exponentially, whereas it be-
comes finite above the curve.
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As cosh(x) ≥ 1, the integral is well-defined everywhere, and the specific heat capacity is a
continuous function e.g. of s and also of temperature (no jump discontinuities). We can plot
the heat capacity versus temperature and we see that away from the critical point (s 6= 1/2), it
vanishes at low temperatures exponentially. Again, we see in the spectra that the system always
has an energy gap of order Ω there, so this does not come as a surprise. At the critical point
s∗ = 1/2 however, the spectrum becomes gapless, and the heat capacity is finite already at
the smallest achievable temperatures. When we consider finite temperatures, the heat capacity
vanishes for low temperatures in the gapped phase but rises above a certain critical temperature.
This extends the zero-temperature phase diagram by a classical phase on top of the quantum
phase, see Fig. 5.4. At finite temperatures, there is no longer a true phase transition as a
function of temperature, but we still see that the heat capacity behaviour can be classified in
distinct regimes.

Similarly, we can compute other order parameters such as

1

N

〈∑
i

σxi

〉
=

1

Nβ
∂g lnZ+ ,

1

N

〈∑
i

σzi σ
z
i+1

〉
=

1

Nβ
∂J lnZ+ . (5.103)

These are shown in Fig. 5.5. The behaviour of these order parameters mimics the phases defined
in Fig. 5.4.
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Figure 5.5: Contour plots of magnetization per spin (left) and spin-spin correlation (right) as
defined in Eq. (5.103) versus scale parameter s (horizontal axis) and temperature kBT/(~Ω)
(vertical axis). Contours range from 0.02 (blue) to 0.98 (yellow). Other parameters g = Ω(1−s),
J = Ωs.



136 CHAPTER 5. MAGNETISM



Chapter 6

Open Quantum Systems

6.1 Mathematical Prerequisites

Master equations are often used to describe the dynamics of systems interacting with one
or many large reservoirs (baths). To derive them from microscopic models – including the
Hamiltonian of the full system – requires to review some basic mathematical concepts.

6.1.1 Tensor Product

The greatest advantage of the density matrix formalism is visible when quantum systems com-
posed of several subsystems are considered. Roughly speaking, the tensor product represents a
way to construct a larger vector space from two (or more) smaller vector spaces.

Box 18 (Tensor Product) Let V and W be Hilbert spaces (vector spaces with scalar product)
of dimension m and n with basis vectors {|v〉} and {|w〉}, respectively. Then V ⊗W is a Hilbert
space of dimension m ·n, and a basis is spanned by {|v〉⊗ |w〉}, which is a set combining every
basis vector of V with every basis vector of W .

Mathematical properties

• Bilinearity (z1 |v1〉+ z2 |v2〉)⊗ |w〉 = z1 |v1〉 ⊗ |w〉+ z2 |v2〉 ⊗ |w〉

• operators acting on the combined Hilbert space A ⊗ B act on the basis states as (A ⊗
B)(|v〉 ⊗ |w〉) = (A |v〉)⊗ (B |w〉)

• any linear operator on V ⊗W can be decomposed as C =
∑

i ciAi ⊗Bi

• the scalar product is inherited in the natural way, i.e., one has for |a〉 =
∑

ij aij |vi〉⊗|wj〉
and |b〉 =

∑
k` bk` |vk〉 ⊗ |w`〉 the scalar product 〈a|b〉 =

∑
ijk` a

∗
ijbk` 〈vi|vk〉 〈wj|w`〉 =∑

ij a
∗
ijbij

If more than just two vector spaces are combined to form a larger vector space, the dimension
of the joint vector space grows rapidly, as e.g. exemplified by the case of a qubit: Its Hilbert
space is just spanned by two vectors |0〉 and |1〉. The joint Hilbert space of two qubits is
four-dimensional, of three qubits 8-dimensional, and of n qubits 2n-dimensional. Eventually,
this exponential growth of the Hilbert space dimension for composite quantum systems is at
the heart of quantum computing.
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Since the scalar product is inherited, this typically enables a convenient calculation of the
trace in case of a few operator decomposition, e.g., for just two operators

Tr {A⊗B} =
∑
nA,nB

〈nA, nB|A⊗B |nA, nB〉

=

[∑
nA

〈nA|A |nA〉

][∑
nB

〈nB|B |nB〉

]
= TrA{A}TrB{B} , (6.1)

where TrA/B denote the trace in the Hilbert space of A and B, respectively.

6.1.2 The partial trace

For composite systems, it is usually not necessary to keep all information of the complete
system in the density matrix. Rather, one would like to have a density matrix that encodes
all the information on a particular subsystem only. Obviously, the map ρ→ TrB {ρ} to such a
reduced density matrix should leave all expectation values of observables A acting only on the
considered subsystem invariant, i.e.,

Tr {A⊗ 1ρ} = Tr {ATrB {ρ}} . (6.2)

If this basic condition was not fulfilled, there would be no point in defining such a thing as a
reduced density matrix: Measurement would yield different results depending on the Hilbert
space of the experimenters feeling.

Box 19 (Partial Trace) Let |a1〉 and |a2〉 be vectors of state space A and |b1〉 and |b2〉 vectors
of state space B. Then, the partial trace over state space B is defined via

TrB {|a1〉 〈a2| ⊗ |b1〉 〈b2|} = |a1〉 〈a2|Tr {|b1〉 〈b2|} . (6.3)

The partial trace is linear, such that the partial trace of arbitrary operators is calculated
similarly. By choosing the |aα〉 and |bγ〉 as an orthonormal basis in the respective Hilbert space,
one may therefore calculate the most general partial trace via

TrB {C} = TrB

{∑
αβγδ

cαβγδ |aα〉 〈aβ| ⊗ |bγ〉 〈bδ|

}
=
∑
αβγδ

cαβγδTrB {|aα〉 〈aβ| ⊗ |bγ〉 〈bδ|}

=
∑
αβγδ

cαβγδ |aα〉 〈aβ|Tr {|bγ〉 〈bδ|}

=
∑
αβγδ

cαβγδ |aα〉 〈aβ|
∑
ε

〈bε|bγ〉 〈bδ|bε〉

=
∑
αβ

[∑
γ

cαβγγ

]
|aα〉 〈aβ| . (6.4)

The definition 19 is the only linear map that respects the invariance of expectation values.
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As an example, we can compute the partial trace of a pure density matrix ρ = |Ψ〉 〈Ψ| in
the bipartite state

|Ψ〉 =
1√
2

(|01〉+ |10〉) ≡ 1√
2

(|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉) . (6.5)

The reduced density matrix becomes

ρA = TrB {|Ψ〉 〈Ψ|} =
1

2
|0〉 〈0|+ 1

2
|1〉 〈1| . (6.6)

6.2 Coarse-Graining derivation of a Master Equation

In some cases, it is possible to derive a master equation rigorously based only on a few assump-
tions. Open quantum systems for example are mostly treated as part of a much larger closed
quantum system (the union of system and bath), where the partial trace is used to eliminate
the unwanted (typically many) degrees of freedom of the bath [19, 20]. Technically speaking,
we will consider Hamiltonians of the form

H = HS ⊗ 1 + 1⊗HB +HI , (6.7)

where the system and bath Hamiltonians act only on the system and bath Hilbert space,
respectively. Since the index clearly defines on which space the respective Hamiltonian is
acting, we often also write

H = HS +HB +HI . (6.8)

It is important to note that the interaction Hamiltonian acts on both Hilbert spaces

HI =
∑
α

Aα ⊗Bα , (6.9)

where the summation boundaries are in the worst case limited by the dimension of the system
Hilbert space α < N2 − 1. As we consider physical observables here, it is required that all
Hamiltonians of system, bath, and interaction are self-adjoint. This enables one to find rep-
resentations where even all individual system and bath operators in the coupling Hamiltonian
are self-adjoint Aα = A†α and Bα = B†α, we will however not assume this here.

Here, we will derive the master equation generally, for an arbitrary system coupled to a
thermal environment. This will at first appear a bit technical but may prove useful later-on,
since it also allows us to show general properties for later reference.

6.2.1 Interaction Picture

When the interaction HI is small, it is justified to apply perturbation theory. The von-Neumann
equation in the joint total quantum system

ρ̇ = −i [HS +HB +HI, ρ] (6.10)

describes the full evolution of the combined density matrix. This equation can be formally
solved by the unitary evolution ρ(t) = e−iHtρ0e

+iHt, which however is impractical to compute
as H involves too many degrees of freedom.

Transforming to the interaction picture

ρ(t) = e+i(HS+HB)tρ(t)e−i(HS+HB)t , (6.11)
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which will be denoted by bold symbols throughout, the von-Neumann equation transforms into

ρ̇ = −i [HI(t),ρ] , (6.12)

where the in general time-dependent interaction Hamiltonian

HI(t) = e+i(HS+HB)tHIe
−i(HS+HB)t =

∑
α

e+iHStAαe
−iHSt ⊗ e+iHBtBαe

−iHBt

=
∑
α

Aα(t)⊗Bα(t) (6.13)

allows to perform perturbation theory.

Coarse-graining provides a possibility to obtain valid short-time approximations of the den-
sity matrix with a generator that is of Lindblad form. We start with the von-Neumann equation
in the interaction picture (6.12). For factorizing initial density matrices, it is formally solved
by U(t)ρ0

S ⊗ ρ̄BU
†(t), where the time evolution operator

U(t) = τ̂ exp

−i

t∫
0

HI(t
′)dt′

 (6.14)

obeys the evolution equation

U̇ = −iHI(t)U(t) , (6.15)

which defines the time-ordering operator τ̂ . Formally integrating this equation with the evident
initial condition U (0) = 1 yields

U(t) = 1− i

t∫
0

HI(t
′)U(t′)dt′

= 1− i

t∫
0

HI(t
′)dt′ −

t∫
0

dt′HI(t
′)

 t′∫
0

dt′′HI(t
′′)U(t′′)


=
∞∑
n=0

(−i)n
t∫

0

dt1

t1∫
0

dt2 . . .

tn−1∫
0

dtnHI(t1) . . .HI(tn) . (6.16)

In particular, we can define the truncated operator to second order

U 2(t) = 1− i

t∫
0

HI(t1)dt1 −
t∫

0

dt1dt2HI(t1)HI(t2)Θ(t1 − t2) , (6.17)

where we have introduced the Heaviside function to account for the ordering of the integral
bounds. For the Hermitian conjugate operator we obtain

U †2(t) = 1 + i

t∫
0

HI(t1)dt1 −
t∫

0

dt1dt2HI(t1)HI(t2)Θ(t2 − t1) . (6.18)
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To keep the discussion at a moderate level, we assume Tr {HIρ̄B} = 0 from the beginning. The
exact solution ρS(t) = TrB

{
U(t)ρ0

S ⊗ ρ̄BU
†(t)
}

is then approximated by

ρ
(2)
S (t) ≈ ρ0

S + TrB


t∫

0

dt1

t∫
0

dt2HI(t1)ρ0
S ⊗ ρ̄BHI(t2)

 (6.19)

−
t∫

0

dt1dt2TrB

{
Θ(t1 − t2)HI(t1)HI(t2)ρ0

S ⊗ ρ̄B + Θ(t2 − t1)ρ0
S ⊗ ρ̄BHI(t1)HI(t2)

}
.

We introduce the bath correlation functions with two time arguments

Cαβ(t1, t2) = Tr {Bα(t1)Bβ(t2)ρ̄B} , (6.20)

such that we have

ρ
(2)
S (t) = ρ0

S +
∑
αβ

t∫
0

dt1

t∫
0

dt2Cαβ(t1, t2)
[
Aβ(t2)ρ0

SAα(t1)

−Θ(t1 − t2)Aα(t1)Aβ(t2)ρ0
S −Θ(t2 − t1)ρ0

SAα(t1)Aβ(t2)
]
. (6.21)

Typically, in the interaction picture, the system coupling operatorsAα(t) will simply carry some
oscillatory time dependence. In the worst case, they may remain time-independent. Therefore,
the decay of the correlation function is essential for the convergence of the above integrals. In
this way, Markovian approximation and weak-coupling assumptions are related. In particular,
we note that the truncated density matrix may remain finite even when t→∞, rendering the
expansion convergent also in the long-term limit.

6.2.2 Coarse-Graining

The basic idea of coarse-graining is to match this approximate expression for the system
density matrix at time t = τ with one resulting from a Markovian generator

ρS
CG(τ) = eL

CG
τ ·τρ0

S ≈ ρ0
S + τLCG

τ ρ0
S , (6.22)

such that we can infer the action of the generator on an arbitrary density matrix

LCG
τ ρS =

1

τ

∑
αβ

τ∫
0

dt1

τ∫
0

dt2Cαβ(t1, t2)
[
Aβ(t2)ρSAα(t1)

−Θ(t1 − t2)Aα(t1)Aβ(t2)ρS −Θ(t2 − t1)ρSAα(t1)Aβ(t2)
]

= −i

 1

2iτ

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

Cαβ(t1, t2)sgn(t1 − t2)Aα(t1)Aβ(t2),ρS


+

1

τ

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

Cαβ(t1, t2)

[
Aβ(t2)ρSAα(t1)− 1

2
{Aα(t1)Aβ(t2),ρS}

]
,

(6.23)

where we have inserted Θ(x) = 1
2

[1 + sgn(x)] – in order to separate unitary and dissipative
effects of the system-reservoir interaction.
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Box 20 (CG Master Equation) In the weak coupling limit, an interaction Hamiltonian of
the form HI =

∑
αAα⊗Bα leads to the Lindblad-form master equation in the interaction picture

ρ̇S = −i

 1

2iτ

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

Cαβ(t1, t2)sgn(t1 − t2)Aα(t1)Aβ(t2),ρS


+

1

τ

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

Cαβ(t1, t2)

[
Aβ(t2)ρSAα(t1)− 1

2
{Aα(t1)Aβ(t2),ρS}

]
,

where the bath correlation functions are given by

Cαβ(tt, t2) = Tr
{
e+iHBt1Bαe

−iHBt1e+iHBt2Bβe
−iHBt2 ρ̄B

}
. (6.24)

We have not used Hermiticity of the coupling operators nor that the bath correlation func-
tions do typically only depend on a single argument. However, if the coupling operators were
chosen Hermitian, it is easy to show the Lindblad form. For completeness, we also note there
that a Lindblad form is also obtained for non-Hermitian couplings. Obtaining the master equa-
tion requires the calculation of bath correlation functions and the evolution of the coupling
operators in the interaction picture. This master equation is now always of Lindblad form.

Thus, we have found that the best approximation to the exact solution can be written as
ρ(t) = eL

CG
t tρ0. Unfortunately, this is not the solution to a (single) master equation only. By

acting with a time-derivative, we can see that ρ̇ 6= LCG
t ρ(t). Rather, if interested in the solution

at a specific time t, we would have to derive the Liouville superoperator and then exponentiate
it.

6.2.3 Correspondence to the quantum-optical master equation

Let us make once more the time-dependence of the coupling operators explicit, which is most
conveniently done in the system energy eigenbasis. Now, we also assume that the bath correla-
tion functions only depend on the difference of their time arguments Cαβ(t1, t2) = Cαβ(t1− t2),
such that we may use their Fourier transforms to obtain

ρ̇S = −i

 1

2iτ

∑
abc

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

Cαβ(t1 − t2)sgn(t1 − t2) |a〉 〈a|Aα(t1) |c〉 〈c|Aβ(t2) |b〉 〈b| ,ρS


+

1

τ

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

∑
abcd

Cαβ(t1 − t2)
[
|a〉 〈a|Aβ(t2) |b〉 〈b|ρS |d〉 〈d|Aα(t1) |c〉 〈c|

− 1

2
{|d〉 〈d|Aα(t1) |c〉 〈c| · |a〉 〈a|Aβ(t2) |b〉 〈b| ,ρS}

]
= −i

1

4iπτ

∫
dω
∑
abc

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

σαβ(ω)e−iω(t1−t2)e+i(Ea−Ec)t1e+i(Ec−Eb)t2Acbβ A
ac
α [Lab,ρS]

+
1

2πτ

∫
dω

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

∑
abcd

γαβ(ω)e−iω(t1−t2)e+i(Ea−Eb)t2e+i(Ed−Ec)t1Aabβ A
dc
α ×

×
[
LabρSL

†
cd −

1

2

{
L†cdLab,ρS

}]
. (6.25)



6.2. COARSE-GRAINING DERIVATION OF A MASTER EQUATION 143

Here, the FTs of the reservoir correlation functions read

γαβ(ω) =

∫
Cαβ(τ)e+iωτdτ , σαβ(ω) =

∫
Cαβ(τ)sgn(τ)e+iωτdτ . (6.26)

In particular, the matrix formed by γαβ(ω) at fixed ω is positive semidefinite, as a consequence
of Bochner’s theorem [17].

We perform the temporal integrations by invoking

τ∫
0

eiαktkdtk = τeiαkτ/2sinc
[αkτ

2

]
(6.27)

with the bandfilter function sinc(x) = sin(x)/x to obtain

ρ̇S = −i
τ

4iπ

∫
dω
∑
abc

∑
αβ

σαβ(ω)eiτ(Ea−Eb)/2sinc
[τ

2
(Ea − Ec − ω)

]
sinc

[τ
2

(Ec − Eb + ω)
]
×

× 〈c|Aβ |b〉 〈c|A†α |a〉
∗ [|a〉 〈b| ,ρS]

+
τ

2π

∫
dω
∑
αβ

∑
abcd

γαβ(ω)eiτ(Ea−Eb+Ed−Ec)/2sinc
[τ

2
(Ed − Ec − ω)

]
sinc

[τ
2

(ω + Ea − Eb)
]
×

× 〈a|Aβ |b〉 〈c|A†α |d〉
∗
[
|a〉 〈b|ρS (|c〉 〈d|)† − 1

2

{
(|c〉 〈d|)† |a〉 〈b| ,ρS

}]
. (6.28)

Therefore, the coefficients in the master equation depend on the coarse-graining time

ρ̇S = −i

[∑
ab

στab |a〉 〈b| ,ρS

]

+
∑
abcd

γτab,cd

[
|a〉 〈b|ρS (|c〉 〈d|)† − 1

2

{
(|c〉 〈d|)† |a〉 〈b| ,ρS

}]
(6.29)

with the coefficients

στab =
1

2i

∫
dω
∑
c

eiτ(Ea−Eb)/2 τ

2π
sinc

[τ
2

(Ea − Ec − ω)
]

sinc
[τ

2
(Eb − Ec − ω)

]
×

×

[∑
αβ

σαβ(ω) 〈c|Aβ |b〉 〈c|A†α |a〉
∗

]
,

γτab,cd =

∫
dωeiτ(Ea−Eb+Ed−Ec)/2 τ

2π
sinc

[τ
2

(Ed − Ec − ω)
]

sinc
[τ

2
(Eb − Ea − ω)

]
×

×

[∑
αβ

γαβ(ω) 〈a|Aβ |b〉 〈c|A†α |d〉
∗

]
. (6.30)

Most important, in the limit of large coarse-graining times τ →∞, these dampening coef-
ficients converge to a finite limit

lim
τ→∞

τsinc
[τ

2
(Ωa − ω)

]
sinc

[τ
2

(Ωb − ω)
]

= 2πδΩa,Ωb
δ(Ωa − ω) . (6.31)

With defining

lim
τ→∞

στab ≡ σab , lim
τ→∞

γτab,cd ≡ γab,cd , (6.32)

we eventually arrive at the quantum-optical master equation
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Box 21 (BMS master equation) In the weak coupling limit, an interaction Hamiltonian of
the form HI =

∑
αAα ⊗Bα with system coupling operators Aα and bath coupling operators Bα

and [HB, ρ̄B] = 0 and Tr {Bαρ̄B} = 0 leads in the system energy eigenbasis HS |a〉 = Ea |a〉 to
the Lindblad-form master equation

ρ̇S = −i

[
HS +

∑
ab

σab |a〉 〈b| , ρS(t)

]

+
∑
a,b,c,d

γab,cd

[
|a〉 〈b| ρS(t) (|c〉 〈d|)† − 1

2

{
(|c〉 〈d|)† |a〉 〈b| , ρS(t)

}]
,

γab,cd =
∑
αβ

γαβ(Eb − Ea)δEb−Ea,Ed−Ec 〈a|Aβ |b〉 〈c|A†α |d〉
∗ , (6.33)

where γab,cd is a positive semidefinite matrix and the Lamb-shift Hamiltonian HLS =∑
ab σab |a〉 〈b| matrix elements read

σab =
∑
αβ

∑
c

1

2i
σαβ(Eb − Ec)δEb,Ea 〈c|Aβ |b〉 〈c|A†α |a〉

∗ (6.34)

and the constants are given by even and odd Fourier transforms

γαβ(ω) =

+∞∫
−∞

Cαβ(τ)e+iωτdτ ,

σαβ(ω) =

+∞∫
−∞

Cαβ(τ)sgn(τ)e+iωτdτ =
i

π
P

+∞∫
−∞

γαβ(ω′)

ω − ω′
dω′ (6.35)

of the bath correlation functions

Cαβ(τ) = Tr
{
e+iHBτBαe

−iHBτBβ ρ̄B

}
. (6.36)

The coarse-graining approach provides an alternative to the standard derivation of the
quantum-optical master equation [19], replacing three subsequent approximations (Born-, Markov-
and secular) by just one (perturbative expansion in the interaction). Also note that it does not
require the coupling operators to be explicitly hermitian.

The above definition may serve as a recipe to cook a Lindblad type master equation in the
weak-coupling limit. It is expected to yield good results in the weak coupling and Markovian
limit (continuous and nearly flat bath spectral density), when [ρ̄B, HB] = 0 and additionally the
level splittings of the system is large in comparison to the coupling strength to the reservoir. It
requires to rewrite the coupling operators tensor product form, to calculate the bath correlation
function Fourier transforms, and to diagonalize system Hamiltonian. The above quantum-
optical master equation is heavily used since it has many favorable properties.

• In the case that the spectrum of the system Hamiltonian is non-degenerate, we have a
further simplification, since the δ-functions simplify further, e.g. δEb,Ea → δab. By taking
matrix elements of Eq. (6.33) in the energy eigenbasis ρaa = 〈a| ρS |a〉, we obtain an
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effective rate equation for the populations only

ρ̇aa = +
∑
b

γab,abρbb −

[∑
b

γba,ba

]
ρaa ≡

∑
b

Wabρbb . (6.37)

This means that in the energy eigenbasis, the coherences decouple from the evolution of
the populations. The transition rates from state b to state a reduce in this case to

Wa6=b = γab,ab =
∑
αβ

γαβ(Eb − Ea) 〈a|Aβ |b〉 〈a|A†α |b〉
∗ ≥ 0 ,

Waa = −
∑
b 6=a

Wba , (6.38)

which – after inserting all definitions – condenses basically to Fermis Golden Rule. The
negative entries on the diagonals just enforce the conservation of the trace. Therefore,
with such a rate equation description, open quantum systems can be described with the
same complexity as closed quantum systems, since only N dynamical variables have to
be evolved.

• First, for a bath that is in thermal equilibrium

ρ̄B =
e−βHB

Tr {e−βHB}
(6.39)

with inverse temperature β one can show that the reservoir correlation functions obey
analytic properties such as the Kubo-Martin-Schwinger (KMS) condition (we now use ᾱ
for the indices in order to avoid confusion with the inverse temperature)

Cαᾱ(τ) = Cᾱα(−τ − iβ) . (6.40)

For the Fourier transform, this shift property implies

γαᾱ(−ω) =

+∞∫
−∞

Cαᾱ(τ)e−iωτdτ =

+∞∫
−∞

Cᾱα(−τ − iβ)e−iωτdτ

=

−∞−iβ∫
+∞−iβ

Cᾱα(τ ′)e+iω(τ ′+iβ)(−dτ)′ =

+∞−iβ∫
−∞−iβ

Cᾱα(τ ′)e+iωτ ′dτ ′e−βω

=

+∞∫
−∞

Cᾱα(τ ′)e+iωτ ′dτ ′e−βω = γᾱα(+ω)e−βω , (6.41)

where in the last line we have used that the bath correlation functions are analytic in τ in
the complex plane and vanish at infinity, such that we may safely deform the integration
contour. Finally, the KMS condition can thereby be used to prove that for a reservoir
with inverse temperature β, the density matrix

ρ̄S =
e−βHS

Tr {e−βHS}
(6.42)

is one stationary state of the BMS master equation (and the τ → ∞ limit of the CG
appraoch). In orther words, the system thermalizes with the reservoir.
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• Things become a bit more complicated when the reservoir is in the grand-canonical equi-
librium state

ρ̄B =
e−β(HB−µNB)

Tr {e−β(HB−µNB)}
, (6.43)

with the chemical potential µ and the particle number operator NB of the bath. Then,
the normal KMS condition is not fulfilled anymore by the correlation function. Chemical
potentials become relevant for models discussing particle transport. To talk about trans-
port, it is natural to assume that the total particle number N = NS +NB is a conserved
quantity [HS, NS] = [HB, NB] = [HI, NS + NB] = 0. In this case one can show that the
KMS relation is generalized according to∑

ᾱ

AᾱCαᾱ(τ) =
∑
ᾱ

e+βµNSAᾱe
−βµNSCᾱα(−τ − iβ) . (6.44)

This modifies the detailed-balance relation of the master equation coefficients to

γab,cd
γdc,ba

= eβ[(Eb−Ea)−µ(Nb−Na)] . (6.45)

In the end, these modified relations can be used to show that a stationary state of the
BMS master equation is given by

ρ̄S =
e−β(HS−µNS)

Tr {e−β(HS−µNS)}
, (6.46)

i.e., both temperature β and chemical potential µ must equilibrate with the reservoir.

6.3 Multiple reservoirs

For multiple reservoirs, the bath is often modeled as a tensor product of stationary local thermal
equilibrium states

ρ̄B =
⊗
`

e−β`(H
(`)
B −µ`N

(`)
B )

Z`
(6.47)

with local inverse temperatures β` and chemical potentials µ` and Hamiltonian H
(`)
B and particle

number operator N
(`)
B of the l-th bath, respectively. We can then similarly decompose the

interaction Hamiltonian as

HI =
∑
α

∑
ν

Aα ⊗B(ν)
α . (6.48)

Together with the already stated properties of the single-operator expectation values

Tr
{
B(ν)
α ρ̄B

}
= 0 , (6.49)

it follows that to leading order there are no interferences between the reservoirs, i.e., one has
for the correlation functions

Cα,ν;β,ν′ = δνν′C
ν
αβ(t− t′) . (6.50)
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Through their FTs, this maps to the full generator of the reduced evolution, such that the
evolution of the reduced density matrix can be formally written as

ρ̇S = L0ρS +
∑
ν

LνρS , (6.51)

where L0ρS=̂− i[HS, ρS] is the free evolution of the system (calligraphic symbols denote super-
operator notation) and Lν is the dissipator associated with the νth reservoir.

For an additive decomposition of the dissipator, it is straightforward to associate the energy
and matter flows from a reservoir into the system via looking at the energy and matter balance
of the system, respectively

d

dt
〈E〉 = Tr {HSρ̇} =

∑
ν

Tr {HS (LνρS)} =
∑
ν

I
(ν)
E ,

d

dt
〈N〉 = Tr {NS ρ̇} =

∑
ν

Tr {NS (LνρS)} =
∑
ν

I
(ν)
M , (6.52)

which defines the energy and matter currents entering the system from reservoir ν, respectively

I
(ν)
E = Tr {HS (LνρS)} , I

(ν)
M = Tr {NS (LνρS)} . (6.53)

Such a simple treatment only holds for driven Markovian systems in the weak-coupling system
and they can only be used to infer the currents entering the system. For other observables,
higher moments, or driven and strongly-coupled system, the Full Counting Statistics [20] can
be used. These are defined positive when energy and matter enter the system. Note that the
bracket notation above enforces that the superoperator notation is evaluated first. In particular,
when Lν couples only the populations in the energy eigenbasis to each other, e.g. the energy
current becomes

I
(ν)
E =

∑
i

Ei (LνρS)ii =
∑
ij

EiW
(ν)
ij ρjj =

∑
i 6=j

EiW
(ν)
ij ρjj +

∑
i

EiW
(ν)
ii ρii

=
∑
i 6=j

EiW
(ν)
ij ρjj −

∑
i 6=j

EiW
(ν)
ji ρii =

∑
i 6=j

(Ei − Ej)W (ν)
ij ρjj =

∑
ij

(Ei − Ej)W (ν)
ij ρjj . (6.54)

Above, we have used the rate equation properties (6.38). This is precisely the value that one
would naively assign to a rate equation through a system with discrete energy eigenstates Ei,
and an analogous discussion holds for the matter current, assuming that the energy eigenstates
are also eigenstates of the particle number operator.

6.4 Application: Transport spectroscopy

We now consider a rate equation in the energy eigenbasis of the system, generated by a two-
terminal system

ρ̇S =
(
WL +WR

)
ρS . (6.55)

The steady-state energy and matter currents (at steady state, we have I
(R)
M/E = −I(L)

M/E) are then
given by

IE =
∑
ij

(Ei − Ej)W (L)
ij ρ̄jj , IM =

∑
ij

(Ni −Nj)W
(L)
ij ρ̄jj . (6.56)
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Specifically, we had for a decomposition of the interaction Hamiltonian of the form Hν
I =

Aα ⊗Bν
α transition rates of the form

W
(ν)
ij =

∑
αβ

γ
(ν)
αβ (Ej − Ei) 〈i|Aβ |j〉 〈i|A†α |j〉

∗ . (6.57)

We now consider the case of a fermionic interaction Hamiltonian of the tunneling type

HI = c0

∞∑
k=1

tkc
†
k − c

†
0

∞∑
k=1

t∗kck , (6.58)

where c†0 creates a fermion inside the system and c†k one in the reservoir in mode k. The sign in
the second term exemplifies the problem: Products of fermionic system-bath operators are not
tensor products! However, similar to the Jordan-Wigner transform (5.69), we can represent the
fermions by (tensor) products of Pauli matrices

c0 = σ−0 , ck = σz0

[
k−1∏
`=1

σz`

]
σ−k , (6.59)

and in terms of these operators we can write the interaction as

HI = σ−0 σ
z
0 ⊗

∞∑
k=1

tk

[
k−1∏
`=1

σz`

]
σ+
k − σ

+
0 σ

z
0 ⊗

∞∑
k=1

t∗k

[
k−1∏
`=1

σz`

]
σ−k ,

= c̃0 ⊗
∞∑
k=1

tkc̃
†
k + c̃†0 ⊗

∞∑
k=1

t∗kc̃k . (6.60)

Within the system and within the bath, the new operators c̃0 and c̃k obey standard fermionic
statistics, and we identify the coupling operators A1 = c̃0 and A2 = c̃†0 as well as B1 =

∑∞
k=1 tkc̃

†
k

and B2 =
∑∞

k=1 t
∗
kc̃k .

The calculation of a typical correlation function now proceeds along standard routes

C12(τ) = Tr

{
∞∑
k=1

tkc̃
†
ke

+iεkτ

∞∑
q=1

t∗q c̃qρ̄B

}
=
∑
k

|tk|2f(εk)e
+iεkτ =

1

2π

∫
Γ(ω)f(ω)e+iωτdω ,

(6.61)

where we have introduced the spectral (coupling) density

Γ(ω) = 2π
∑
k

|tk|2δ(ω − εk) . (6.62)

From this representation, we can immediately read off the FT of the correlation function

γ12(ω) = Γ(−ω)f(−ω) . (6.63)

A similar calculation (exercise) shows that the FT of the other non-vanishing correlation func-
tion becomes

γ21(ω) = Γ(+ω)[1− f(+ω)] . (6.64)

Inserting this into the rates, we get

W
(ν)
ij = γ

(ν)
12 (Ej − Ei)

∣∣∣〈i| c̃†0 |j〉∣∣∣2 + γ
(ν)
21 (Ej − Ei)|〈i| c̃0 |j〉|2

= Γ(Ei − Ej)f(Ei − Ej)
∣∣∣〈i| c̃†0 |j〉∣∣∣2 + Γ(Ej − Ei)[1− f(Ej − Ei)]|〈i| c̃0 |j〉|2 . (6.65)
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Figure 6.1: Visualization of the transport win-
dow. The central panel contains the transition
energies of the system, whereas left and right
panels visualize the Fermi functions of the leads.
Transport is only supported by a transition en-
ergy when it is inside the transport window
(grey). Transition energies significantly outside
this window will essentially just be driven once,
corresponding to filling or emptying one partic-
ular energy level in the system. Afterwards (at
steady state) these transition energies no longer
participate in transport.

These rates have a simple interpretation. The matrix elements apparently do not vanish when
state i and j differ by the single fermion described by the mode c̃0. The first term describes
a process where a fermion is entering the system from the reservoir, bringing in the energy
difference Ei − Ej. The second term describes a process of a fermion leaving the system and
taking away the energy difference Ej − Ei.

This now – together with the property that at low temperatures the Fermi functions behave
similar to step functions – enables transport spectroscopy. By connecting an electronic quantum
system (quantum dots) to two reservoirs and measuring the current through it, we can learn
about its internal states. Essentially, at steady state only those transitions in the rate equation
can contribute to transport, when the corresponding Fermi functions are somewhere between
zero and one: Let ε denote the transition energy between two energy eigenstates of the system,
where the higher-energy state is occupied. When the Fermi function of both leads at the
transition energy is zero fα(ε) = 0 and consequently 1−fα(ε) = 1, the filled state will just empty
to one of the reservoirs via performing the transition to the empty one. A re-occupation of this
state is improbable since fα(ε) = 0 for both reservoirs. Conversely, when the Fermi function of
both leads at the transition is one, the state will be filled. The particle cannot jump out again,
since all reservoir states at this energy are occupied. Only if one of the Fermi functions (called
drain) vanishes at the transition energy fR(ε) � 1/2 and the other one is large fL(ε) � 1/2,
the transition will be continuously driven, corresponding to a transport situation where the
source continuously provides particles and the drain continuously consumes particles. It is this
case where the corresponding transition participates in transport. This defines a window of
transport – in particular for low temperatures – visualized in Fig. 6.1. When one increases the
bias voltage (defined by the difference of chemical potentials), more excitation energies enter
the transport window, which will result in steps of the current, see Fig. 6.2. Here, spectroscopy
of a double quantum dot

HS = ε(d†RdR − d
†
LdL) + Tc(d

†
LdR + d†RdL) + Ud†LdLd

†
RdR (6.66)

has been performed. The eigenenergies of the system equate to

E0 = 0 , E2 = U , E± = ±
√
ε2 + T 2

c , (6.67)

which explains why the two single-particle states enter the transport window simultaneously
(single step in the figure). Therefore, by finding these steps, one can get information about the
intrinsic properties of the system. The height of the plateaus can also be calculated by reducing
the dimension of the rate equation under Coulomb blockade assumptions.
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Figure 6.2: Plot of the current through a double
quantum dot versus bias voltage V = µL − µR,
taken from Ref. [21]. For sufficiently low tem-
peratures, position and height of the current
steps allow to infer microscopic parameters of
the system: As transition energies enter the
transport window, this is manifest in steps in
the current.



Chapter 7

An introduction to topological
Insulators

In brief, a topological insulator is an insulator that however has metallic edge or surface states.
These surface states are topologically protected against particular perturbations.

This topological protection has raised some attention since it may be useful to construct
quantum devices that are intrinsically protected against the (normally devastating) influence of
particular perturbations. The field has become quite huge and many different developments are
being observed. We will approach the topic here first from a phenomenological perspective and
afterwards study particular models where topological effects are important. There is further
reading material available e.g. in Ref. [28].

7.1 Phenomenology: The integer quantum Hall effect

The integer quantum Hall effect is very often used as the simplest manifestation of topological
state. Discovered in 1980 by von Klitzing 1, it is a very robust effect observed for sufficiently
strong magnetic fields and sufficiently low temperatures.

To understand the setting, we first consider the ordinary Hall 2 effect, which is observed in
a piece of conductor subject to a magnetic field. By applying an electric field perpendicular to
the magnetic field, one can induce a current in the conductor. The electrons in the conductor
start to move and experience a Lorentz force

F = e (E + v ×B) , (7.1)

which has components longitudinal with the electric field E and perpendicular to the magnetic
field B. Initially, the electric field just points in x-direction Ei = Eextex, and electrons will
start moving in this direction, building up a velocity component in x-direction. SinceB = Bez,
the Lorentz force will have a component in y-direction, leading to the accumulation of electrons
along the edges of the conductor. The charge imbalance induces a transverse electric field Eindey
in y direction, which counter-acts this component. At steady state, the velocity of electrons
on average points in x direction, and the force from the induced electric field must compensate
the force arising from the magnetic field,

Eindey + vBex × ez = 0 , (7.2)

which yields a relation between the transverse voltage and the magnetic field, see Fig. 7.1 for
an illustration. The Hall voltage measured in perpendicular direction can then be used as a

1Klaus von Klitzing (born 1943) is a German physicist and Nobel laureate (1985).
2Edwin Hall (1855–1938) was an American physicist who discovered the effect during his PhD.
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Figure 7.1: Illustration of the ordinary Hall ef-
fect. Due to the perpendicular magnetic field,
a charge difference along the edges aligned with
the applied voltage builds up. It can be mea-
sured to deduce the strength of the magnetic
field. Source: Wikipedia.

sensitive detector to measure the strength of a magnetic field.
Now, the integer quantum Hall effect is essentially a quantum version that develops as one

approaches low temperatures and strong magnetic fields. One measures the perpendicular (Hall)
voltage and the longitudinal current along the conductor. Their ratio is the Hall conductivity

σxy =
I‖
V⊥

= C
e2

h
. (7.3)

At sufficiently low temperatures and strong fields, one now observes – with strikingly good
accuracy – that the Hall conductivity is integer-quantized

C ∈ {1, 2, 3, . . .} (7.4)

Here, the constant C is known as Chern 3 number (which can be microscopically calculated).
The inverse of the Hall conductivity defines the transverse (Hall) resistance

ρxy =
V⊥
I‖
. (7.5)

One observes that it is quantized accordingly and shows plateaus, see Fig. 7.2. At the plateaus
of the transverse resistance, the transport through the system is mediated by edge states,
which in pictorial representations often drawn as electrons bouncing in semicircles along the
boundaries, see Fig. 7.3. At the same time, the longitudinal resistance

ρxx =
V‖
I‖

=
1

σxx
(7.6)

nearly vanishes at these regions. Only when the magnetic field is fine-tuned to particular
values, one observes that the system suddenly behaves quite differently. Then, the longitudinal
resistance ρxx shows finite peaks, and the transversal resistance ρxy switches from one plateau
to another. This can be seen as a topological phase transition. Quantum-mechanically, the
steps in the resistance can be understood from the formation of Landau levels in 2d electron
gases subject to a magnetic field. As we discussed in Sec. 5.4, the energy levels in an electron
gas become quantized. To induce transitions between the Landau levels, one therefore has to
provide the energy of the cyclotron frequency

~ω0 =
|e|~B
mc

. (7.7)

The extreme accuracy of this effect has led to a new standard of electrical resistance RK = h
e2

(the Klitzing constant), but it its robustness has puzzled scientists. In this chapter, we would
like to approach this robustness qualitatively.

3Shiing-Shen Chern (1911–2004) was a chinese-american mathematician.
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Figure 7.2: Plot of Plot of measured transverse
(top) and longitudinal (bottom) resistance ver-
sus magnetic field strength. The height of the
plateaus in the transverse resistance changes ac-
cording to ρn = h

e2
1
C

with integer C. For small
B, the classical Hall effect is recovered. Figure
adapted from Ref. [24].

Figure 7.3: Classical understanding of trans-
port in the quantum Hall effect. During
the transversal resistance plateaus, the elec-
tronic transport is dominated by edge states,
which are represented by electrons being re-
flected from the boundaries. Figure taken from
Ref. [22].
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Figure 7.4: Illustration of the SSH model
Hamiltonian with alternating tunnel couplings
τ and τ ′ for M = 5 dimers. Depending on
the ratio of τ and τ ′ (thickness of connections),
there are two different phases, corresponding to
two monomers at the edges and (M −1) dimers
(topological) or just M dimers (trivial).

7.2 The 1d Su-Schrieffer-Heeger model

Probably the simplest model displaying topological effects is the Su-Schrieffer-Heeger (SSH)
model. First introduced to describe the electron dynamics on polyacethylene-chains, it is nowa-
days widely studied as a sample model for topological protection. The Hamiltonian describes
the hopping of fermions along a chain of M dimers

H = −
M∑
n=1

[
τ
(
c†n,1cn,2 + c†n,2cn,1

)
+ τ ′

(
c†n,2cn+1,1 + c†n+1,1cn,2

)]
. (7.8)

Here, cn,α annihilates a fermion on the site α ∈ {1, 2} of the dimer n. Alternative ways of
writing this Hamiltonian include using only a single annihilation operator type on N = 2M
sites, the essential ingredient however is that the tunnel couplings between neighboring sites
alternate, see Fig. 7.4.

7.2.1 Diagonalization for periodic boundary conditions

For periodic boundary conditions (where cM+1 = c1 and similar for the creation operator) (or an
infinitely long chain), the spectrum of the chain can be obtained analytically. The translational
invariance suggests to use separate discrete Fourier transform for every α

cn,α =
1√
M

∑
k∈M̃

dk,αe
+ik 2πn

M . (7.9)

Here, the discretization in k needs to be chosen such that periodic boundary conditions are
obeyed. Upon insertion, the Hamiltonian becomes

H = −τ
∑
k

(
d†k,1dk,2 + d†k,2dk,1

)
− τ ′

∑
k

(
d†k,2dk,1e

+ik 2π
M + d†k,1dk,2e

−ik 2π
M

)
=
∑
k

(
d†k,1, d

†
k,2

)( 0 −τ − τ ′ cos(2πk
M

) + iτ ′ sin(2πk
M

)
−τ − τ ′ cos(2πk

M
)− iτ ′ sin(2πk

M
) 0

)(
dk,1
dk,2

)
(7.10)

We have M different k modes, and for every k value, we get two quasiparticle energies, obtained
by diagonalizing the matrix

Hk =

[
−τ − τ ′ cos(

2πk

M
)

]
σx − τ ′ sin(

2πk

M
)σy = hx(k)σx + hy(k)σy . (7.11)

The eigenvalues of this 2× 2 matrix become

Ek,± = ±
√
h2
x(k) + h2

y(k) = ±
√
τ 2 + (τ ′)2 + 2ττ ′ cos(

2πk

M
) , (7.12)

and the corresponding eigenvectors read

vk,± =
1√
2

(
Ek,±

hx(k)+ihy(k)

1

)
(7.13)
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Figure 7.5: SSH spectrum for τ = τ0(1 + δ)/2 and τ ′ = τ0(1 − δ)/2 versus δ for periodic
boundary conditions (left panel) and open boundary conditions (right panel) for M = 10.
In both cases, we have two bulk bands (black) which for most values of δ are separated by
a band gap (insulator). For periodic boundary conditions, some of the energies are two-fold
degenerate. However, for the case of open boundary conditions we additionally observe that
two eigenvalues (red and orange) separate from the bulk bands for δ < 0 and form midgap
states, nearly completely fixed to energy zero. These midgap states are for δ < 0 localized
at the ends of the chain and can therefore be called edge states. Insets show exemplary wave
functions at δ = −0.5 (left inset) and δ = +0.5 (right inset).

7.2.2 Diagonalization and symmetry for open boundary conditions

Instead, when we consider open boundary conditions

H = −
M∑
n=1

[
τ
(
c†n,1cn,2 + c†n,2cn,1

)]
−

M−1∑
n=1

[
τ ′
(
c†n,2cn+1,1 + c†n+1,1cn,2

)]
, (7.14)

we can no longer use a simple Fourier transform to compute the spectrum. Instead, one can
use numerical methods, leading to a numerical spectrum. One finds that the spectra of the two
chains are very different, even when M → ∞, see Fig. 7.5. We see that one always has two
bulk bands, which become more and more dense as M increases. However, for open boundary
conditions two separate state emerge – topologically protected boundary modes.

It is simple to understand the extreme cases: For τ ′ = 0 (δ = +1), we just have a chain of
M decoupled dimers

Hn = −τc†n,1cn,2 − τc
†
n,2cn,1 . (7.15)

These individual dimers have eigenvalues ±τ . Also, when τ = τ ′ (δ = 0), we have the example
of the homogeneous chain with an analytically computable spectrum, compare Sec. 4.2.3. In
contrast, for τ = 0 (δ = −1), two monomers at the end of the chain arise. The edge states
associated with these monomers∣∣ΨL

0

〉
= |1, 0, . . . , 0, 0〉 ,

∣∣ΨR
0

〉
= |0, 0, . . . , 0, 1〉 (7.16)

have energy 0, and then we have M − 1 decoupled dimers with the same energies as before.
However, why are the two edge states so much pinned to energy zero also for τ 6= 0, i.e., why
are they somehow protected against the perturbation from that Hamiltonian? The answer lies
in the combination of the fact that the two edge states are chiral symmetry partners and at
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the same time they are so ”distant” from each other. A perturbation ∆H that respects the
symmetry of the model (we see below what this means) is not able to lift their degeneracy.

To understand the characteristics of the spectrum, it is helpful to introduce the concept of
chirality.

Box 22 (chirality) A Hamiltonian H is chiral if there is a hermitian Γ = Γ† and unitary
Γ2 = 1 chiral symmetry operator, such that

ΓHΓ = −H . (7.17)

From this definition it also follows that the Hamiltonian must anti-commute with the chiral
symmetry operator {H,Γ} = 0. For a chiral Hamiltonian we can conclude that the spectrum
must be symmetrically distributed around E = 0, since for any eigenvector with a non-vanishing
eigenvalue

H |vn〉 = En |vn〉 (7.18)

there must be an associated eigenvector |wn〉 = Γ |vn〉 with the negative eigenvalue

ΓH |vn〉 = EnΓ |vn〉 = −HΓ |vn〉 . (7.19)

Such a chiral symmetry may imply a sublattice symmetry as well. We can introduce the
projectors related to the chiral symmetry

P± =
1

2
[1± Γ] . (7.20)

Since we can express Γ = P+−P−, it follows that the eigenstates of a chiral Hamiltonian must
be equally distributed over the two subspaces

0 = 〈vn|wn〉 = 〈vn|Γ |vn〉 = 〈vn|P+ |vn〉 − 〈vn|P− |vn〉 . (7.21)

In addition, when E = 0 for chiral partners |v〉 and |w〉 = Γ |v〉, the symmetric and antisym-
metric superpositions

|v±〉 =
1√
2

[|v〉 ± |w〉] (7.22)

of the chiral partner states are also an eigenstate of the Hamiltonian.
For the SSH model, the chiral symmetry operator becomes

Γ = exp

{
iπ
∑
j

c†j,1cj,1

}
= exp

{
iπ
∑
k

d†k,1dk,1

}
, (7.23)

and we can check that

Γ† = exp

{
−iπ

∑
j

c†j,1cj,1

}
= exp

{
iπ
∑
j

c†j,1cj,1

}
= Γ ,

Γ2 = exp

{
i2π
∑
j

c†j,1cj,1

}
= 1 . (7.24)
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Furthermore, the chiral symmetry holds both for open or closed (periodic) boundary conditions.
From this, we get

Γcj,1Γ = [1] cj,1

[
1 +

(
e+iπ − 1

)
c†j,1cj,1

]
= +e+iπcj,1 = −cj,1 , Γc†j,1Γ = −c†j,1

Γcj,2Γ = cj,2 , Γc†j,2Γ = c†j,2 . (7.25)

From this, we can see directly that for the SSH model ΓHΓ = −H, and it explains the symmetry
observed in the spectrum in Fig. 7.5 for both periodic and open boundary conditions. Pertur-
bations respecting the chiral symmetry only allow for changes of the corresponding eigenstates
when they have a non-negligible effect within the subspace of the chiral symmetry partners.
For example, the chiral symmetry partners from the bulk are just either distributed on the even
or on the odd sites. In particular, deeply in the topological phase, they are sitting on the same
dimer, any small local perturbation will couple them, and correspondingly, these eigenvalues are
not robust against symmetry-preserving perturbations. However, the edge states are located
far away from each other, their overlap matrix element

〈L|∆Hk |R〉 = 〈v+|∆Hk |v−〉 = 0 : k �M (7.26)

vanishes for sufficiently small k, such that any ∆H respecting the chiral symmetry, i.e.

Γ∆HΓ = −∆H (7.27)

will leave the edge states and their eigenvalues invariant as long as it is not totally dominating
the Hamiltonian. In fact, the chiral symmetry in the SSH model is not only robust with respect
to perturbations that can be parametrized by δτ or δτ ′, but also to arbitrary next-neighbour
tunnel disorder perturbations

∆H =
∑
m

δτm

(
c†m,1cm,2 + c†m,2cm,1

)
+
∑
m

δτ ′m

(
c†m,2cm+1,1 + c†m+1,1cm,2

)
. (7.28)

This robustness is exemplified in Fig. 7.6. In contrast, if we would add a perturbation that
does not respect the chiral symmetry, the edge states would not just interact with themselves,
but also with the bulk states, and their robustness would soon be lost.

Finally, we just mention that the the current through such SSH chains allows to extract the
single-particle excitation spectrum. For this purpose, one connects the SSH chain at its ends
to fermionic reservoirs and considers the dependence of the current versus the bias voltage.
When the temperature of the reservoirs is below the energy gaps of the chain, as discussed
in Sec. 6.4, the current exhibits steps at the transition energies of the system, see Fig. 7.7.
Here, at weak system-reservoir coupling, the term ”transition energy” means the single-particle
excitation energy of the SSH spectrum. The existence or non-existence of boundary modes in
the gap thereby allows to distinguish between the phases.
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Figure 7.7: Plot of matter current IM (red, and
associated noise and Fano factor) and trans-
mission through an SSH chain of M = 10
dimers versus bias voltage in the topological
phase. The single-particle excitation energies
map to steps in the current. The edge states
are strongly localized to the ends, and corre-
spondingly the current through them is signif-
icantly smaller (inset) than through the bulk
states. Figure taken from Ref. [23].

7.2.3 Topological invariants

To classify the different topological phases, one defines topological invariants, which may within
particular phases assume only integer values and are for this reason also called topological
quantum numbers. For the example of the SSH model, we would have the value zero in the
trivial phase and the value plus one in the topological phase. Revisiting the spectra of the SSH
chain with periodic boundary conditions, we see that in the topological phase, the origin is
encircled by the 2d curve parametrized by

hx(k) = −τ − τ ′ cos(2πk/M) , hy(k) = −τ ′ sin(2πk/M) . (7.29)

Here, 2πk/M runs over the 1. BZ, such that the above equation defines a circle with radius
τ ′ and with center at (−τ, 0). When we increase τ ′, the origin is included when τ ′ = τ , which
marks the point of the topological phase transition. At this point, the excitation energies vanish

E± =
√
h2
x(k) + h2

y(k)→ 0 for a particular value of k, and the full spectrum therefore becomes

gapless. We can therefore characterize the phase by asking if the curve defined by hx(k) and
hy(k) encloses the origin or not. Formally, this is defined by the winding number

W =
1

2πi

∮
γ

dz

z − z0

(7.30)

of the complex closed curve γ, defined by z(κ) = hx(κ) + ihy(κ) around the origin z0 = 0 in the
complex plane as the topological invariant. Functional calculus tells us that the above integral
counts the number of windings around the pole at z0. Inserting these definitions, the winding
number becomes

W =
1

2πi

∫ +π

−π

dz

dκ

1

z
dκ =

1

2πi

∫ +π

−π

d ln z(κ)

dκ
dκ =

1

2πi

∫ +π

−π

d

dκ
ln [hx(κ) + ihy(κ)] dκ . (7.31)

Indeed, recalling that hx(κ) = −τ − τ ′ cos(κ) and hy(κ) = −τ ′ sin(κ), we can solve the integral
for some special cases and obtain the value W = 0 for the trivial phase τ ′ < τ and the value
W = 1 for the topological phase τ ′ > τ .

Although a winding number is very intuitive to define, it has the disadvantage that we may
not always be able to express the Hamiltonian by a curve in the complex plane. Therefore, one
considers often other ways of defining topological quantum numbers. One is via the Berry 4

phase, which appears in the context of adiabatically driven quantum systems. For a Hamilto-
nian that depends on some parameters κ we consider a closed curve in time κ(ti) = κ(tf ). At
each point in time, we can define the instantaneous set of eigenstates via

H(κ) |Ψn(κ)〉 = En(κ) |Ψn(κ)〉 , (7.32)

4Sir Michael Victor Berry, (born 1941) is a british physicist.



7.2. THE 1D SU-SCHRIEFFER-HEEGER MODEL 159

where n is the corresponding quantum number. If we would consider a quantum system subject
to the time-dependent parameter κ, initialized in one of the initial eigenstates, and evolve it
slowly from ti to tf , the adiabatic theorem tells us that – if the evolution is slow in comparison
to the energy gaps of the system – we remain in the instantaneous energy eigenstates up to a
phase factor [17]

|Ψ(ti)〉 = |Ψn(κ(ti))〉 =⇒ |Ψ(tf )〉 ≈ e+i(γBerry
n −γdyn

n ) |Ψn(κ(ti))〉 . (7.33)

Here, we have completely neglected the transition to other instantaneous eigenstates. The
phases are the dynamical phase

γdyn
n =

∫ tf

ti

En(κ(t′))dt′ , (7.34)

which does depend on the speed of the evolution. For our purposes however, the celebrated
Berry phase is important

γBerry
n = i

∫ tf

ti

〈Ψn(κ(t))| d
dt
|Ψn(κ(t))〉 dt = i

∮
〈Ψn(κ)| ∇κ |Ψn(κ)〉 dκ . (7.35)

The second equality sign of the above equation demonstrates that the Berry phase is an in-
trinsically geometric phase, it does only depend on the characteristics of the curve κ and not
on the speed at which this curve is traversed. With introducing the Berry vector potential for
each eigenstate

An(κ) = i 〈Ψn(κ)| ∇κ |Ψn(κ)〉 = A∗n(κ) (7.36)

(this follows from the normalization 〈Ψn(κ)|Ψn(κ)〉 = 1) we can also write the Berry phase as

γBerry
n =

∮
An(κ)dκ . (7.37)

As an example, let us consider a spin-1/2 model

H = κ · σ = κxσx + κyσy + κzσz , κ = κ

 sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

 . (7.38)

The eigenvalues are ±κ

H |Ψ±(κ)〉 = ±κ |Ψ±(κ)〉 , (7.39)

with the eigenstates

|Ψ−(κ)〉 =

(
sin(θ/2)e−iφ

− cos(θ/2)

)
, |Ψ+(κ)〉 =

(
cos(θ/2)e−iφ

sin(θ/2)

)
. (7.40)

As a curve parametrization, we consider a rotation (e.g. of the external field steering the spin
Hamiltonian) around the z axis

θ(t) = θ0 , φ(t) =
2πt

T
, 0 ≤ t ≤ T . (7.41)

The Berry phases become

γBerry
− = 2π sin2(θ0/2) , γBerry

+ = 2π cos2(θ0/2) . (7.42)



160 CHAPTER 7. AN INTRODUCTION TO TOPOLOGICAL INSULATORS

For example, when θ0 = π/2 (κ circles around the equator), the Berry phase becomes maximal
γBerry
± → π, which is an often-used example to demonstrate that a spin 1/2- rotation leads to a

sign. We observe that the sum of the two Berry phases is just 2π, which is equivalent to zero.
In general, one can prove that ∑

n

γBerry
n mod 2π = 0 . (7.43)

Now, for a system with energy bands one defines the macroscopic polarization

Pmac(E) =
1

2π

∑
n:En≤E

γBerry
n . (7.44)

For electronic systems, this could in principle be related to expectation values at zero tempera-
ture, where all states below the energy E = µ are occupied and all other states are empty. Since
it is defined in terms of the Berry phase, we clearly see that also Pmac is a geometric quantity.
Furthermore, for an insulator with chiral symmetry, which in quasi-momentum representation
reads

ΓHkΓ = −Hk , (7.45)

we can denote the eigenstate of the chiral partner state by |Ψn̄〉 = Γ |Ψn〉. The Berry phases of
these chiral partners are identical (using that Γ2 = 1)

γn = i

∮
〈Ψn(κ)|Γ∇κΓ 〈Ψn(κ)| dκ = γn̄ . (7.46)

Therefore, if in addition there is an energy gap at E = 0, we have the condition

0 =

(
1

2π

∑
n:En<0

γBerry
n +

1

2π

∑
n:En>0

γBerry
n

)
mod 1 . (7.47)

This implies that the macroscopic polarization defined for the lower part of the spectrum is
half-integer quantized

Pmac(0) =
1

2π

∑
n:En<0

γBerry
n =

m

2
m ∈ Z , (7.48)

and a corresponding quantity similar to a winding number can be defined by

W = 2Pmac(0). (7.49)

We can check the consistency of this for the SSH model: Here, it suffices to consider the extreme
cases as Pmac can only change at critical points. For τ ′ = 0, the Hamiltonian in momentum
space does not depend on k, and all the Berry phases vanish. Consequently, the macroscopic
polarization vanishes and the associated winding number becomes W = 0, as we have already
computed. For τ = 0, the Hamiltonian for the excitation energies of the dimers becomes

Hk = −τ ′ cos(κ)σx − τ ′ sin(κ)σy , (7.50)

which is equivalent to the previously discussed example when θ0 = π/2. Therefore, the Berry
phases become γ− = γ+ = π, which means for the macroscopic polarization for a single-particle
Hamiltonian Pmac = 1

2
, and we recover the winding number W = 1 of the topological phase.
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Figure 7.8: Illustration of two 2d generalizations of the SSH model. The first variant (left)
alternates between SSH chains in the topological and trivial phase in transverse direction, and
the resulting model cannot exhibit a topological phase transition: Exchanging red and black
links yields another variant, which is related to the previous one by a simple rotation. The
second one (right) in contrast leads to a non-trivial transformation, where one can expect edge
states to exist in the right phase.

7.2.4 Towards higher dimensions

In two dimensions, we can construct different generalizations of the SSH model. One can
consider parallel SSH chains and add crosslinks between them, such that in transverse direction
one also recovers SSH models. This can be done in different ways, and already by symmetry
considerations one can see that one of them will not lead to a topological phase transition, see
Fig. 7.8. The Hamiltonian of the model reads

H = −τ
∑
ij

[
c†ij;1cij;2 + c†ij;1cij,3 + c†ij;2cij;4 + c†ij;3cij;4 + h.c.

]
− τ ′

∑
ij

[
c†ij;2ci+1j;1 + c†ij;3cij+1,1 + c†ij;4ci+1j;3 + c†ij;4cij+1;2 + h.c.

]
, (7.51)

and we can distinguish open or closed boundary conditions. For open boundary consitions we
simply have to use

cij = 0 fori < 1, i > mx, j < 1, j > My . (7.52)

A numerical calculation of the spectrum shows that edge states – and some chiral symmetry –
exist, see Fig. 7.9. However, the edge states are not topologically protected agains perturbations,
since they are not degenerate with their chiral partners. This only holds true for the corner
states.

For periodic boundary conditions, we can as before use a DFT to obtain a representation
in terms of quasimomentum operators

cij,α =
1√
MxMy

∑
kx,ky

dkxky ,αe
+ikx

2πi
Mx e

+iky
2πj
My . (7.53)
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Figure 7.9: Plot of the 2d SSH spectrum for a 10×10 lattice from Eq. (7.51) in units of τ0 versus
asymmetry parameter δ for τ = (1 + δ)τ0 and τ ′ = (1− δ)τ0. The two additional bands on the
left part correspond to modes localized along the edges, but in addition modes from the outside
bands on the right converge to degenerate corner modes at energy zero on the left, hidden by
the central bulk band. Panels show exemplary wave functions that in the two intermediate
bands on the left are localized on the edges.

The transformed Hamiltonian reads

H = −τ
∑
kx,ky

[
d†kxky ;1dkxky ;2 + d†kxky ;1dkxky ,3 + d†kxky ;2dkxky ;4 + d†kxky ;3dkxky ;4 + h.c.

]
− τ ′

∑
kx,ky

[
d†kxky ;2dkxky ;1e

+i 2πkx
Mx + d†kxky ;3dkxky ,1e

+i
2πky
My

+ d†kxky ;4dkxky ;3e
+i 2πkx

Mx + d†kxky ;4dkxky ;2e
+i

2πky
My + h.c.

]
=
∑
kx,ky

H(kx, ky)

=
∑
k

(
d†
k,1
, d†
k,2
, d†
k,3
, d†
k,4

)
Ak


dk,1
dk,2
dk,3
dk,4

 ,

Ak =


0 −τ − τ ′e−2πi kx

Mx −τ − τ ′e−2πi
ky
My 0

−τ − τ ′e+2πi kx
Mx 0 0 −τ − τ ′e−2πi

ky
My

−τ − τ ′e+2πi
ky
My 0 0 −τ − τ ′e−2πi kx

Mx

0 −τ − τ ′e+2πi
ky
My −τ − τ ′e+2πi kx

Mx 0


= [−τ − τ ′ cos(κy)]σ

x
1 ⊗ 12 + [−τ ′ sin(κy)]σ

y
1 ⊗ 12

+ [−τ − τ ′ cos(κx)] 11 ⊗ σx2 + [−τ ′ sin(κx)] 11 ⊗ σy2 , (7.54)

where κα = 2π/Mαkα ∈ (−π,+π]. The individual four-fermion Hamiltonians can be exactly
diagonalized and yields the excitation spectra

E(κx, κy) = ±
√

2
[
τ 2 + (τ ′)2 + ττ ′(cos(κx) + cos(κy))

±
√

(τ 2 + (τ ′)2 + 2ττ ′ cos(κx)) (τ 2 + (τ ′)2 + 2ττ ′ cos(κy))
]1/2

. (7.55)

The excitation energy may now vanish all values of τ and τ ′, so it may be difficult to detect a
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topological phase transition here. However, from the second decomposition of the matrix we
see that for τ = τ ′ we have a topological phase transition.

7.3 Peierls substitution

We have discussed that a magnetic field can be coupled in two ways to magnetic moments: Via
the Zeemann splitting and also via the minimal coupling. Whereas it was straightforward to
represent the Zeemann splitting within second quantization, this is less obvious for the minimal
coupling procedure. Let us assume that for a single electron, the Hamiltonian in absence of a
magnetic field is given by the kinetic term and the periodic lattice potential

H =
p2

2m
+ U(r) , U(r +R) = U(r) . (7.56)

Then, Bloch’s theorem holds and the eigenstates can be expanded in terms of Wannier functions
ΦR(r)

Ψk(r) =
1√
N

∑
R

e+ikRΦR(r) , (7.57)

where N is the number of lattice sites and R denotes the positions of the nuclei. The energies
are then obtained by

Ek =
〈
Ψk
∣∣H ∣∣Ψk〉 =

∫
Ψ∗k(r)HΨk(r)d3r =

1

N

∑
RR′

e+ik(R−R′
)

∫
Φ∗R(r)HΦR′(r)d3r .

(7.58)

Similarly, the hopping matrix element between sites R and R′ are computed via

tRR′ =

∫
Φ∗R(r)HΦR′(r)d3r . (7.59)

Now, under the minimal coupling substitution, the Hamiltonian becomes

H → H̃ =
(p− eA)2

2m
+ U(r) , (7.60)

where A is the vector potential from which we can derive the magnetic field B = ∇×A (we
now use SI units, therefore the 1/c-factor is missing). However, the vector potential is not
uniquely determined, as any gauge transformation A → A +∇Φ with arbitrary Φ leaves the
magnetic field invariant. To account for the effect of the minimal coupling substitution, we
introduce new, transformed Wannier functions

Φ̃R(r) = exp

{
i
e

~

∫ r
R
A(r′)dr′

}
ΦR(r) , (7.61)

which can be obtained from the old ones (without magnetic field) by multiplying with a phase
factor. Here, the integral in the exponential may depend on the path chosen between R and
r. We consider the shortest connection here (straight-line). Now, we can – with using that



164 CHAPTER 7. AN INTRODUCTION TO TOPOLOGICAL INSULATORS

p = −i~∇ – compute the action of the Hamiltonian on the transformed Wannier functions

H̃Φ̃R(r) =

[
(−i~∇− eA)2

2m
+ U(r)

]
exp

{
i
e

~

∫ r
R
A(r′)dr′

}
ΦR(r)

= exp

{
i
e

~

∫ r
R
A(r′)dr′

}[
(−i~∇− eA+ eA)2

2m
+ U(r)

]
ΦR(r)

= exp

{
i
e

~

∫ r
R
A(r′)dr′

}
HΦR(r) . (7.62)

This means that the new Bloch functions

Ψ̃k(r) =
1√
N

∑
R

e+ikRΦ̃R(r) (7.63)

are now eigenstates of H̃ with the same energies as before. Therefore, we have to compute the
hopping matrix elements with the phase-transformed Wannier functions

t̃RR′ =

∫
Φ̃∗R(r)H̃Φ̃R′(r)d3r

=

∫
exp

{
−i
e

~

∫ r
R
A(r′)dr′ + i

e

~

∫ r
R′

A(r′)dr′
}

Φ∗R(r)HΦR′(r)d3r

= exp

{
i
e

~

∫ R
R′

A(r′)dr′

}∫
exp

{
−i
e

~

∮
R→r→R′→R

A(r′)dr′
}

Φ∗R(r)HΦR′(r)d3r .

(7.64)

Here, we have taken the first factor out of the integral as it does not depend on r, and the
convention that we take the shortest connection path still holds. Since the Wannier functions
are strongly localized, we can now approximate the integrand in the following way: Taking
only nearest-neighbour couplings into account, the length of the vector R − R′ is bounded
by the lattice constant from the beginning. Furthermore, the integrand will only for small
distances between r and R and R′ contribute significantly, since the Wannier functions are
highly localized. Assuming that the magnetic flux is approximately uniform over the small
triangle defined by R, R′, and r (i.e., over a lattice constant), we can approximate

Φ(R,R′, r) =

∮
R→r→R′→R

A(r′)dr′ =

∫ ∫
(R,r,R′

)

(∇×A) · dA

≈ 0 . (7.65)

Here, we have used Stokes integral theorem, and the approximation holds when the total flux
is negligible, i.e., when the product of the homogeneous magnetic field and the area spanned
by the triangle (R, r,R′) are small (which is determined by the localization of the Wannier
functions). This eventually leads to the Peierls 5 substitution.

Box 23 (Peierls substitution) In presence of a weak magnetic field described by vector po-
tential A, the effect of the minimal coupling procedure can be approximately taken into account
by substituting

tRR′ → t̃RR′ = exp

{
i
e

~

∫ R
R′

A(r′)dr′

}
tRR′ (7.66)

5Sir Rudolph Ernst Peierls (1907–1995) was a german-british physicist.
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in the electronic tunneling amplitudes, where the path is the shortest connection between R and
R′.

Such substitutions lead on a square lattice subject to a perpendicular magnetic field to a
Hofstadter Hamiltonian. Here, the constraint of the shortest path came from the approxi-
mations done before. We note that a gauge transformation of the form A→ A+∇Φ changes
all the phases in the Hamiltonian but must leave the physics invariant.

7.4 The 2d Hofstadter model

Now, we want to make the model explicit. Consider a 2d square lattice with positions denoted
by

Rab =

 a∆
b∆
0

 , a, b ∈ Z (7.67)

and where ∆ > 0 is a lattice constant. The system is subject to to a magnetic field in z-direction,
which is described by the vector potential

A =

 0
Bx
0

 . (7.68)

The points R and R′ are on the square lattice, whereas r is arbitrary but within the neihboring
elementary cells, such that we write

R′ = R+

 ∆x
∆y
0

 , r = R+

 δx
δy
0

 , (7.69)

where we have ∆x,∆y = ±∆ and |δx|, |δy| ≤ ∆. Accordingly, we can parametrize the curves
by

γ1(t) = R+

 δx
δy
0

 t , γ2(t) = r +

 ∆x− δx
∆y − δy

0

 t , γ3(t) = R′ +

 −∆x
−∆y

0

 t ,

t ∈ [0, 1] . (7.70)

The magnetic flux becomes

Φ =

∮
R→r→R′→R

A(r′)dr′ =

∫ 1

0

A(γ1) ·

 δx
δy
0

 dt+

∫ 1

0

A(γ2) ·

 ∆x− δx
∆y − δy

0

 dt

+

∫ 1

0

A(γ3) ·

 −∆x
−∆y

0

 dt

=
B

2
(δx∆y − δy∆x) ≈ 0 . (7.71)

This is just the (homogeneous field) times the area spanned by the triangle (R, r,R′). For
moderate magnetic fields and highly-localized Wannier functions – limiting the maximum range
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Figure 7.10: Visualization of the Hofstadter
Hamiltonian for a magnetic field in z direction
(perpendicular to the plane). Horizontal tun-
neling amplitudes do not have a relative phase,
but vertical tunneling amplitudes are equipped
with a phase factor that depends on the hori-
zontal position (arrows).

of δx and δy, this contribution is negligible. Accordingly, we just use the Peierls substitution
for originally (in absence of a magnetic field fully homogeneous hopping amplitudes)

τ(a,b)(a+1,b) = τ exp

{
i
e

~

∫ Ra+1,b

Ra,b

A(r′)dr′

}
= τ ,

τ(a,b)(a,b+1) = τ exp

{
i
e

~

∫ Ra,b+1

Ra,b

A(r′)dr′

}
= τei e~B∆a∆ . (7.72)

Here, we have just solved the trivial integrals along the x and y directions, which correspond
to the shortest paths on the lattice.

Altogether, we arrive at a variant of the Hofstadter 6 Hamiltonian.

H = τ
∑
ab

[
c†a,bca+1,b + c†a+1,bca,b + e+i e~B∆2ac†a,bca,b+1 + e−i e~B∆2ac†a,b+1ca,b

]
. (7.73)

This Hamiltonian has trivial hopping amplitudes in x-direction and phase-modified hopping
amplitudes in y-direction, see Fig. 7.10. It has a chiral symmetry, which can be constructed
similar to the SSH chain (7.23) from computing the occupation of the even lattice sites only
like in a checkerboard pattern

Γ = exp

{
iπ

∑
ij : i+j=even

c†ijcij

}
. (7.74)

This will flip the sign of operatos on even sites and leave the sign of operators on odd sites
invariant, such that we can immediately deduce ΓHΓ = −H. In addition, it will of course
conserve the total particle number. Furthermore, there are symmetries related to the gauge
freedom of the vector potential: Adding the gradient of any function A → A +∇Φ(r, t) will
not change the magnetic field and must therefore have no observable effect. Within the Peierls
substitution, we would get by defining Φab = Φ(a∆, b∆, 0, t) the fully equivalent Hamiltonian

H = τ
∑
ab

[
e+i e~ (Φa+1,b−Φa,b)c†a,bca+1,b + e−i e~ (Φa+1,b−Φa,b)c†a+1,bca,b

+ e+i e~B∆2ae+i e~ (Φa,b+1−Φab)c†a,bca,b+1 + e−i e~B∆2ae−i e~ (Φa,b+1−Φab)c†a,b+1ca,b

]
, (7.75)

6D. R. Hofstadter (born 1945) is a US-american physicist and cognition scientist and the son of the Nobel
laureate Robert Hofstadter (1915–1990).
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and we see that this gauge transformation just induces a local phase on the creation and
annihilation operators, which can be transformed away easily with a local rotation

cab → cabe
−i e~Φab , (7.76)

which recovers Eq. (7.73).
When we assume periodic boundary conditions, the model becomes translationally

invariant in y direction, but not in x direction. In y direction, one will only observe periodicity
when b/(2π) = e

h
B∆2 is a rational number: Then, some integer multiple of it will be integer

again, leading to a reproduction of phases in the Hofstadter Hamiltonian. In contrast, when
b/(2π) is irrational, one will not be able to find a periodicity in x direction. Therefore, the
complexity of the Hofstadter model can be reduced with a partial DFT of the second variable

cab =
1√
Ny

∑
ky

dakye
+iky

2πb
Ny , (7.77)

which allows to map it into a chain-like model with ky-dependent on-site energies (we use
b = e

~B∆2)

H = +τ
∑
aky

[
d†akyda+1,ky + d†a+1,ky

da,ky + e+ibad†a,kyda,kye
+iky

2π
Ny + e−ibad†a,kyda,kye

−iky
2π
Ny

]
=
∑
ky

Hky ,

Hky =
∑
a

2τ cos

(
ba+ ky

2π

Ny

)
d†akydaky + τ

∑
a

[
d†akyda+1ky + d†a+1ky

daky

]
. (7.78)

computing the eigenvalues of the Hky Hamiltonian now requires only the numerical diagonal-
ization of an Nx × Nx matrix – sometimes called Harper problem (who studied this before
Hofstadter). Obviously, as a ∈ Z, the Harper problem is periodic under

b→ b+ 2πm , m ∈ Z . (7.79)

Also here, its solution similarly strongly depends on whether Φ = 1
2π
b is a rational or irrational

number. For example, when the magnetic field assumes particular values such that bNx/(2π)
is an integer value, the Hamiltonian becomes periodic again, and we can apply an FT also in x
direction. For sufficiently large Nx (corresponding to the realistic experimental situation) this
condition can be satisfied by a dense set of b-values. In such cases, we may apply also a DFT
in x direction

daky =
1√
Nx

∑
kx

dkxkye
+ikx

2πa
Nx . (7.80)

This further maps the Hamiltonian into

H =
∑
kx,ky

[
2τ cos(kx

2π

Nx

)d†kxkydkxky + τe
+iky

2π
Ny d†

kx+Nxb
2π

,ky
dkxky + τe

−iky
2π
Ny d†

kx−Nxb2π
,ky
dkxky

]
.

(7.81)

Now, one particular possibility could be that kx ± Nxb
2π

is folded back onto kx. Then, we just
have decoupling modes. Another one would be that kx ± Nxb

2π
is equivalent to −kx . Then we

can decompose it into pairs of coupling modes. The next iteration would involve tripletts of
coupled modes and so on. Every time we can ask how often the origin is enclosed by the surface
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Figure 7.11: Left panel: Plot of energy levels versus dimensionless field strength b = e
~B∆2

and ε = 0 resulting from Eq. (7.73) for a patch of 20 × 20 sites. The right panel shows the
corresponding level density. The spectrum – known as Hofstadter butterfly – has in the infinite
size limit a fractal structure and shows self-similarity.

parametrized by kx and ky, which provides some winding number classifying the topological
phase.

However, for open boundary conditions translational invariance does not hold, and we
need to set up the full matrix. The numerically calculated spectrum and corresponding level
density for open boundary conditions is shown in Fig. 7.11 We can numerically add disorder to
the Hamiltonian

ε→ ε+ δεab , τe+iφ → τe+iφ(1 + δab) (7.82)

and compute the resulting Hofstadter butterfly spectrum again for tunnel disorder δab, onsite-
disorder δεab and both types of disorder. One observes that some of the Hamiltonians eigenstates
are quite inert to these perturbations, see Fig. 7.12.

7.5 Sketch: Connection to the Hall conductivity

To relate the spectral characteristics model to the Hall conductivity, one has to take the addi-
tional electric field along the probe into account. As before, we include it into the Hamiltonian
by the minimal coupling procedure pµ → pµ − eAµ with the four-momentum pµ = (E

c
,A) and

the four-vector potential Aµ = (Φ
c
,A), from which we can obtain electric and magnetic fields

via

E = −∇Φ− ∂A

∂t
= −∇Φ , B = ∇×A . (7.83)

Here, the first equation holds since we assume that the applied magnetic field is time-independent
and so is the vector potential. As outlined in Ref. [25], the basic idea here is to transform the
electric field away by a time-dependent gauge transformation of the vector potential

A→ A′ = A− (∇Φ)t = A+Et , (7.84)



7.5. SKETCH: CONNECTION TO THE HALL CONDUCTIVITY 169

✵ ✶ ✷ ✸ ✹ ✺ ✻
❞�✁✂✄☎�✆✄✝✂☎☎ ✁✞✟✄✂✠�✡ ☛�✂✝❞ ☞

✲✹

✲✷

✵

✷

✹

s
✌
✍
✎
✏✑
✒
✓

✔t
✕

✉✖✗✘✙✚✉✙✛✘✜
✚✉✖✖✘✢ ✜✣✤✥✙✜✘✙
✥✖✤✣✚✘ ✜✣✤✥✙✜✘✙
✚✉✖✖✘✢✦✥✖✤✣✚✘

Figure 7.12: Plot of the Hofstadter spectrum versus dimensionless field strength b for a patch
of Nx = Ny = 10. For various kinds of disorder, some parts of the spectrum – those where
the level density is low – are remarkably robust, due to strong topological protection. As the
wave functions (right, for a 40×40 grid without disorder, computed at the red dots on the left)
demonstrate, these modes are localized at the boundaries (right).

such that one effectively goes into a frame where E′ = 0. The Hamiltonian under minimal
coupling substitution now looks like

H =
(p− eA− eEt)2

2m
+ V (r) . (7.85)

In this case, we still have the Bloch theorem, just with time-dependent k vectors

|Ψ(k, t)〉 = e+ikr |u(k, t)〉 , (7.86)

where the |u(k, t)〉 satisfy the time-dependent Schrödinger equation

i~∂t |u(k, t〉 =

[
1

2m
(−i~∇+ ~k(t))2 + V (r)

]
|u(k, t)〉 , k(t) = k − e

~
Et . (7.87)

The momentum is thus shifted accordingly. These equations are in principle valid for an
arbitrary strength of the electric field. However, when the field is small, the transformation in
the time-dependent Schrödinger equation is slow, such that we may use the adiabatic theorem.
Let for fixed time the corresponding eigenvector problem be given by

H(k) |un(k)〉 = εn(k) |un(k)〉 (7.88)

and let the applied field as in the Hall effect point in the x direction. When we start the
evolution in the n-th eigenstate at time t = 0, the time-dependent solution can be written as

|u(k(t))〉 = |un(k(t)〉+ ieEx
∑
n′ 6=n

|un′(k(t))〉 〈un′(k(t))| ∂
∂kx
|un(k(t))〉

εn(k)− εn′(k)
. (7.89)

To obtain the velocity in y direction (perpendicular to both magnetic field and electric field),
we calculate the expectation value to linear order in Ex

〈vy〉 = 〈u(k)| vy |u(k)〉

= 〈un| vy |un〉+

[
ieEx

∑
n′ 6=n

〈un| vy |un′〉 〈un′ | ∂
∂kx
|un〉

εn − εn′
+ h.c.

]
+ . . . (7.90)
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Now, we can express the velocity operator as

v =
1

~
∂H(k)

∂k
, (7.91)

and specifically vy = 1
~∂kyH(kx, ky). By performing suitable derivatives of the eigenvalue equa-

tion (7.88), we get identities like

〈un| ∇kH(k) |un′〉 = (εn − εn′)
〈
∂un
∂κ
|un′
〉
, (7.92)

which we can insert in the expectation value of the velocity operator

〈vy〉 =
1

~
∂εn
∂ky
− i

eEx
~

[〈
∂un
∂kx
|∂un
∂ky

〉
−
〈
∂un
∂ky
|∂un
∂kx

〉]
(7.93)

Each volume element in k space contributes to the total velocity, such that we get the Hall
current

〈jy〉 =

∫
dkxdky
(2π)2

〈vy(kx, ky)〉 , (7.94)

and to get the Hall conductivity, we have to divide by the longitudinal electric field Ex, which
yields [26]

σH =
e2

h

∫
idkxdky

2π

[〈
∂un
∂kx
|∂un
∂ky

〉
−
〈
∂un
∂ky
|∂un
∂kx

〉]
. (7.95)

The integral on the r.h.s. is the Chern number

C =

∫
idkxdky

2π

[〈
∂un
∂kx
|∂un
∂ky

〉
−
〈
∂un
∂ky
|∂un
∂kx

〉]
. (7.96)

Since it is a topological invariant, it can only assume integer values.

7.6 The 2d Haldane model

Another celebrated but simple model at which topological effects can be discussed is the Hal-
dane 7 model [27]. It is based on a model for graphene and thereby corresponds to a 2d
hexagonal lattice. The formal difference to the Hofstadter Hamiltonian is that in the Hal-
dane model, one does not determine the phases from a Peierls substitution. (If one would
want to motivate these phases from a Peierls substitution, it would require a periodic magnetic
field.) The formal difference is therefore that the phases in the Hamiltonian are also always
strictly periodic,see Fig. 7.13 Thus, any sublattice (i.e. red or blue) is constructed from integer
combinations of the two basis vectors

w1 =
∆

2

 +
√

3
3
0

 , w2 =
∆

2

 −√3
3
0

 . (7.97)

Here, ∆ denotes the next-neighbour distance, which can be parametrized as

a1 = ∆

(
0
1

)
, a2 = ∆

(
−
√

3/2
−1/2

)
, a3 = ∆

(
+
√

3/2
−1/2

)
. (7.98)

7Frederick Duncan Michael Haldane (born 1951) is a british physicist and Nobel laureate.
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Figure 7.13: Visualization of the Haldane model. It is implemented on a honeycomb lattice
that is constructed from two trigonal sublattices (blue and red), spanned by basis vectors wi.
The vectors ai connect the next neighbours, and in particular one gets the red sublattice by
adding a1 to the blue sublattice sites. The model includes next-neighbour τ1 (solid black) and
next-next neighbour τ2e

±iθ (dotted red and blue) hopping interactions, where the latter come
with a + phase when the corresponding triangle is traversed clockwise, and with the negative
phase when it is traversed counter-clockwise.

To generate the full honeycomb lattice, we need to consider the basis by adding e.g. the vector
a1 to each of the blue lattice sites. Formally, we can parametrize the positions of all lattice
points of one sublattice (e.g. blue) by a double index (ij), where

R
(1)
ij = iw1 + jw2 , (7.99)

and the other lattice points (then red) by

R
(2)
ij = R

(1)
ij + a1 . (7.100)

Let aij,1 denote the annihilation operator for an electron at site iw1 +jw2 (blue lattice sites)
and aij,2 the annihilation operator for an electron at site iw1 + jw2 + a1. Then, the Haldane
model Hamiltonian reads

H = −τ1

∑
ij

[
a†ij,2aij,1 + a†ij,1aij,2

]
− τ2

∑
ij

[
e+iθa†i+1,j,1aij,1 + e−iθa†i,j+1,1aij,1 + e−iθa†i+1,j−1,1aij,1 + h.c.

]
− τ2

∑
ij

[
e+iθa†i+1,j,2aij,2 + e−iθa†i,j+1,2aij,2 + e−iθa†i+1,j−1,2aij,2 + h.c.

]
+ ε
∑
i,j

[
a†ij,1aij,1 − a

†
ij,2aij,2

]
. (7.101)

Here, τ1 denotes the next-neighbor tunneling amplitude, and τ2 the next-to-next neighbour
tunneling amplitude. The phase θ in the next-to-next neighbour tunneling amplitude will be
considered as θ = π/2 in the following, such that the next-neighbor hopping amplitudes are
purely imaginary.

Since the Hamiltonian of the model is always periodic, we can – for periodic boundary
conditions – use a 2d Fourier transform

aij,α =
1√
N

∑
k∈1.BZ

bk,αe
ik·Rij,α . (7.102)
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Figure 7.14: Plot of the dispersion relation for
for ε = 0 and τ2 = 0 (graphene limit) in quasi-
momentum space. At the degenerate points,
the dispersion relation is linear, and electrons
behave like massless Dirac fermions.

Figure 7.15: Plot of the surface parametrized by (7.105) for ε = −3
√

3τ2 (left), ε = 0 (middle),
and ε = +3

√
3τ2 (right). The red ball marks the origin. Other parameters τ1 = τ2, θ = π/2.

The phase which includes the origin is topologically non-trivial.

Here, k = (kx, ky) runs over the Brillouin zone of the reciprocal lattice. Inserting this in the
Hamiltonian yields a complete decoupling, such that only the A and B sublattices couple to
each other

H =
∑
k

(b†
k,1
b†
k,2

)Hk

(
bk,1
bk,2

)
, (7.103)

where

Hk = h0(k) + hx(k)σx + hy(k)σy + hz(k)σz (7.104)

with specifically

hx(k) = −τ1 [cos(ka1) + cos(ka2) + cos(ka3)] ,

hy(k) = −τ1 [sin(ka1) + sin(ka2) + sin(ka3)] ,

hz(k) = ε− 2τ2 [sin(k(w1 −w2)) + sin(kw2)− sin(kw1))] . (7.105)

Here, we have used the vectors defined in Eqns. (7.98) and (7.97).
When τ2 = 0, and ε = 0, we can recover the Dirac-cones known for graphene, see Fig. 7.14.

In general, i.e., also for finite ε and τ2, this defines a surface as a function of k in R3, which
may or may not wind around the origin. In Fig. 7.15 this surface is shown as a function of k,
where one can see that the topological phase transition occurs when the surface encloses the
origin.

We are also free to choose other phases than φ = π/2 (not shown). Then, the topological
phase transition occurs when

ε = ±3
√

3τ2 sin(θ) . (7.106)

Then, one observes that the parametrized surface becomes flatter and flatter. When it intersects
itself at φ = 0, it changes its orientation, and thereby the corresponding Chern number may
assume negative values. This means that, for the present example, it can assume values C ∈
{−1, 0,+1}.
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