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Chapter 1

Master equations

1.1 Definitions

Many processes in nature appear to us as random.
In classical physics, this randomness may result from our incomplete knowledge about the

system. For example, the collisions of gas molecules in a box with the domain walls may appear
random since we do not know the momenta and positions of each individual molecule.

On the other hand, in quantum mechanics already the equations of motion at the lowest level
involve amplitudes rather than observables. Although the Schrödinger equation appears formally
deterministic, its interpretation has a stochastic element, as probabilities for certain measurement
outcomes can be derived from the squared amplitudes.

Such random processes can be described by probabilities, which may become time-dependent.
The evolution of these probabilities may be governed by equations of different type, and we will
discuss some of these.

First, we briefly recall the density matrix formalism from quantum mechanics. Whereas the
Schrödinger equation ∣∣∣Ψ̇〉 = −iH |Ψ〉 (1.1)

is well suitable for describing closed systems and pure states, the density matrix formalism allows
to describe more general quantum systems. Formally, a density matrix has to fulfill

Tr {ρ} = 1 , ρ = ρ† , 〈Ψ| ρ |Ψ〉 ≥ 0 ∀ |Ψ〉 . (1.2)

The first property essentially demands that the sum of all probabilities has to be conserved, the
second is necessary for the stochastic interpretation in terms of probabilities, and the last property
encodes that the probabilities for measurement outcomes must be positive.

For closed quantum systems, the dynamics follows the Liouville-von-Neumann equation

ρ̇ = −i[H, ρ] = L0ρ . (1.3)

Such equations, where on the left hand side the first derivative of the density matrix with re-
spect to time are connected with the action of a linear super-operator on the density matrix, are
called master equations. There are different types of master equations, and in its most simple
manifestation they are also well-known in classical physics, which will be discussed below.
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8 CHAPTER 1. MASTER EQUATIONS

Exercise 1 (Preservation of density matrix properties by unitary evolution). Show that the von-
Neumann (1.3) equation preserves self-adjointness, trace, and positivity of the density matrix.

Also the Measurement process can be generalized similarly. For a quantum state |Ψ〉, measure-
ments are described by a set of measurement operators {Mm}, each corresponding to a certain
measurement outcome, and with the completeness relation

∑
mM

†
mMm = 1. The probability of

obtaining result m is given by

pm = 〈Ψ|M †
mMm |Ψ〉 (1.4)

and after the measurement with outcome m, the quantum state is collapsed

|Ψ〉 m→ Mm |Ψ〉√
〈Ψ|M †

mMm |Ψ〉
. (1.5)

The projective measurement is just a special case of that with Mm = |m〉 〈m|.

Def. 1 (Measurements with density matrix). For a set of measurement operators {Mm} corre-
sponding to different outcomes m and obeying the completeness relation

∑
mM

†
mMm = 1, the

probability to obtain result m is given by

pm = Tr
{
M †

mMmρ
}

(1.6)

and action of measurement on the density matrix – provided that result m was obtained – can be
summarized as

ρ
m→ ρ′ =

MmρM
†
m

Tr
{
M †

mMmρ
} =

MmρM
†
m

pm
(1.7)

It is therefore straightforward to see that description by Schrödinger equation or von-Neumann
equation with the respective measurement postulates are equivalent. The density matrix formal-
ism conveniently includes statistical mixtures in the description but at the cost of quadratically
increasing the number of state variables.

Exercise 2 (Preservation of density matrix properties by measurement). Show that the measure-
ment postulate preserves self-adjointness, trace, and positivity of the density matrix.

1.2 Rate equations

When the master equation in a particular basis couples the diagonal elements of the density
matrix only to other diagonal elements, it is also called rate equation. Such a rate equation can be
represented by a linear rate matrix, which is acting on a vector of probabilities (composed by the
diagonal elements of the density matrix) Ṗ = TP .
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Def. 2 (rate equation). A rate equation is a master equation describing only the evolution of the
diagonal elements Pk = ρkk of the density matrix For discrete states k it assumes the form

dPk
dt

=
∑
`

[Tk`P` − T`kPk] , Ṗ = TP , (1.8)

where the Tk` > 0 are transition rates from state ` to state k. In matrix representation one has

T =



−
∑
i 6=1

Ti1 T12 . . . T1N

T21 −
∑
i 6=2

Ti2 T2N

...
. . .

...
TN1 . . . . . . −

∑
i 6=N

TiN

 . (1.9)

The rate equation is said to fulfill detailed balance, when at steady state T P̄ = 0 the equation
Tk`P̄` = T`kP̄k is fulfilled separately for all pairs (k, `). Furthermore, when the rate matrix is
symmetric Tk` = T`k, all processes are reversible in a thermodynamic sense.

It is simple to show that a rate equation must conserve the sum of all probabilities∑
k

dPk
dt

=
∑
k`

(Tk`P` − T`kPk) =
∑
k`

(T`kPk − T`kPk) = 0 . (1.10)

Furthermore, all probabilities must remain real, since the transition rates are also real. This fulfills
the second condition for a density matrix.

Last we show that rate equations preserve the positivity of probabilities. Let us assume that we
start with a valid probability distribution, i.e., with non-negative probabilities 0 ≤ Pi(0) ≤ 1. Let
now Pk denote the probability that first vanishes at some time t, i.e., where all other probabilities
are still non-negative. Then, we can conclude for the time-derivative of Pk, that

dPk
dt

∣∣∣∣
Pk=0

= +
∑
`

Tk`P` ≥ 0 , (1.11)

which means that the boundary Pk = 0 is repulsive and cannot be crossed. This prohibits negative
probabilities. In addition, all individual probabilities must remain smaller than one. This however
immediately follows by contradiction from the conservation of their sum and their individual
positivity.

Altogether one can say that a rate equation of the form (1.8) automatically preserves the
probability interpretation, which of course only holds for a valid initialization.

1.2.1 Example 1: Fluctuating two-level system

Let us consider a system of two possible events, to which we associate the time-dependent proba-
bilities P0(t) and P1(t). These events could for example be the two conformations of a molecule,
the configurations of a spin, the two states of an excitable atom, etc. To introduce some dynamics,
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let the transition rate from 0→ 1 be denoted by T10 > 0 and the inverse transition rate 1→ 0 be
denoted by T01 > 0. The associated master equation is then given by

d

dt

(
P0

P1

)
=

(
−T10 +T01

+T10 −T01

)(
P0

P1

)
(1.12)

Exercise 3 (Temporal Dynamics of a two-level system). Calculate the solution of Eq. (1.12).
What is the stationary state?

The occupation of a dot tunnel-coupled to a junction with bare tunneling rate Γ will fluctuate
depending on the Fermi level of the junction, see Fig. 1.1.

Figure 1.1: Left: Sketch of a single quantum dot hosting at most one electron, which is tunnel-
coupled to a single junction. Right: Sketch of the dot transition frequency in relation with the
Fermi occupation of the lead levels.

In particular, if at time t the dot was empty, the probability to find an electron in the dot at
time t+ ∆t is roughly given by Γ∆tf(ε) with the Fermi function defined as

f(ω) =
1

eβ(ω−µ) + 1
, (1.13)

where β denotes the inverse temperature and µ the chemical potential of the junction. The
transition rate is thus given by the tunneling rate Γ multiplied by the probability to have an
electron in the junction at the required energy ε ready to jump into the system. The inverse
probability to find an initially filled dot empty reads Γ∆t [1− f(ε)], i.e., here one has to multiply
the bare tunneling rate with the probability to have a free slot at energy ε in the junction.

1.2.2 Example 2: Interacting quantum dots

Imagine a double quantum dot, where the Coulomb interaction energy is so large that the doubly
occupied state can be omitted from the considerations. In essence, only three states remain. Let
|0〉 denote the empty, |L〉 the left-occupied, and |R〉 the right-occupied states, respectively. Now
assume the two quantum dots to be tunnel-coupled to two adjacent reservoirs but not among
themselves, such that particle transport between the dots is prohibited.

Applying this recipe to every dot separately we obtain for the total rate matrix

T = ΓL

 −fL 1− fL 0
+fL −(1− fL) 0

0 0 0

+ ΓR

 −fR 0 1− fR
0 0 0

+fR 0 −(1− fR)

 . (1.14)
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In fact, a microscopic derivation can be used to confirm the above-mentioned assumptions, and
the parameters fν become the Fermi functions

fν =
1

eβν(εν−µν) + 1
(1.15)

with inverse temperature βν , chemical potentials µν , and dot level energies εν .

1.2.3 Example 3: Diffusion Equation

Consider an infinite chain of coupled compartments as displayed in Fig. 1.2. Now suppose that

Figure 1.2: Linear chain of compartments coupled with a transition rate T , where only next
neighbors are coupled to each other symmetrically.

along the chain, a molecule may move from one compartment to another with a transition rate
T that is unbiased, i.e., symmetric in all directions. The evolution of probabilities obeys the
infinite-size master equation

Ṗi(t) = TPi−1(t) + TPi+1(t)− 2TPi(t)

= T∆x2Pi−1(t) + Pi+1(t)− 2Pi(t)

∆x2
. (1.16)

We can introduce the probability density ρ(xi, t) = Pi(t)/∆x, such that as ∆x → 0 and T → ∞
in a way that D = T∆x2 remains constant, we obtain the partial differential equation

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2
with D = T∆x2 . (1.17)

We note here that while the Pi(t) describe (dimensionless) probabilities, ρ(x, t) describes a time-
dependent probability density (with dimension of inverse length).

Such diffusion equations are used to describe the distribution of chemicals in a soluble in the
highly diluted limit, the kinetic dynamics of bacteria and further undirected transport processes.
From our analysis of master equations, we can immediately conclude that the diffusion equation

preserves positivity and total norm, i.e., ρ(x, t) ≥ 0 and
+∞∫
−∞

ρ(x, t)dx = 1. Note that it is straight-

forward to generalize the mapping between master equations and the diffusion equation to the
higher-dimensional case.

One can now think of microscopic models where the hopping rates in different directions are
not equal (drift) and may also depend on the position (spatially-dependent diffusion coefficient).
A corresponding model (in next-neighbor approximation) would be given by

Ṗi = Ti,i−1Pi−1(t) + Ti,i+1Pi+1(t)− (Ti−1,i + Ti+1,i)Pi(t) , (1.18)
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where Ta,b denotes the rate of jumping from b to a. An educated guess is given by the ansatz

∂P

∂t
=

∂2

∂x2
[A(x)P (x, t)] +

∂

∂x
[B(x)P (x, t)]

≡ Ai−1Pi−1 − 2AiPi + Ai+1Pi+1

∆x2
+
Bi+1Pi+1 −Bi−1Pi−1

2∆x

=

[
Ai−1

∆x2
− Bi−1

2∆x

]
Pi−1 −

2Ai
∆x2

Pi +

[
Ai+1

∆x2
+
Bi+1

2∆x

]
Pi+1 , (1.19)

which is equivalent to our master equation when

Ai =
∆x2

2
[Ti−1,i + Ti+1,i] , Bi = ∆x [Ti−1,i − Ti+1,i] . (1.20)

We conclude that the Fokker-Planck equation

∂ρ

∂t
=

∂2

∂x2
[A(x)ρ(x, t)] +

∂

∂x
[B(x)ρ(x, t)] (1.21)

with A(x) ≥ 0 preserves norm and positivity of the probability distribution ρ(x, t).

Exercise 4 (Reaction-Diffusion Equation). Along a linear chain of compartments consider the
master equation for two species

Ṗi = T [Pi−1(t) + Pi+1(t)− 2Pi(t)]− γPi(t) ,
ṗi = τ [pi−1(t) + pi+1(t)− 2pi(t)] + γPi(t),

where Pi(t) may denote the concentration of a molecule that irreversibly reacts with chemicals in
the soluble to an inert form characterized by pi(t). To which partial differential equation does the
master equation map?

1.3 Lindblad master equation

Any dynamical evolution equation for the density matrix should (at least in some approximate
sense) preserve its interpretation as density matrix, i.e., trace, Hermiticity, and positivity must
be preserved. By construction, the measurement postulate and unitary evolution preserve these
properties. However, more general evolutions are conceivable. If we constrain ourselves to master
equations that are local in time and have constant coefficients, the most general evolution that
preserves trace, self-adjointness, and positivity of the density matrix is given by a Lindblad form.

Def. 3 (Lindblad form). In an N-dimensional system Hilbert space, a master equation of Lindblad
form [4, 5] has the structure

ρ̇ = Lρ = −i [H, ρ] +
N2−1∑
α,β=1

γαβ

(
AαρA

†
β −

1

2

{
A†βAα, ρ

})
, (1.20)
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where the Hermitian operator H = H† can be interpreted as an effective Hamiltonian and γαβ = γ∗βα
is a positive semidefinite matrix, i.e., it fulfills

∑
αβ

x∗αγαβxβ ≥ 0 for all vectors x (or, equivalently

that all eigenvalues of (γαβ) are non-negative γi ≥ 0).

Exercise 5 (Trace and Hermiticity preservation by Lindblad forms). Show that the Lindblad form
master equation preserves trace and Hermiticity of the density matrix.

The Lindblad type master equation can be written in simpler form: As the dampening ma-
trix γ is Hermitian, it can be diagonalized by a suitable unitary transformation U , such that∑

αβ Uα′αγαβ(U †)ββ′ = δα′β′γα′ with γα ≥ 0 representing its non-negative eigenvalues. Using this
unitary operation, a new set of operators can be defined via Aα =

∑
α′ Uα′αLα′ . Inserting this

decomposition in the master equation, we obtain

ρ̇ = −i [H, ρ] +
N2−1∑
α,β=1

γαβ

(
AαρA

†
β −

1

2

{
A†βAα, ρ

})

= −i [H, ρ] +
∑
α′,β′

[∑
αβ

γαβUα′αU
∗
β′β

](
Lα′ρL

†
β′ −

1

2

{
L†β′Lα′ , ρ

})
= −i [H, ρ] +

∑
α

γα

(
LαρL

†
α −

1

2

{
L†αLα, ρ

})
, (1.21)

where γα denote the N2 − 1 non-negative eigenvalues of the dampening matrix. Furthermore, we
can in principle absorb the γα in the Lindblad operators L̄α =

√
γαLα, such that another form of

a Lindblad master equation would be

ρ̇ = −i [H, ρ] +
∑
α

(
L̄αρL̄

†
α −

1

2

{
L̄†αL̄α, ρ

})
. (1.22)

Evidently, the representation of a master equation is not unique.
Any other unitary operation would lead to a different non-diagonal form of γαβ which however

describes the same master equation. In addition, we note here that the master equation is not
only invariant to unitary transformations of the operators Aα, but in the diagonal representation
also to inhomogeneous transformations of the form

Lα → L′α = Lα + aα

H → H ′ = H +
1

2i

∑
α

γα
(
a∗αLα − aαL†α

)
+ b , (1.23)

with complex numbers aα and a real number b. The numbers aα can be chosen such that the
Lindblad operators are traceless Tr {Lα} = 0, which is a popular convention. Choosing b simply
corresponds to gauging the energy of the system.
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Exercise 6 (Shift invariance). Show the invariance of the diagonal representation of a Lindblad
form master equation (1.21) with respect to the transformation (1.23).

We would like to demonstrate the preservation of positivity here. Since preservation of Her-
miticity follows directly from the Lindblad form, we can – since at any time we know that ρ = ρ†

– formally write the density matrix in its spectral representation

ρ(t) =
∑
j

Pj(t) |Ψj(t)〉 〈Ψj(t)| (1.24)

with eigenvalues Pj(t) ∈ R (we still have to show that these remain positive) and time-dependent
orthonormal eigenstates. The eigenvectors themselves are normalized at all times 〈Ψi(t)|Ψj(t)〉 =

δij, and by acting on this expression with a time derivative we see that
〈

Ψ̇i|Ψi

〉
+
〈

Ψi|Ψ̇i

〉
= 0.

Therefore, the time-derivative of the density matrix becomes

ρ̇ =
∑
j

[
Ṗj |Ψj〉 〈Ψj|+ Pj

∣∣∣Ψ̇j

〉
〈Ψj|+ Pj |Ψj〉

〈
Ψ̇j

∣∣∣] , (1.25)

and sandwiching the time-derivative above with the eigenvector |Ψi〉 leads to the cancellation of
two terms, such that 〈Ψi(t)| ρ̇ |Ψi(t)〉 = Ṗi(t). On the other hand, we can also sandwich the
right-hand side of the Lindblad equation to obtain

Ṗi = −i 〈Ψi|H |Ψi〉Pi + iPi 〈Ψi|H |Ψi〉

+
∑
α

γα

[
〈Ψi|Lα

(∑
j

Pj |Ψj〉 〈Ψj|

)
L†α |Ψi〉 − 〈Ψi|L†αLα |Ψi〉Pi

]

=
∑
j

(∑
α

γα|〈Ψi|Lα |Ψj〉|2
)
Pk −

∑
j

(∑
α

γα|〈Ψj|Lα |Ψi〉|2
)
Pi . (1.26)

This is nothing but a rate equation with positive but time-dependent transition rates

Rj→i(t) =
∑
α

γα|〈Ψi(t)|Lα |Ψj(t)〉|2 ≥ 0 , (1.27)

and with our arguments from Sec. 1.1 it follows that the positivity of the eigenvalues Pj(t) is
granted, a valid initialization provided. Unfortunately, the basis within which this simple rate
equation holds is time-dependent and also only known after solving the master equation and
diagonalizing the solution. It is therefore not very practical in most occasions.

1.3.1 Example: Master Equation for a cavity in a thermal bath

Consider the Lindblad form master equation

ρ̇ = −i
[
Ωa†a, ρ

]
+ Γ(1 + nB)

[
aρa† − 1

2
a†aρ− 1

2
ρa†a

]
+ΓnB

[
a†ρa− 1

2
aa†ρ− 1

2
ρaa†

]
, (1.28)
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with bosonic operators
[
a, a†

]
= 1 and Bose-Einstein bath occupation nB =

[
eβΩ − 1

]−1
and cavity

frequency Ω. In Fock-space representation, these operators act as a† |n〉 =
√
n+ 1 |n+ 1〉 (where

0 ≤ n <∞), such that the above master equation couples only the diagonals of the density matrix
ρn = 〈n| ρ |n〉 to each other. This is directly visible by sandwiching the master equation with
〈n| . . . |n〉

ρ̇n = Γ(1 + nB) [(n+ 1)ρn+1 − nρn] + ΓnB [nρn−1 − (n+ 1)ρn]

= ΓnBnρn−1 − Γ [n+ (2n+ 1)nB] ρn + Γ(1 + nB)(n+ 1)ρn+1 , (1.29)

which shows that the rate equation arising for the diagonals even has a simple tri-diagonal form.
That makes it particularly easy to calculate its stationary state recursively, since the boundary
solution nBρ̄0 = (1 + nB)ρ̄1 implies for all n the relation

ρ̄n+1

ρ̄n
=

nB
1 + nB

= e−βΩ , (1.30)

i.e., the stationary state is a thermalized Gibbs state with the same temperature as the reservoir.

Exercise 7 (Moments). Calculate the expectation value of the number operator n̂ = a†a and its
square n̂2 = a†aa†a in the stationary state of the master equation (1.28).

In general, the matrix elements of the density matrix ρnm = 〈n| ρ |m〉 will obey

ρ̇nm = −iΩ(n−m)ρnm + Γ(1 + nB)

[√
(n+ 1)(m+ 1)ρn+1,m+1 −

n+m

2
ρnm

]
+ΓnB

[√
nmρn−1,m−1 −

n+ 1 +m+ 1

2
ρnm

]
=

[
−iΩ(n−m)− Γ

(1 + nB)(n+m) + nB(n+ 1 +m+ 1)

2

]
ρnm

+Γ(1 + nB)
√

(n+ 1)(m+ 1)ρn+1,m+1 + ΓnB
√
nmρn−1,m−1 , (1.31)

and it is straightforward to see that vanishing coherences (off-diagonal matrix elements) ρ̄n 6=m = 0
are a valid steady-state solution. Not being aware of the Lindblad form we may nevertheless ask
whether there are other solutions. The above equation shows that among the coherences, only few
couple, and by arranging them in a favorable form we can write these equations in matrix form
with infinite-dimensional tri-diagonal matrices (for brevity we use γ = ΓnB and γ̄ = Γ(1 + nB))

W =



...
. . . +γ̄

√
nm 0

. . . +γ
√
nm

[
−iΩ(n−m)− γ̄ n+m

2
− γ n+1+m+1

2

]
+γ̄
√

(n+ 1)(m+ 1) . . .

0 +γ
√

(n+ 1)(m+ 1)
. . .

...


.(1.32)

By examining every column in detail, we see that the real part of the diagonal entries has always
larger magnitude than the sum of the off-diagonal entries, since

γ̄
n+m

2
+ γ

n+ 1 +m+ 1

2
≥ +γ̄

√
nm+ γ

√
(n+ 1)(m+ 1) . (1.33)
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The above equation naturally follows from (x − y)2 = x2 + y2 − 2xy ≥ 0, with x2 → γ̄n and
y2 → γ̄m or x2 → γ(n + 1) and y2 → γ(m + 1), respectively. Furthermore, we see that equality
actually only holds for the diagonal elements (n = m). From Gershgorins circle theorem, we can
therefore conclude that all the eigenvalues of the matrix W have for n 6= m a negative real part.
Consequently, the coherences must decay and the stationary state only contains populations in the
Fock space representation.

A simpler way to solve the particular master equation at hand is by using it to calculate the
expectation value 〈n〉 = Tr

{
a†aρ

}
of the particle number operator

d

dt
〈n〉 =

〈
a†aρ̇

〉
= +Γ(1 + nB)Tr

{[
a†a†aa−

(
a†a
)2
]
ρ
}

+ΓnBTr

{[
aa†aa† − 1

2
a†aaa† − 1

2
aa†a†a

]
ρ

}
, (1.34)

where we have used the invariance of the trace under cyclic permutations to move the density
matrix to the right. Further using the bosonic commutation relations we get the very simple
equation

d

dt
〈n〉 = −Γ (1 + nB) 〈n〉+ ΓnB (1 + 〈n〉) , (1.35)

which yields the same steady state solution

n̄

1 + n̄
=

nB
1 + nB

= e−βΩ , (1.36)

which we had before in Eq. (1.30). Mostly, one is not as lucky as in this case, that the resulting
evolution equations close with just a single variable (see below), but deriving and solving equations
of motion for observables from master equations is a popular tool for solving them.

1.3.2 Master Equation for a driven cavity

When the cavity is driven with a laser and simultaneously coupled to a vacuum bath nB = 0, one
often uses the time-dependent master equation

ρ̇S = −i

[
Ωa†a+

P

2
e+iωta+

P ∗

2
e−iωta†, ρS

]
+ γ

[
aρSa

† − 1

2
a†aρS −

1

2
ρSa

†a

]
(1.37)

with the Laser frequency ω and amplitude P . With using that e+iωa†atae−iωa†at = ae−iωt we see
that the transformation ρ = e+iωa†atρSe

−iωa†at maps to a time-independent master equation

ρ̇ = −i

[
(Ω− ω)a†a+

P

2
a+

P ∗

2
a†, ρ

]
+ γ

[
aρa† − 1

2
a†aρ− 1

2
ρa†a

]
. (1.38)

Exercise 8 (Transformation to a time-independent frame). Show that this is true.
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This equation couples coherences and populations in the Fock space representation, and in the
long-term limit we will also observe non-vanishing coherences. Nevertheless, it is possible to solve
for the evolution of expectation values by just making use of the bosonic commutation relations.
Here, the basic idea is to obtain a closed set of differential equations for observables〈

Ȯα

〉
= Tr {Oαρ̇} = Tr {OαLρ} =

∑
αβ

Γαβ 〈Oβ〉 , (1.39)

where the coefficients Γαβ have to be obtained from inspection of the particular model, in a similar
way as we did in the previous section.

Exercise 9 (Coherent state). Using the driven cavity master equation, show that the stationary
expectation value of the cavity occupation fulfills

lim
t→∞

〈
a†a
〉

=
|P |2

γ2 + 4(Ω− ω)2

One may wonder how many coefficients Γαβ will arise, and in general, for a system Hilbert space
dimension of N we can have N2−1 independent Hermitian operators. For systems with an infinite
Hilbert space one is in general not guaranteed to end up with a finite number of observables.

Alternatively, we can employ coherent states for the solution. These are defined as eigenstates
of the annihilation operator

a |α〉 = α |α〉 (1.39)

and can also be represented as Fock states. It is indeed possible to show that the density matrix

ρ̄ = |α〉 〈α| , α =
−iP ∗

γ + 2i(Ω− ω)
, (1.40)

is indeed a stationary solution of the above master equation. By inserting this ansatz we get terms
either proportional to |α〉 〈α|, a† |α〉 〈α|, and |α〉 〈α| a, which we can group as

0 = |α〉 〈α|
[
−i
P

2
α + i

P ∗

2
α∗ + γ|α|2

]
+a† |α〉 〈α|

[
−i
P ∗

2
− γ

2
α− i(Ω− ω)α

]
+ |α〉 〈α| a

[
+i
P

2
− γ

2
α∗ + i(Ω− ω)α∗

]
. (1.41)

By inserting the correct value of α, we see that all terms in brackets vanish, and in the rotating
frame, we have a stationary state. The state back in the original frame is non-stationary and reads
asymptotically

ρ(t)→ e−iωa†at |α〉 〈α| e+iωa†at . (1.42)



18 CHAPTER 1. MASTER EQUATIONS

1.4 Most general evolution

Finally, we mention here that the most general evolution preserving all the nice properties of a
density matrix is the so-called Kraus map. A density matrix ρ (Hermitian, positive definite, and
with trace one) can be mapped to another density matrix ρ′ via

ρ′ =
∑
αβ

γαβAαρA
†
β , with

∑
αβ

γαβA
†
βAα = 1 , (1.43)

where the prefactors γαβ form a Hermitian (γαβ = γ∗βα) and positive definite (
∑

αβ x
∗
αγαβxβ ≥ 0 or

equivalently all eigenvalues of (γαβ) are non-negative) matrix. It is straightforward to see that the
above map preserves trace and Hermiticity of the density matrix. In addition, ρ′ also inherits the
positivity from ρ =

∑
n Pn |n〉 〈n|

〈Ψ| ρ′ |Ψ〉 =
∑
αβ

γαβ 〈Ψ|AαρA†β |Ψ〉 =
∑
n

Pn
∑
αβ

γαβ 〈Ψ|Aα |n〉 〈n|A†β |Ψ〉

=
∑
n

Pn︸︷︷︸
≥0

∑
αβ

(
〈n|A†α |Ψ〉

)∗
γαβ 〈n|A†β |Ψ〉︸ ︷︷ ︸

≥0

≥ 0 . (1.44)

Since the matrix γαβ is Hermitian, it can be diagonalized by a suitable unitary transformation,
and we introduce the new operators Aα =

∑
α′ Uαα′K̄α′

ρ′ =
∑
αβ

∑
α′β′

γαβUαα′K̄α′ρU
∗
ββ′K

†
β′ =

∑
α′β′

K̄α′ρK̄
†
β′

∑
αβ

Uαα′γαβU
∗
ββ′︸ ︷︷ ︸

γα′δα′β′

=
∑
α

γαK̄αρK̄
†
α , (1.45)

where γα ≥ 0 represent the eigenvalues of the matrix (γαβ). Since these are by construction
positive, we introduce further new operators Kα =

√
γαK̄α to obtain the simplest representation

of a Kraus map.

Def. 4 (Kraus map). The map

ρ(t+ ∆t) =
∑
α

Kα(t,∆t)ρ(t)K†α(t,∆t) (1.46)

with Kraus operators Kα(t,∆t) obeying the relation
∑

αK
†
α(t,∆t)Kα(t,∆t) = 1 preserves Her-

miticity, trace, and positivity of the density matrix.

Obviously, both unitary evolution and evolution under measurement are just special cases of a
Kraus map. Though Kraus maps are heavily used in quantum information, they are not often very
easy to interpret. For example, it is not straightforward to identify the unitary and the non-unitary
part induced the Kraus map.



Chapter 2

Obtaining a Master Equation

2.1 Mathematical Prerequisites

Master equations are often used to describe the dynamics of systems interacting with one or many
large reservoirs (baths). To derive them from microscopic models – including the Hamiltonian of
the full system – requires to review some basic mathematical concepts.

2.1.1 Tensor Product

The greatest advantage of the density matrix formalism is visible when quantum systems composed
of several subsystems are considered. Roughly speaking, the tensor product represents a way to
construct a larger vector space from two (or more) smaller vector spaces.

Def. 5 (Tensor Product). Let V and W be Hilbert spaces (vector spaces with scalar product) of
dimension m and n with basis vectors {|v〉} and {|w〉}, respectively. Then V ⊗ W is a Hilbert
space of dimension m · n, and a basis is spanned by {|v〉 ⊗ |w〉}, which is a set combining every
basis vector of V with every basis vector of W .

Mathematical properties

• Bilinearity (z1 |v1〉+ z2 |v2〉)⊗ |w〉 = z1 |v1〉 ⊗ |w〉+ z2 |v2〉 ⊗ |w〉

• operators acting on the combined Hilbert space A⊗B act on the basis states as (A⊗B)(|v〉⊗
|w〉) = (A |v〉)⊗ (B |w〉)

• any linear operator on V ⊗W can be decomposed as C =
∑

i ciAi ⊗Bi

• the scalar product is inherited in the natural way, i.e., one has for |a〉 =
∑

ij aij |vi〉 ⊗ |wj〉
and |b〉 =

∑
k` bk` |vk〉⊗|w`〉 the scalar product 〈a|b〉 =

∑
ijk` a

∗
ijbk` 〈vi|vk〉 〈wj|w`〉 =

∑
ij a
∗
ijbij

If more than just two vector spaces are combined to form a larger vector space, the dimension of
the joint vector space grows rapidly, as e.g. exemplified by the case of a qubit: Its Hilbert space is
just spanned by two vectors |0〉 and |1〉. The joint Hilbert space of two qubits is four-dimensional, of
three qubits 8-dimensional, and of n qubits 2n-dimensional. Eventually, this exponential growth of
the Hilbert space dimension for composite quantum systems is at the heart of quantum computing.

19
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Exercise 10 (Tensor Products of Operators). Let σ denote the Pauli matrices, i.e.,

σ1 =

(
0 +1

+1 0

)
σ2 =

(
0 −i

+i 0

)
σ3 =

(
+1 0
0 −1

)
Compute the trace of the operator

Σ = a1⊗ 1 +
3∑
i=1

αiσ
i ⊗ 1 +

3∑
j=1

βj1⊗ σj +
3∑

i,j=1

aijσ
i ⊗ σj .

Since the scalar product is inherited, this typically enables a convenient calculation of the trace
in case of a few operator decomposition, e.g., for just two operators

Tr {A⊗B} =
∑
nA,nB

〈nA, nB|A⊗B |nA, nB〉

=

[∑
nA

〈nA|A |nA〉

][∑
nB

〈nB|B |nB〉

]
= TrA{A}TrB{B} , (2.-1)

where TrA/B denote the trace in the Hilbert space of A and B, respectively.

2.1.2 The partial trace

For composite systems, it is usually not necessary to keep all information of the complete system
in the density matrix. Rather, one would like to have a density matrix that encodes all the
information on a particular subsystem only. Obviously, the map ρ → TrB {ρ} to such a reduced
density matrix should leave all expectation values of observables A acting only on the considered
subsystem invariant, i.e.,

Tr {A⊗ 1ρ} = Tr {ATrB {ρ}} . (2.0)

If this basic condition was not fulfilled, there would be no point in defining such a thing as a
reduced density matrix: Measurement would yield different results depending on the Hilbert space
of the experimenters feeling.

Def. 6 (Partial Trace). Let |a1〉 and |a2〉 be vectors of state space A and |b1〉 and |b2〉 vectors of
state space B. Then, the partial trace over state space B is defined via

TrB {|a1〉 〈a2| ⊗ |b1〉 〈b2|} = |a1〉 〈a2|Tr {|b1〉 〈b2|} . (2.1)

The partial trace is linear, such that the partial trace of arbitrary operators is calculated
similarly. By choosing the |aα〉 and |bγ〉 as an orthonormal basis in the respective Hilbert space,
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one may therefore calculate the most general partial trace via

TrB {C} = TrB

{∑
αβγδ

cαβγδ |aα〉 〈aβ| ⊗ |bγ〉 〈bδ|

}
=

∑
αβγδ

cαβγδTrB {|aα〉 〈aβ| ⊗ |bγ〉 〈bδ|}

=
∑
αβγδ

cαβγδ |aα〉 〈aβ|Tr {|bγ〉 〈bδ|}

=
∑
αβγδ

cαβγδ |aα〉 〈aβ|
∑
ε

〈bε|bγ〉 〈bδ|bε〉

=
∑
αβ

[∑
γ

cαβγγ

]
|aα〉 〈aβ| . (2.2)

The definition 6 is the only linear map that respects the invariance of expectation values.

Exercise 11 (Partial Trace). Compute the partial trace of a pure density matrix ρ = |Ψ〉 〈Ψ| in
the bipartite state

|Ψ〉 =
1√
2

(|01〉+ |10〉) ≡ 1√
2

(|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉)

2.2 Derivations for Open Quantum Systems

In some cases, it is possible to derive a master equation rigorously based only on a few assumptions.
Open quantum systems for example are mostly treated as part of a much larger closed quantum
system (the union of system and bath), where the partial trace is used to eliminate the unwanted
(typically many) degrees of freedom of the bath, see Fig. 2.1. Technically speaking, we will consider

Figure 2.1: An open quantum system can be conceived as being part of a larger closed quantum
system, where the system part (HS) is coupled to the bath (HB) via the interaction Hamiltonian
HI.

Hamiltonians of the form

H = HS ⊗ 1 + 1⊗HB +HI , (2.2)
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where the system and bath Hamiltonians act only on the system and bath Hilbert space, respec-
tively. Since the index clearly defines on which space the respective Hamiltonian is acting, we
often also write

H = HS +HB +HI . (2.3)

It is important to note that the interaction Hamiltonian acts on both Hilbert spaces

HI =
∑
α

Aα ⊗Bα , (2.4)

where the summation boundaries are in the worst case limited by the dimension of the system
Hilbert space α < N2 − 1. As we consider physical observables here, it is required that all
Hamiltonians of system, bath, and interaction are self-adjoint.

Exercise 12 (Hermiticity of Couplings). Show that it is always possible to choose Hermitian cou-
pling operators Aα = A†α and Bα = B†α using that HI = H†I .

2.2.1 Standard Quantum-Optical Derivation

Here, we will derive the master equation generally, for an arbitrary system coupled to a thermal
environment. This will at first appear a bit technical but may prove useful later-on, since it also
allows us to show general properties for later reference.

In this section, we will use the example

H = Ωa†a+ (a+ a†)
∑
k

(
hkbk + h∗kb

†
k

)
+
∑
k

ωkb
†
kbk , (2.5)

which describes a harmonic oscillator coupled to many other oscillator modes via their x-coordinates,
and which may therefore serve to illustrate the general derivation.

Interaction Picture

When the interaction HI is small, it is justified to apply perturbation theory. The von-Neumann
equation in the joint total quantum system

ρ̇ = −i [HS +HB +HI, ρ] (2.6)

describes the full evolution of the combined density matrix. This equation can be formally solved by
the unitary evolution ρ(t) = e−iHtρ0e

+iHt, which however is impractical to compute as H involves
too many degrees of freedom.

Transforming to the interaction picture

ρ(t) = e+i(HS+HB)tρ(t)e−i(HS+HB)t , (2.7)

which will be denoted by bold symbols throughout, the von-Neumann equation transforms into

ρ̇ = −i [HI(t),ρ] , (2.8)
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where the in general time-dependent interaction Hamiltonian

HI(t) = e+i(HS+HB)tHIe
−i(HS+HB)t =

∑
α

e+iHStAαe
−iHSt ⊗ e+iHBtBαe

−iHBt

=
∑
α

Aα(t)⊗Bα(t) (2.9)

allows to perform perturbation theory.
Without loss of generality we will for simplicity assume here the case of Hermitian coupling

operators Aα = A†α and Bα = B†α. One heuristic way to perform perturbation theory is to formally
integrate Eq. (2.8) and to re-insert the result in the r.h.s. of Eq. (2.8). The time-derivative of the
system density matrix is obtained by performing the partial trace

ρ̇S = −iTrB {[HI(t), ρ0]} −
t∫

0

TrB {[HI(t), [HI(t
′),ρ(t′)]] dt′} . (2.10)

This integro-differential equation is still exact but unfortunately not closed as the r.h.s. does not
depend on ρS but the full density matrix at all previous times.

For our particular example, we can show that the master equation in the interaction picture
reads

ρ̇ = −i

[(
ae−iΩt + a†e+iΩt

)∑
k

(
hkbke

−iωkt + h∗kb
†
ke

+iωkt
)
,ρ

]
. (2.11)

We see that there is just one system and bath coupling operator, respectively, and that therefore
these operators are already Hermitian by construction. We see that the time-dependent interaction
Hamiltonian has many oscillatory terms, and evaluating all these terms seems challenging at first.

Born approximation

To close the above equation, we employ factorization of the initial density matrix

ρ0 = ρ0
S ⊗ ρ̄B (2.12)

together with perturbative considerations: Assuming that HI(t) = O{λ} with λ beeing a small
dimensionless perturbation parameter (solely used for bookkeeping purposes here) and that the
environment is so large such that it is hardly affected by the presence of the system, we may
formally expand the full density matrix

ρ(t) = ρS(t)⊗ ρ̄B +O{λ} , (2.13)

where the neglect of all higher orders is known as Born approximation. Eq. (2.10) demonstrates
that the Born approximation is equivalent to a perturbation theory in the interaction Hamiltonian

ρ̇S = −iTrB {[HI(t), ρ0]} −
t∫

0

TrB {[HI(t), [HI(t
′),ρS(t′)⊗ ρ̄B]] dt′}+O{λ3} . (2.14)
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Using the decomposition of the interaction Hamiltonian (2.4), this obviously yields a closed equa-
tion for the system density matrix

ρ̇S = −i
∑
α

[
Aα(t)ρ0

STr {Bα(t)ρ̄B} − ρ0
SAα(t)Tr {ρ̄BBα(t)}

]
−
∑
αβ

t∫
0

[
+Aα(t)Aβ(t′)ρS(t′)Tr {Bα(t)Bβ(t′)ρ̄B}
−Aα(t)ρS(t′)Aβ(t′)Tr {Bα(t)ρ̄BBβ(t′)}
−Aβ(t′)ρS(t′)Aα(t)Tr {Bβ(t′)ρ̄BBα(t)}

+ρS(t′)Aβ(t′)Aα(t)Tr {ρ̄BBβ(t′)Bα(t)}
]
dt′ . (2.15)

Without loss of generality, we proceed by assuming that the single coupling operator expectation
value vanishes

Tr {Bα(t)ρ̄B} = 0 . (2.16)

This situation can always be constructed by simultaneously modifying system Hamiltonian HS

and coupling operators Aα, see exercise 13.
For our example we see that for a thermal reservoir this is fulfilled by construction, since

Tr
{
bke
−βωkb†kbk

}
= 0 . (2.17)

Exercise 13 (Vanishing single-operator expectation values). Show that by modifying system and
interaction Hamiltonian

HS → HS +
∑
α

gαAα , Bα → Bα − gα1 (2.18)

one can construct a situation where Tr {Bα(t)ρ̄B} = 0. Determine gα.

Using the cyclic property of the trace, we obtain

ρ̇S = −
∑
αβ

t∫
0

dt′
[
Cαβ(t, t′) [Aα(t),Aβ(t′)ρS(t′)]

+Cβα(t′, t) [ρS(t′)Aβ(t′),Aα(t)]
]

(2.19)

with the bath correlation function

Cαβ(t1, t2) = Tr {Bα(t1)Bβ(t2)ρ̄B} . (2.20)

The integro-differential equation (2.19) is a non-Markovian master equation, as the r.h.s.
depends on the value of the dynamical variable (the density matrix) at all previous times – weighted
by the bath correlation functions. We will see later that non-Markovianity can also be defined
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more rigorously based on violation of contractivity. It does preserve trace and Hermiticity of the
system density matrix, but not necessarily its positivity. Such integro-differential equations can
only be solved in very specific cases, e.g., when the correlation functions have a very simple decay
law. Therefore, we motivate further approximations, for which we need to discuss the analytic
properties of the bath correlation functions.

In our example, we have only a single system coupling operator A(t) =
(
ae−iΩt + a†e+iΩt

)
, and

consequently also only a single correlation function

C(t1, t2) =
∑
kk′

Tr
{(
hkbke

−iωkt1 + h∗kb
†
ke

+iωkt1
)(

hk′bk′e
−iωk′ t2 + h∗k′b

†
k′e

+iωk′ t2
)
ρ̄B

}
. (2.21)

Without making further assumptions on the bath density matrix ρ̄B, we cannot further simplify
this expression.

Markov approximation

It is quite straightforward to see that when the bath Hamiltonian commutes with the bath density
matrix [HB, ρ̄B] = 0, the bath correlation functions actually only depend on the difference of their
time arguments

Cαβ(t1, t2) = Cαβ(t1 − t2) = Tr
{
e+iHB(t1−t2)Bαe

−iHB(t1−t2)Bβ ρ̄B

}
. (2.22)

Since we chose our coupling operators Hermitian, we have the additional symmetry that

Cαβ(τ) = C∗βα(−τ) . (2.23)

One can now evaluate several system-bath models and when the bath has a dense spectrum, the
bath correlation functions are typically found to be strongly peaked around zero, see exercise 14.

Exercise 14 (Bath Correlation Function). Evaluate the Fourier transform γαβ(ω) =∫
Cαβ(τ)e+iωτdτ of the bath correlation functions for the coupling operators B1 =

∑
k hkbk and

B2 =
∑

k h
∗
kb
†
k for a bosonic bath HB =

∑
k ωkb

†
kbk in the thermal equilibrium state ρ̄0

B = e−βHB

Tr{e−βHB} .

You may use the continous representation Γ(ω) = 2π
∑

k |hk|
2δ(ω − ωk) for the tunneling rates.

The correlation function of our example can for a thermal reservoir ρ̄B = e−β
∑
k ωkb

†
kbk/ZB be

further evaluated

C(t1 − t2) =
∑
k

|hk|2
[
e−iωk(t1−t2)

〈
bkb
†
k

〉
+ e+iωk(t1−t2)

〈
b†kbk

〉]
=

∑
k

|hk|2
[
e−iωk(t1−t2)(1 + nB(ωk)) + e+iωk(t1−t2)nB(ωk)

]
=

1

2π

∫ ∞
0

Γ(ω)
[
e−iω(t1−t2)(1 + nB(ω)) + e+iω(t1−t2)nB(ω)

]
dω , (2.24)

where we have introduced the spectral coupling density

Γ(ω) = 2π
∑
k

|tk|2δ(ω − ωk) (2.25)
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and the Bose distribution nB(ω) = [eβω − 1]−1. For bosons, the frequencies of the reservoir
oscillators must be positive ωk > 0, which explains the boundaries of the integrals. However, by
analytically continuuing the spectral density as an odd function Γ(−ω) = −Γ(+ω) and using the
identity nB(−ω) = −[1 + nB(+ω)], we can write this as a single term

C(t1 − t2) =
1

2π

∫ +∞

−∞
Γ(ω)[1 + nB(ω)]e−iω(t1−t2)dω , (2.26)

from which we can – without calculation – identify the Fourier transform of the correlation function
γ(ω) =

∫
C(τ)e+iωτdτ = Γ(ω)[1 + nB(ω)]. Importantly, we note that it is positive.

In superoperator notation, one can also write the integro-differential equation (2.19) as

ρ̇S =

t∫
0

W(t− t′)ρS(t′)dt′ , (2.27)

where the kernel W(τ) assigns a much smaller weight to density matrices far in the past than
to the density matrix just an instant ago. In the most extreme case, we would approximate
Cαβ(t1, t2) ≈ Γαβδ(t1 − t2), but we will be cautious here and assume that only the density matrix
varies slower than the decay time of the bath correlation functions. Therefore, we replace in the
r.h.s. ρS(t′)→ ρS(t) (first Markov approximation), which yields in Eq. (2.14)

ρ̇S = −
t∫

0

TrB {[HI(t), [HI(t
′),ρS(t)⊗ ρ̄B]]} dt′ (2.28)

This equation is often called Born-Redfield equation. It is time-local and preserves trace and
Hermiticity, but still has time-dependent coefficients (also when transforming back from the inter-
action picture). We substitute τ = t− t′

ρ̇S = −
t∫

0

TrB {[HI(t), [HI(t− τ),ρS(t)⊗ ρ̄B]]} dτ (2.29)

= −
∑
αβ

t∫
0

{Cαβ(τ) [Aα(t),Aβ(t− τ)ρS(t)] + Cβα(−τ) [ρS(t)Aβ(t− τ),Aα(t)]} dτ

The problem that the r.h.s. still depends on time is removed by extending the integration bounds
to infinity (second Markov approximation) – by the same reasoning that the bath correlation
functions decay rapidly

ρ̇S = −
∞∫

0

TrB {[HI(t), [HI(t− τ),ρS(t)⊗ ρ̄B]]} dτ . (2.30)

This equation is called the Markovian master equation, which in the original Schrödinger
picture

ρ̇S = −i [HS, ρS(t)]−
∑
αβ

∞∫
0

Cαβ(τ)
[
Aα, e

−iHSτAβe
+iHSτρS(t)

]
dτ

−
∑
αβ

∞∫
0

Cβα(−τ)
[
ρS(t)e−iHSτAβe

+iHSτ , Aα
]
dτ (2.31)
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is time-local, preserves trace and Hermiticity, and has constant coefficients – best prerequisites for
treatment with established solution methods.

Exercise 15 (Properties of the Markovian Master Equation). Show that the Markovian Master
equation (2.31) preserves trace and Hermiticity of the density matrix.

In addition, it can be obtained easily from the coupling Hamiltonian: We have so far not used
that the coupling operators should be Hermitian, and the above form is therefore also valid for
non-Hermitian coupling operators.

There is just one problem left: In the general case, it is not of Lindblad form. Note that
there are specific cases where the Markovian master equation is of Lindblad form, but these rather
include simple limits. Though this is sometimes considered a rather cosmetic drawback, it may
lead to unphysical results such as negative probabilities.

Coming back to our example, we would get

ρ̇ = −i[Ωa†a, ρ]−
∫ ∞

0

C(+τ)[(a+ a†), e−iΩa†aτ (a+ a†)e+iΩa†aτρ]dτ

−
∫ ∞

0

C∗(+τ)
[
ρe−iΩa†aτ (a+ a†)e+iΩa†aτ , (a+ a†)

]
= −i[Ωa†a, ρ]−

{∫ ∞
0

C(+τ)[(a+ a†),
(
ae+iΩτ + a†e−iΩτ

)
ρ]dτ + h.c.

}
= −i[Ωa†a, ρ]−

{
Γ̄(+Ω)[(a+ a†), aρ] + Γ̄(−Ω)[(a+ a†), a†ρ] + h.c.

}
, (2.32)

where we have used the conjugation property (2.23) valid for Hermitian coupling operators and
defined the half-sided FT Γ̄(ω) =

∫∞
0
C(τ)e+iωτdτ (not to be confused with the spectral coupling

density).

Secular Approximation

To generally obtain a Lindblad type master equation, a further approximation is required. The
secular approximation involves an averaging in the interaction picture over fast oscillating terms
in time t. In order to identify the oscillating terms, it is necessary to at least formally calculate
the interaction picture dynamics of the system coupling operators.

We first make this explicit for our example. In the interaction picture, we have

ρ̇ = −
∫ ∞

0

C(τ)
[(
ae−iΩt + a†e+iΩt

)
,
(
ae−iΩ(t−τ) + a†e+iΩ(t−τ)

)
ρ
]

+ h.c.

≈ −
∫ ∞

0

C(τ)e−iΩτdτ [a, a†ρ]−
∫ ∞

0

C(τ)e+iΩτdτ [a†, aρ] + h.c.

= −Γ̄(−Ω)
(
aa†ρ− a†ρa

)
− Γ̄(+Ω)

(
a†aρ− aρa†

)
−Γ̄∗(−Ω)

(
ρaa† − a†ρa

)
− Γ̄∗(+Ω)

(
ρa†a− aρa†

)
. (2.33)

Here, we have neglected all terms that oscillate with e±2iΩt. Furthermore, we can split Γ̄(+Ω) =
1
2
γ + i

2
σ and Γ̄(−Ω) = 1

2
γ̄ + i

2
σ̄ into real and imaginary parts, which eventually yields

ρ̇ = γ

[
aρa† − 1

2

{
a†a,ρ

}]
+ γ̄

[
a†ρa− 1

2

{
aa†,ρ

}]
−i
[σ

2
a†a+

σ̄

2
aa†,ρ

]
. (2.34)
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This is a Lindblad form master equation when γ > 0 and γ̄ > 0. Indeed, we have already computed
the Fourier transform of the full correlation function, which we showed to be non-negative. The
real part of the half-sided Fourier transforms of the correlation function

Γ̄(ω) + Γ̄∗(ω) =

∫ ∞
0

C(τ)e+iωτdτ +

∫ ∞
0

C∗(τ)e−iωτdτ

=

∫ ∞
0

C(τ)e+iωτdτ +

∫ ∞
0

C(−τ)e−iωτdτ =

∫ ∞
0

C(τ)e+iωτdτ +

∫ 0

−∞
C(τ)e+iωτdτ

=

∫ +∞

−∞
C(τ)e+iωτdτ (2.35)

is given by the full Fourier transform of the correlation function, which we have shown to be
positive.

Apart from our example, we may also formulate this generally. We begin by writing Eq. (2.30)
in the interaction picture again explicitly – now using the Hermiticity of the coupling operators

ρ̇S = −
∞∫

0

∑
αβ

{Cαβ(τ) [Aα(t),Aβ(t− τ)ρS(t)] + h.c.} dτ

= +

∞∫
0

∑
αβ

Cαβ(τ)
∑
a,b,c,d

{
|a〉 〈a|Aβ(t− τ) |b〉 〈b|ρS(t) |d〉 〈d|Aα(t) |c〉 〈c|

− |d〉 〈d|Aα(t) |c〉 〈c| |a〉 〈a|Aβ(t− τ) |b〉 〈b|ρS(t)
}
dτ + h.c. , (2.36)

where we have introduced the system energy eigenbasis

HS |a〉 = Ea |a〉 . (2.37)

We can use this eigenbasis to make the time-dependence of the coupling operators in the interaction
picture explicit. To reduce the notational effort, we abbreviate Aabα = 〈a|Aα |b〉 and Lab = |a〉 〈b|.
Then, the density matrix becomes

ρ̇S = +

∞∫
0

∑
αβ

Cαβ(τ)
∑
a,b,c,d

{
e+i(Ea−Eb)(t−τ)e+i(Ed−Ec)tAabβ A

dc
α LabρS(t)L†cd

−e+i(Ea−Eb)(t−τ)e+i(Ed−Ec)tAabβ A
dc
α L
†
cdLabρS(t)

}
dτ + h.c. ,

=
∑
αβ

∑
a,b,c,d

∞∫
0

Cαβ(τ)e+i(Eb−Ea)τdτe−i(Eb−Ea−(Ed−Ec))tAabβ (Acdα )∗
{
LabρS(t)L†cd − L

†
cdLabρS(t)

}
+h.c. (2.38)

The secular approximation now involves neglecting all terms that are oscillatory in time t
(long-time average), i.e., we have

ρ̇S =
∑
αβ

∑
a,b,c,d

Γαβ(Eb − Ea)δEb−Ea,Ed−EcAabβ (Acdα )∗
{

+LabρS(t)L†cd − L
†
cdLabρS(t)

}
+
∑
αβ

∑
a,b,c,d

Γ∗αβ(Eb − Ea)δEb−Ea,Ed−Ec(Aabβ )∗Acdα

{
+LcdρS(t)L†ab − ρS(t)L†abLcd

}
,(2.39)
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where we have introduced the half-sided Fourier transform of the bath correlation functions

Γαβ(ω) =

∞∫
0

Cαβ(τ)e+iωτdτ . (2.40)

This equation preserves trace, Hermiticity, and positivity of the density matrix and hence all
desired properties, since it is of Lindblad form (which will be shown later). Unfortunately, it is
typically not so easy to obtain as it requires diagonalization of the system Hamiltonian first. By
using the transformations α ↔ β, a ↔ c, and b ↔ d in the second line and also using that the
δ-function is symmetric, we may rewrite the master equation as

ρ̇S =
∑
αβ

∑
a,b,c,d

[
Γαβ(Eb − Ea) + Γ∗βα(Eb − Ea)

]
δEb−Ea,Ed−EcA

ab
β (Acdα )∗LabρS(t)L†cd

−
∑
αβ

∑
a,b,c,d

Γαβ(Eb − Ea)δEb−Ea,Ed−EcAabβ (Acdα )∗L†cdLabρS(t)

−
∑
αβ

∑
a,b,c,d

Γ∗βα(Eb − Ea)δEb−Ea,Ed−EcAabβ (Acdα )∗ρS(t)L†cdLab . (2.41)

We split the matrix-valued function Γαβ(ω) into Hermitian and anti-Hermitian parts

Γαβ(ω) =
1

2
γαβ(ω) +

1

2
σαβ(ω) ,

Γ∗βα(ω) =
1

2
γαβ(ω)− 1

2
σαβ(ω) , (2.42)

with Hermitian γαβ(ω) = γ∗βα(ω) and anti-Hermitian σαβ(ω) = −σ∗βα(ω). These new functions can
be interpreted as full even and odd Fourier transforms of the bath correlation functions

γαβ(ω) = Γαβ(ω) + Γ∗βα(ω) =

+∞∫
−∞

Cαβ(τ)e+iωτdτ ,

σαβ(ω) = Γαβ(ω)− Γ∗βα(ω) =

+∞∫
−∞

Cαβ(τ)sgn(τ)e+iωτdτ . (2.43)

Exercise 16 (Odd Fourier Transform). Show that the odd Fourier transform σαβ(ω) may be ob-
tained from the even Fourier transform γαβ(ω) by a Cauchy principal value integral

σαβ(ω) =
i

π
P

+∞∫
−∞

γαβ(Ω)

ω − Ω
dΩ .
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In the master equation, these replacements lead to

ρ̇S =
∑
αβ

∑
a,b,c,d

γαβ(Eb − Ea)δEb−Ea,Ed−EcAabβ (Acdα )∗
[
LabρS(t)L†cd −

1

2

{
L†cdLab,ρS(t)

}]
−i
∑
αβ

∑
a,b,c,d

1

2i
σαβ(Eb − Ea)δEb−Ea,Ed−EcAabβ (Acdα )∗

[
L†cdLab,ρS(t)

]
=

∑
αβ

∑
a,b,c,d

γαβ(Eb − Ea)δEb−Ea,Ed−EcAabβ (Acdα )∗
[
LabρS(t)L†cd −

1

2

{
L†cdLab,ρS(t)

}]
(2.43)

−i

[∑
αβ

∑
a,b,c

1

2i
σαβ(Eb − Ec)δEb,EaAcbβ (Acaα )∗Lab,ρS(t)

]
.

To prove that we have a Lindblad form, it is easy to see first that the term in the commutator

HLS =
∑
αβ

∑
a,b,c

1

2i
σαβ(Eb − Ec)δEb,EaAcbβ (Acaα )∗ |a〉 〈b| (2.44)

is an effective Hamiltonian. This Hamiltonian is often called Lamb-shift Hamiltonian, since it
renormalizes the system Hamiltonian due to the interaction with the reservoir. Note that we have
[HS, HLS] = 0.

Exercise 17 (Lamb-shift). Show that HLS = H†LS and [HLS,HS] = 0.

To show the Lindblad-form of the non-unitary evolution, we identify the Lindblad jump oper-
ator Lα = |a〉 〈b| = L(a,b). For an N -dimensional system Hilbert space with N eigenvectors of HS

we would have N2 such jump operators, but the identity matrix 1 =
∑

a |a〉 〈a| has trivial action,
which can be used to eliminate one jump operator. It remains to be shown that the matrix

γ(ab),(cd) =
∑
αβ

γαβ(Eb − Ea)δEb−Ea,Ed−EcAabβ (Acdα )∗ (2.45)

is non-negative, i.e.,
∑

a,b,c,d x
∗
abγ(ab),(cd)xcd ≥ 0 for all xab. We first note that for Hermitian coupling

operators the Fourier transform matrix at fixed ω is positive (recall that Bα = B†α and [ρ̄B,HB] = 0)

Γ =
∑
αβ

x∗αγαβ(ω)xβ

=

+∞∫
−∞

dτe+iωτTr

{
eiHSτ

[∑
α

x∗αBα

]
e−iHSτ

[∑
β

xβBβ

]
ρ̄B

}

=

+∞∫
−∞

dτe+iωτ
∑
nm

e+i(En−Em)τ 〈n|B† |m〉 〈m|Bρ̄B |n〉

=
∑
nm

2πδ(ω + En − Em)|〈m|B |n〉|2ρn

≥ 0 . (2.46)
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Now, we replace the Kronecker symbol in the dampening coefficients by two via the introduction
of an auxiliary summation

Γ̃ =
∑
abcd

x∗abγ(ab),(cd)xcd

=
∑
ω

∑
αβ

∑
abcd

γαβ(ω)δEb−Ea,ωδEd−Ec,ωx
∗
ab 〈a|Aβ |b〉xcd 〈c|Aα |d〉

∗

=
∑
ω

∑
αβ

[∑
cd

xcd 〈c|Aα |d〉∗ δEd−Ec,ω

]
γαβ(ω)

[∑
ab

x∗ab 〈a|Aβ |b〉 δEb−Ea,ω

]
=

∑
ω

∑
αβ

y∗α(ω)γαβ(ω)yβ(ω) ≥ 0 . (2.47)

Transforming Eq. (2.43) back to the Schrödinger picture (note that the δ-functions prohibit
the occurrence of oscillatory factors), we finally obtain the Born-Markov-secular master equation.

Def. 7 (BMS master equation). In the weak coupling limit, an interaction Hamiltonian of the form
HI =

∑
αAα ⊗ Bα with Hermitian coupling operators (Aα = A†α and Bα = B†α) and [HB, ρ̄B] = 0

and Tr {Bαρ̄B} = 0 leads in the system energy eigenbasis HS |a〉 = Ea |a〉 to the Lindblad-form
master equation

ρ̇S = −i

[
HS +

∑
ab

σab |a〉 〈b| , ρS(t)

]

+
∑
a,b,c,d

γab,cd

[
|a〉 〈b|ρS(t) (|c〉 〈d|)† − 1

2

{
(|c〉 〈d|)† |a〉 〈b| ,ρS(t)

}]
,

γab,cd =
∑
αβ

γαβ(Eb − Ea)δEb−Ea,Ed−Ec 〈a|Aβ |b〉 〈c|Aα |d〉
∗ , (2.48)

where the Lamb-shift Hamiltonian HLS =
∑

ab σab |a〉 〈b| matrix elements read

σab =
∑
αβ

∑
c

1

2i
σαβ(Eb − Ec)δEb,Ea 〈c|Aβ |b〉 〈c|Aα |a〉

∗ (2.49)

and the constants are given by even and odd Fourier transforms

γαβ(ω) =

+∞∫
−∞

Cαβ(τ)e+iωτdτ ,

σαβ(ω) =

+∞∫
−∞

Cαβ(τ)sgn(τ)e+iωτdτ =
i

π
P

+∞∫
−∞

γαβ(ω′)

ω − ω′
dω′ (2.50)

of the bath correlation functions

Cαβ(τ) = Tr
{
e+iHBτBαe

−iHBτBβ ρ̄B

}
. (2.51)
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The above definition may serve as a recipe to derive a Lindblad type master equation in the
weak-coupling limit. It is expected to yield good results in the weak coupling and Markovian limit
(continuous and nearly flat bath spectral density) and when [ρ̄B,HB] = 0. It requires to rewrite
the coupling operators in Hermitian form, the calculation of the bath correlation function Fourier
transforms, and the diagonalization of the system Hamiltonian.

In the case that the spectrum of the system Hamiltonian is non-degenerate, we have a further
simplification, since the δ-functions simplify further, e.g. δEb,Ea → δab. By taking matrix elements
of Eq. (2.48) in the energy eigenbasis ρaa = 〈a| ρS |a〉, we obtain an effective rate equation for the
populations only

ρ̇aa = +
∑
b

γab,abρbb −

[∑
b

γba,ba

]
ρaa , (2.52)

i.e., the coherences decouple from the evolution of the populations. The transition rates from state
b to state a reduce in this case to

γab,ab =
∑
αβ

γαβ(Eb − Ea) 〈a|Aβ |b〉 〈a|Aα |b〉∗ ≥ 0 , (2.53)

which – after inserting all definitions – condenses basically to Fermis Golden Rule. Therefore,
with such a rate equation description, open quantum systems can be described with the same
complexity as closed quantum systems, since only N dynamical variables have to be evolved.

The BMS master equation is problematic for near-degenerate systems: For exact degeneracies,
couplings to coherences between energetically degenerate states have to be kept, but for lifted
degeneracies, they are neglected. This discontinuous behaviour may map to observables and poses
the question which of the two resulting equations is correct, in particular for near degeneracies.
Despite such problems, the BMS master equation is heavily used since it has many favorable
properties. For example, we will see later that if coupled to a single thermal bath, the quantum
system generally relaxes to the Gibbs equilibrium, i.e., we obtain simply equilibration of the system
temperature with the temperature of the bath.

2.2.2 Equilibrium Thermodynamics

The BMS limit has beyond its relatively compact Lindblad form further appealing properties in
the case of a bath that is in thermal equilibrium

ρ̄B =
e−βHB

Tr {e−βHB}
(2.54)

with inverse temperature β. These root in further analytic properties of the bath correlation
functions such as the Kubo-Martin-Schwinger (KMS) condition

Cαβ(τ) = Cβα(−τ − iβ) . (2.55)

Exercise 18 (KMS condition). Show the validity of the KMS condition for a thermal bath with

ρ̄B = e−βHB

Tr{e−βHB} .
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For the Fourier transform, this shift property implies

γαβ(−ω) =

+∞∫
−∞

Cαβ(τ)e−iωτdτ =

+∞∫
−∞

Cβα(−τ − iβ)e−iωτdτ

=

−∞−iβ∫
+∞−iβ

Cβα(τ ′)e+iω(τ ′+iβ)(−dτ)′ =

+∞−iβ∫
−∞−iβ

Cβα(τ ′)e+iωτ ′dτ ′e−βω

=

+∞∫
−∞

Cβα(τ ′)e+iωτ ′dτ ′e−βω = γβα(+ω)e−βω , (2.56)

where in the last line we have used that the bath correlation functions are analytic in τ in the com-
plex plane and vanish at infinity, such that we may safely deform the integration contour. Finally,
the KMS condition can thereby be used to prove that for a reservoir with inverse temperature β,
the density matrix

ρ̄S =
e−βHS

Tr {e−βHS}
(2.57)

is one stationary state of the BMS master equation (and the τ →∞ limit of the CG appraoch).

Exercise 19 (Thermalization). Show that ρ̄S = e−βHS

Tr{e−βHS} is a stationary state of the BMS master

equation, when γαβ(−ω) = γβα(+ω)e−βω.

Things become a bit more complicated when the reservoir is in the grand-canonical equilibrium
state

ρ̄B =
e−β(HB−µNB)

Tr {e−β(HB−µNB)}
, (2.58)

with the chemical potential µ and the particle number operator NB of the bath. Then, the normal
KMS condition is not fulfilled anymore by the correlation function. Chemical potentials become
relevant for models discussing particle transport. To talk about transport, it is natural to assume
that the total particle number N = NS + NB is a conserved quantity [HS, NS] = [HB, NB] =
[HI, NS +NB] = 0. In this case one can show that [6] the KMS relation is generalized according to∑

ᾱ

AᾱCαᾱ(τ) =
∑
ᾱ

e+βµNSAᾱe
−βµNSCᾱα(−τ − iβ) . (2.59)

This modifies the detailed-balance relation of the master equation coefficients to

γab,cd
γdc,ba

= eβ[(Eb−Ea)−µ(Nb−Na)] . (2.60)

In the end, these modified relations can be used to show that a stationary state of the BMS master
equation is given by

ρ̄S =
e−β(HS−µNS)

Tr {e−β(HS−µNS)}
, (2.61)

i.e., both temperature β and chemical potential µ must equilibrate with the reservoir.
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Exercise 20 (Equilibration). Show that Eqns. (2.59) and (2.60) hold. It will be useful to use
conservation of the total particle number and Eq. (2.50).

Finally, we consider the evolution of the system entropy. We first recall an early result by
Lindblad [7] stating that completely-positive trace-preserving maps (Kraus maps) are contractive.
To this end, we first start with some definitions. First, we define the von-Neumann entropy of the
system

Def. 8 (von-Neumann entropy). The von-Neumann entropy of a system described by density
matrix ρ is defined as

S(ρ) = −Tr {ρ ln ρ} . (2.62)

We have 0 ≤ S(ρ) ≤ lnN and for an N ×N density matrix ρ.

The von-Neumann entropy can serve as an entanglement measure for states that are globally
pure. It is sometimes used synonymously with the Shannon entropy SSh = −

∑
i Pi lnPi but

is strictly speaking not the same. They only coincide in the basis where the density matrix is
diagonal. The Shannon entropy is formally basis-dependent whereas the von-Neumann entropy is
not.

Exercise 21 (von-Neumann entropy). Compute the von-Neumann entropy of the reduced density

matrix ρ1 of ρ
a/b
12 =

∣∣Ψa/b
〉 〈

Ψa/b
∣∣ for

|Ψa〉 =
1√
2

[|01〉+ |10〉] ,
∣∣Ψb
〉

=
1

2
[|01〉+ |00〉+ |10〉+ |11〉] . (2.63)

Furthermore, we introduce a pseudo-distance between density matrices

Def. 9 (Quantum Relative Entropy). The quantum relative entropy between two density matrices
ρ and σ is defined as

D(ρ||σ) = Tr {ρ (ln ρ− lnσ)} . (2.64)

Obviously, the relative entropy vanishes when the two density matrices are equal D(ρ||ρ) = 0.
Furthermore, the relative entropy can be shown to be non-negative D(ρ||σ) ≥ 0. It is also not
a real distance, since it is not symmetric. Lindblads result states that Kraus maps Kρ = ρ′ are
contractive, i.e., that

D(Kρ||Kσ) ≤ D(ρ||σ) . (2.65)
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This can be exploited for Lindblad generators in the following way: Taking the Kraus mapK = eL∆t

and choosing the distance to the steady state σ = ρ̄, which fulfils Lρ̄ = 0, we can expand the
inequality

D (ρ||ρ̄)−D
(
eL∆tρ||ρ̄

)
≥ 0 (2.66)

for small ∆t to obtain Spohn’s inequality.

Def. 10 (Spohn’s inequality [8]). Let L be a Lindblad-type generator and ρ̄ its stationary state
fulfilling Lρ̄ = 0. Then the physical evolution obeys at all times the inequality

−Tr {[Lρ][ln ρ− ln ρ̄]} ≥ 0 . (2.67)

What is the meaning of this inequality, apart from its formal meaning as some contraction
rate? Clearly, the first term is just the time derivative of the von-Neumann entropy

Ṡ(ρ) = −Tr {ρ̇ ln ρ} − Tr

{
ρ
d

dt
ln ρ

}
= −Tr {(Lρ) ln ρ} . (2.68)

Here, we have used that the density matrix is always diagonalizable ρ = UρDU
†, leading to

Tr

{
ρ
d

dt
ln ρ

}
= Tr

{
UρDU

†U̇(ln ρD)U † + UρDU
†U(ln ρD)U̇ † + UρDU

†Uρ−1
D ρ̇DU

†
}

= Tr
{
ρDU

†U̇(ln ρD) + ρD(ln ρD)U̇ †U + ρ̇D

}
= Tr

{
ρD(ln ρD)

(
U̇ †U + U †U̇

)
+ ρ̇D

}
= 0 , (2.69)

where we have used that U †U = 1, correspondingly U̇ †U+U †U̇ = 0, and Tr {ρ̇D} = 0 (conservation
of probabilities). The interpretation of the second term is different. When the stationary state
of the system is a thermal Gibbs state ρ̄ = e−β(HS−µNS)/ZS with inverse temperature β, chemical
potential µ, system Hamiltonian HS, and system particle number operator NS, we would get

Tr {ρ(ln ρ̄)} = −βTr {(Lρ)(HS − µNS)} − lnZSTr {Lρ} = −βTr {(HS − µNS)Lρ} = −βQ̇ ,(2.70)

where Q̇ denotes the heat current entering the system from the reservoir. This terminology also
implies that it counts positive when entering the system. Therefore, Spohn’s inequality can be
written as

Ṡ − βQ̇ ≥ 0 , (2.71)

which bounds the rate at which heat enters the system by the change of its entropy. The arguments
we used for the system entropy also hold for the reservoir, such that

Ṡres = −Tr {ρ̇ ln ρ} . (2.72)

Our simple master equation approach does not allow us to track the reservoir density matrix, such
that of course the change of it is formally zero. However, if it were allowed to change, we would
get by inserting at a specific time a thermal state ρ = e−β(HB−µNB)/ZB,

Ṡres = βTr {ρ̇(HB − µNB)}+ lnZBTr {ρ̇} = βTr {ρ̇(HB − µNB)} = βQ̇res , (2.73)
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where in the last equality we have simply inserted the definition of the heat entering the reservoir.
Identifying the change of the reservoir energy and particle number with the corresponding negative
changes in the system (this neglects effects of the interaction) we would get −βQ̇ = Ṡres, and
eventually Spohn’s inequality can be read as

Ṡsys + Ṡres ≥ 0. (2.74)

This is the second law of thermodynamics formulated for both system and reservoir (neglecting
higher-order interaction effects)! Clearly, the system entropy may decrease (e.g. when a system
relaxes down to its ground state), but at the same time, entropy is generated in the reservoirs. Since
our master equation treatment is so far incomplete, we can up to now not track this contribution.

2.2.3 Coarse-Graining

Perturbation Theory in the Interaction Picture

Although the BMS approximation respects of course the exact initial condition, we have in the
derivation made several long-term approximations. For example, the Markov approximation im-
plied that we consider timescales much larger than the decay time of the bath correlation functions.
Similarly, the secular approximation implied timescales larger than the inverse minimal splitting
of the system energy eigenvalues. Therefore, we can only expect the solution originating from the
BMS master equation to be an asymptotically valid long-term approximation.

Coarse-graining in contrast provides a possibility to obtain valid short-time approximations of
the density matrix with a generator that is of Lindblad form. We start with the von-Neumann
equation in the interaction picture (2.8). For factorizing initial density matrices, it is formally
solved by U(t)ρ0

S ⊗ ρ̄BU
†(t), where the time evolution operator

U (t) = τ̂ exp

−i

t∫
0

HI(t
′)dt′

 (2.75)

obeys the evolution equation

U̇ = −iHI(t)U(t) , (2.76)

which defines the time-ordering operator τ̂ . Formally integrating this equation with the evident
initial condition U(0) = 1 yields

U (t) = 1− i

t∫
0

HI(t
′)U(t′)dt′

= 1− i

t∫
0

HI(t
′)dt′ −

t∫
0

dt′HI(t
′)

 t′∫
0

dt′′HI(t
′′)U (t′′)


=

∞∑
n=0

(−i)n
t∫

0

dt1

t1∫
0

dt2 . . .

tn−1∫
0

dtnHI(t1) . . .HI(tn) . (2.77)
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In particular, we can define the truncated operator to second order

U 2(t) = 1− i

t∫
0

HI(t1)dt1 −
t∫

0

dt1dt2HI(t1)HI(t2)Θ(t1 − t2) , (2.78)

where we have introduced the Heaviside function to account for the ordering of the integral bounds.
For the Hermitian conjugate operator we obtain

U †2(t) = 1 + i

t∫
0

HI(t1)dt1 −
t∫

0

dt1dt2HI(t1)HI(t2)Θ(t2 − t1) . (2.79)

To keep the discussion at a moderate level, we assume Tr {HIρ̄B} = 0 from the beginning. The
exact solution ρS(t) = TrB

{
U(t)ρ0

S ⊗ ρ̄BU
†(t)
}

is then approximated by

ρ
(2)
S (t) ≈ ρ0

S + TrB


t∫

0

dt1

t∫
0

dt2HI(t1)ρ0
S ⊗ ρ̄BHI(t2)

 (2.80)

−
t∫

0

dt1dt2TrB

{
Θ(t1 − t2)HI(t1)HI(t2)ρ0

S ⊗ ρ̄B + Θ(t2 − t1)ρ0
S ⊗ ρ̄BHI(t1)HI(t2)

}
.

Again, we introduce the bath correlation functions with two time arguments as in Eq. (2.20)

Cαβ(t1, t2) = Tr {Bα(t1)Bβ(t2)ρ̄B} , (2.81)

such that we have

ρ
(2)
S (t) = ρ0

S +
∑
αβ

t∫
0

dt1

t∫
0

dt2Cαβ(t1, t2)
[
Aβ(t2)ρ0

SAα(t1)

−Θ(t1 − t2)Aα(t1)Aβ(t2)ρ0
S −Θ(t2 − t1)ρ0

SAα(t1)Aβ(t2)
]
. (2.82)

Typically, in the interaction picture, the system coupling operators Aα(t) will simply carry some
oscillatory time dependence. In the worst case, they may remain time-independent. Therefore,
the decay of the correlation function is essential for the convergence of the above integrals. In this
way, Markovian approximation and weak-coupling assumptions are related. In particular, we note
that the truncated density matrix may remain finite even when t → ∞, rendering the expansion
convergent also in the long-term limit.

Coarse-Graining

The basic idea of coarse-graining is to match this approximate expression for the system density
matrix at time t = τ with one resulting from a Markovian generator

ρS
CG(τ) = eL

CG
τ ·τρ0

S ≈ ρ0
S + τLCG

τ ρ0
S , (2.83)
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such that we can infer the action of the generator on an arbitrary density matrix

LCG
τ ρS =

1

τ

∑
αβ

τ∫
0

dt1

τ∫
0

dt2Cαβ(t1, t2)
[
Aβ(t2)ρSAα(t1)

−Θ(t1 − t2)Aα(t1)Aβ(t2)ρS −Θ(t2 − t1)ρSAα(t1)Aβ(t2)
]

= −i

 1

2iτ

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

Cαβ(t1, t2)sgn(t1 − t2)Aα(t1)Aβ(t2),ρS


+

1

τ

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

Cαβ(t1, t2)

[
Aβ(t2)ρSAα(t1)− 1

2
{Aα(t1)Aβ(t2),ρS}

]
,(2.84)

where we have inserted Θ(x) = 1
2

[1 + sgn(x)] – in order to separate unitary and dissipative effects
of the system-reservoir interaction.

Def. 11 (CG Master Equation). In the weak coupling limit, an interaction Hamiltonian of the
form HI =

∑
αAα ⊗Bα leads to the Lindblad-form master equation in the interaction picture

ρ̇S = −i

 1

2iτ

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

Cαβ(t1, t2)sgn(t1 − t2)Aα(t1)Aβ(t2),ρS


+

1

τ

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

Cαβ(t1, t2)

[
Aβ(t2)ρSAα(t1)− 1

2
{Aα(t1)Aβ(t2),ρS}

]
,

where the bath correlation functions are given by

Cαβ(tt, t2) = Tr
{
e+iHBt1Bαe

−iHBt1e+iHBt2Bβe
−iHBt2 ρ̄B

}
. (2.85)

We have not used Hermiticity of the coupling operators nor that the bath correlation functions
do typically only depend on a single argument. However, if the coupling operators were chosen
Hermitian, it is easy to show the Lindblad form. For completeness, we also note there that
a Lindblad form is also obtained for non-Hermitian couplings. Obtaining the master equation
requires the calculation of bath correlation functions and the evolution of the coupling operators
in the interaction picture.

Exercise 22 (Lindblad form). By assuming Hermitian coupling operators Aα = A†α, show that the
CG master equation is of Lindblad form for all coarse-graining times τ .

Thus, we have found that the best approximation to the exact solution can be written as
ρ(t) = eL

CG
t tρ0. Unfortunately, this is not the solution to a (single) master equation only. By

acting with a time-derivative, we can see that ρ̇ 6= LCG
t ρ(t). Rather, if interested in the solution

at a specific time t, we would have to derive the Liouville superoperator and then exponentiate it.
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Correspondence to the quantum-optical master equation

Let us make once more the time-dependence of the coupling operators explicit, which is most
conveniently done in the system energy eigenbasis. Now, we also assume that the bath correlation
functions only depend on the difference of their time arguments Cαβ(t1, t2) = Cαβ(t1 − t2), such
that we may use the Fourier transform definitions in Eq. (2.43) to obtain

ρ̇S = −i

 1

2iτ

∑
abc

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

Cαβ(t1 − t2)sgn(t1 − t2) |a〉 〈a|Aα(t1) |c〉 〈c|Aβ(t2) |b〉 〈b| ,ρS


+

1

τ

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

∑
abcd

Cαβ(t1 − t2)
[
|a〉 〈a|Aβ(t2) |b〉 〈b|ρS |d〉 〈d|Aα(t1) |c〉 〈c|

−1

2
{|d〉 〈d|Aα(t1) |c〉 〈c| · |a〉 〈a|Aβ(t2) |b〉 〈b| ,ρS}

]
= −i

1

4iπτ

∫
dω
∑
abc

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

σαβ(ω)e−iω(t1−t2)e+i(Ea−Ec)t1e+i(Ec−Eb)t2Acbβ A
ac
α [Lab,ρS]

+
1

2πτ

∫
dω

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

∑
abcd

γαβ(ω)e−iω(t1−t2)e+i(Ea−Eb)t2e+i(Ed−Ec)t1Aabβ A
dc
α ×

×
[
LabρSL

†
cd −

1

2

{
L†cdLab,ρS

}]
. (2.86)

We perform the temporal integrations by invoking

τ∫
0

eiαktkdtk = τeiαkτ/2sinc
[αkτ

2

]
(2.87)

with sinc(x) = sin(x)/x to obtain

ρ̇S = −i
τ

4iπ

∫
dω
∑
abc

∑
αβ

σαβ(ω)eiτ(Ea−Eb)/2sinc
[τ

2
(Ea − Ec − ω)

]
sinc

[τ
2

(Ec − Eb + ω)
]
×

×〈c|Aβ |b〉 〈c|A†α |a〉
∗ [|a〉 〈b| ,ρS]

+
τ

2π

∫
dω
∑
αβ

∑
abcd

γαβ(ω)eiτ(Ea−Eb+Ed−Ec)/2sinc
[τ

2
(Ed − Ec − ω)

]
sinc

[τ
2

(ω + Ea − Eb)
]
×

×〈a|Aβ |b〉 〈c|A†α |d〉
∗
[
|a〉 〈b|ρS (|c〉 〈d|)† − 1

2

{
(|c〉 〈d|)† |a〉 〈b| ,ρS

}]
. (2.88)

Therefore, we have the same structure as before, but now with coarse-graining time dependent
dampening coefficients

ρ̇S = −i

[∑
ab

στab |a〉 〈b| ,ρS

]

+
∑
abcd

γτab,cd

[
|a〉 〈b|ρS (|c〉 〈d|)† − 1

2

{
(|c〉 〈d|)† |a〉 〈b| ,ρS

}]
(2.89)
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with the coefficients

στab =
1

2i

∫
dω
∑
c

eiτ(Ea−Eb)/2 τ

2π
sinc

[τ
2

(Ea − Ec − ω)
]

sinc
[τ

2
(Eb − Ec − ω)

]
×

×

[∑
αβ

σαβ(ω) 〈c|Aβ |b〉 〈c|A†α |a〉
∗

]
,

γτab,cd =

∫
dωeiτ(Ea−Eb+Ed−Ec)/2 τ

2π
sinc

[τ
2

(Ed − Ec − ω)
]

sinc
[τ

2
(Eb − Ea − ω)

]
×

×

[∑
αβ

γαβ(ω) 〈a|Aβ |b〉 〈c|A†α |d〉
∗

]
. (2.90)

Finally, we note that in the limit of large coarse-graining times τ → ∞ and assuming Hermitian
coupling operators Aα = A†α, these dampening coefficients converge to the ones in definition 7, i.e.,
formally

lim
τ→∞

στab = σab ,

lim
τ→∞

γτab,cd = γab,cd . (2.91)

Exercise 23 (CG-BMS correspondence). Show for Hermitian coupling operators that when τ →
∞, CG and BMS approximation are equivalent. You may use the identity

lim
τ→∞

τsinc
[τ

2
(Ωa − ω)

]
sinc

[τ
2

(Ωb − ω)
]

= 2πδΩa,Ωb
δ(Ωa − ω) .

This shows that coarse-graining provides an alternative derivation of the quantum-optical mas-
ter equation, replacing three subsequent approximations (Born-, Markov- and secular) by just one
(perturbative expansion in the interaction).

2.2.4 Example: Spin-Boson Model

The spin-boson model describes the interaction of a spin with a bosonic environment

HS = Ωσz + Tσx , HB =
∑
k

ωkb
†
kbk ,

HI = σz ⊗
∑
k

[
hkbk + h∗kb

†
k

]
, (2.91)

where Ω and T denote parameters of the system Hamiltonian, σα the Pauli matrices, and b† creates
a boson with frequency ωk in the reservoir. The model can be motivated by a variety of setups,
e.g. a charge qubit (singly-charged double quantum dot) that is coupled to vibrations. We note
the a priori Hermitian coupling operators

A1 = σz , B1 =
∑
k

[
hkbk + h∗kb

†
k

]
. (2.92)
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For completeness, we state these operators in the interaction picture

A1(t) =
2ΩT

T 2 + Ω2
sin2

[
2t
√
T 2 + Ω2

]
σx +

T√
T 2 + Ω2

sin
[
2t
√
T 2 + Ω2

]
σy

+

(
Ω2

T 2 + Ω2
+

T 2

T 2 + Ω2

)
cos
[
2t
√
T 2 + Ω2

]
σz

B1(t) =
∑
k

[
hkbke

−iωkt + h∗kb
†
ke

+iωkt
]
. (2.93)

Exact solution of the pure-dephasing limit

The limit when T = 0 can be solved exactly. Then, we can apply the so-called polaron or Lang-
Firsov transformation to the whole Hamiltonian

U = exp

{
−σz

∑
k

(
hk
ωk
bk −

h∗k
ωk
b†k

)}
. (2.94)

We note the following relations

UσzU † = σz ,

Uσ±U † = e
±2
∑
k

(
h∗k
ωk
b†k−

hk
ωk
bk

)
σ± ,

UbkU
† = bk −

h∗k
ωk
σz . (2.95)

Exercise 24 (Polaron transform). Find a way to derive these relations.

From this we conclude that in the Schrödinger picture (recall that T = 0)

UHU † = Ωσz + σz
∑
k

(
hkbk + h∗kb

†
k − 2

|hk|2

ωk
σz

)
+
∑
k

ωk

(
b†k −

hk
ωk
σz
)(

bk −
h∗k
ωk
σz
)

= Ωσz −
∑
k

|hk|2

ωk
+
∑
k

ωkb
†
kbk . (2.96)

This means that in this frame, the evolution of spin and boson are completely decoupled. Conse-
quently, we can e.g. compute the expectation value of σα via

〈σα〉 = Tr
{
e+iHtσαe−iHtρ0

}
= Tr

{
U †Ue+iHtU †UσαU †Ue−iHtU †Uρ0

}
= Tr

{
U †e+iUHU†tUσαU †e−iUHU†tUρ0

}
= Tr

{
U †e+iΩtσze+i

∑
k ωktb

†
kbkUσαU †e−i

∑
k ωktb

†
kbke−iΩtσzUρ0

}
. (2.97)
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For α = + we further calculate〈
σ+
〉

= Tr

{
U †e+i

∑
k ωktb

†
kbke

2
∑
k

(
h∗k
ωk
b†k−

hk
ωk
bk

)
e−i

∑
k ωktb

†
kbke+iΩtσzσ+e−iΩtσzUρ0

}

= e+2iΩtTr

{
U †e

2
∑
k

(
h∗k
ωk
b†ke

+iωkt− hk
ωk
bke
−iωkt

)
UU †σ+Uρ0

}

= e+2iΩtTr

{
e

2
∑
k

(
h∗k
ωk

(b†k+
hk
ωk
σz)e+iωkt− hk

ωk
(bk+

h∗k
ωk
σz)e−iωkt

)
e
−2
∑
k

(
h∗k
ωk
b†k−

hk
ωk
bk

)
σ+ρ0

}

= e+2iΩtTr

{
e

4i
∑
k
|hk|2
ω2
k

sin(ωkt)σ
z

σ+ρ0
S

}
Tr

{
e

2
∑
k

(
h∗k
ωk
b†ke

+iωkt− hk
ωk
bke
−iωkt

)
e
−2
∑
k

(
h∗k
ωk
b†k−

hk
ωk
bk

)
ρ̄B

}

= e+2iΩtTr

{
e

4i
∑
k
|hk|2
ω2
k

sin(ωkt)σ
z

σ+ρ0
S

}
B(t) , (2.98)

where we have used initial factorization ρ0 = ρ0
S ⊗ ρ̄B. Using that eXeY = eX+Y+[X,Y ]/2 when

[X, [X, Y ]] = [Y, [X, Y ]] = 0, we can further evaluate the decoherence factor resulting from the
reservoir

B(t) = Tr

{
exp

{
2
∑
k

[
h∗k
ωk
b†k
(
e+iωkt − 1

)
− hk
ωk
bk
(
e−iωkt − 1

)]}
ρ̄B

}
e
−4i

∑
k
|hk|2
ω2
k

sin(ωkt)

= Tr

{
exp

{
+2
∑
k

h∗k
ωk
b†k
(
e+iωkt − 1

)}
exp

{
−2
∑
k

hk
ωk
bk
(
e−iωkt − 1

)}
ρ̄B

}
×

×e
−4
∑
k
|hk|2
ω2
k

[1−cos(ωkt)+i sin(ωkt)]
. (2.99)

Now, we can use that

Tr

{
e+αkb

†
ke−α

∗
kbk
e−βωkb

†
kbk

Zk

}
=

∞∑
n,m=0

(+αk)
n(−α∗k)m

n!m!
Tr

{
(b†k)

nbmk
e−βωkb

†
kbk

Zk

}

=
∞∑
q=0

q∑
n=0

(−|αk|2)n

(n!)2
(1− e−βωk)e−βωkq q!

(q − n)!

= e−|αk|
2nB(ωk) (2.100)

with |αk|2 = 8|hk|2/ω2
k[1− cos(ωkt)]. This then implies for the decoherence factor

B(t) = exp

{
− 2

π

∫ ∞
0

Γ(ω)

ω2
[1− cos(ωt)][1 + 2nB(ω)]dω

}
exp

{
−2i

π

∫ ∞
0

Γ(ω)

ω2
sin(ωt)dω

}
.(2.101)

Eventually, it follows that the populations remain unaffected and that in the interaction picture
the coherences decay according to [2]

ρ01(t) = exp

{
−8
∑
k

|hk|2
sin2(ωkt/2)

ω2
k

coth

(
βωk

2

)}
ρ0

01

= exp

{
− 4

π

∫ ∞
0

Γ(ω)
sin2(ωt/2)

ω2
coth

(
βω

2

)}
ρ0

01 . (2.102)
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BMS master equation

We first diagonalize the system part of the Hamiltonian to obtain the eigenbasis HS |n〉 = En |n〉,
where

E± = ±
√

Ω2 + T 2 , |±〉 =
1√

T 2 +
(
Ω±
√

Ω2 + T 2
)2

[(
Ω±
√

Ω2 + T 2
)
|0〉+ T |1〉

]
,(2.103)

where |0/1〉 denote the eigenvectors of the σz Pauli matrix with σz |i〉 = (−1)i |i〉.

Exercise 25 (Eigenbasis). Confirm the validity of Eq. (2.103).

Second, we calculate the correlation function (in this case, there is just one). Transforming
everything in the interaction picture we see that the annihilation operators just pick up time-
dependent phases

C(τ) = Tr

{∑
k

[
hkbke

−iωkτ + h∗kb
†
ke

+iωkτ
]∑

q

[
hqbq + h∗qb

†
q

]
ρ̄B

}
=

∑
k

|hk|2
[
e−iωkτ (1 + nB(ωk)) + e+iωkτnB(ωk)

]
=

1

2π

∫
dωΓ(ω)

[
e−iωτ (1 + nB(ω)) + e+iωτnB(ω)

]
, (2.104)

where we have introduced the spectral coupling density Γ(ω) = 2π
∑

k |hk|
2δ(ω−ωk) and the Bose

distribution

nB(ω) =
1

eβ(ω−µ) − 1
. (2.105)

Exercise 26 (Bose distribution). Confirm the validity of Eq. (2.105), i.e., show that

δkqnB(ωk) = Tr

{
b†kbq

e−β(HB−µNB)

Z

}
, (2.106)

where HB =
∑

k ωkb
†
kbk, NB =

∑
k b
†
kbk, and Z = Tr

{
e−β(HB−µNB)

}
.

We can directly read off the even Fourier transform of the correlation function

γ(ω) = Γ(+ω)Θ(+ω)[1 + nB(+ω)] + Γ(−ω)Θ(−ω)nB(−ω) . (2.107)

We note that for bosons we necessarily have Γ(ω < 0) = 0, since all oscillator frequencies in the
reservoir must be positive. We compute some relevant dampening coefficients from Def. 7

γ−+,−+ = Γ(+2
√

Ω2 + T 2)[1 + nB(+2
√

Ω2 + T 2)]|〈−|σz |+〉|2 ,
γ+−,+− = Γ(+2

√
Ω2 + T 2)nB(+2

√
Ω2 + T 2)|〈−|σz |+〉|2 ,

γ−−,++ = γ(0) 〈−|σz |−〉 〈+|σz |+〉 = γ++,−− . (2.108)
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We have to say that finite γ(0) = limω→0 Γ(ω)[1 + nB(ω)] requires that for small frequencies the
spectral coupling density should grow only mildly.

The explicit calculation of the non-vanishing Lamb-shift terms σ−− and σ++ is possible but
more involved. Fortunately, it can be omitted for many applications. Since the system Hamiltonian
is non-degenerate, the populations evolve according to

ρ̇−− = +γ−+,−+ρ++ − γ+−,+−ρ−− , ρ̇++ = +γ+−,+−ρ−− − γ−+,−+ρ++ , (2.109)

which is independent from the coherences

ρ̇−+ = −i (E− − E+ + σ−− − σ++) ρ−+ +

[
γ−−,++ −

γ−+,−+ + γ+−,+−

2

]
ρ−+ ≡ ηρ−+ . (2.110)

Altogether, we can write this as a superoperator

L


ρ−−
ρ++

ρ−+

ρ+−

 =


−γ+−,+− +γ−+,−+ 0 0
+γ+−,+− −γ−+,−+ 0 0

0 0 η 0
0 0 0 η∗




ρ−−
ρ++

ρ−+

ρ+−

 , (2.111)

which has the block structure in the system energy eigenbasis. Since the Lamb-shift terms σii are
purely imaginary, the quantities at hand already allow us to deduce that the coherences will decay

since <η ≤ 0. More precisely, we have |ρ−+|2 = e−(−2γ−−,+++γ−+,−++γ+−,+−)t
∣∣ρ0
−+

∣∣2, which shows
that the decoherence rate increases with temperature (finite nB) but can also at zero temperature
not be suppressed below a minimum value. A special (exactly solvable) case arises when the system
parameter T vanishes: Then, the interaction commutes with the system Hamiltonian leaving the
energy of the system invariant. Consistently, the eigenbasis is in this case that of σz and the
coefficients γ−+,−+ and γ+−,+− do vanish. In contrast, the coefficient γ−−,++ → −γ(0) may remain
finite. Such models are called pure dephasing models (since only their coherences decay). However,
for finite T the steady state of the master equation is given by (we assume here µ = 0)

ρ̄++

ρ̄−−
=
γ+−,+−

γ−+,−+

=
nB(+2

√
Ω2 + T 2)

1 + nB(+2
√

Ω2 + T 2)
= e−2β

√
Ω2+T 2

, (2.112)

i.e., the stationary state is given by the thermalized one.

Coarse-Graining master equation

In a completely analogous way, we can set up the coarse-graining master equation. However, we
also see that computation of the involved integrals becomes a bit tedious. Therefore, we constrain
ourselves here only to the trivial pure-dephasing limit T = 0. Then, the system coupling operator
becomes time-independent e+iHStσze−iHSt = σz, and with using that σzσz = 1, such that the
Lamb-shift vanishes, the coarse-graining master equation in the interaction picture from Def. 11
reads

ρ̇ =
1

τ

∫ τ

0

dt1

∫ τ

0

dt2C(t1 − t2) [σzρσz − ρ]

=
1

2πτ

∫ τ

0

dt1

∫ τ

0

dt2

∫
dωΓ(ω)[1 + nB(ω)]e−iω(t1−t2) [σzρσz − ρ]

=
1

2π

∫
dωΓ(ω)[1 + nB(ω)]τsinc2

(ωτ
2

)
[σzρσz − ρ]

≡ Γ(τ) [σzρσz − ρ] , (2.113)



2.2. DERIVATIONS FOR OPEN QUANTUM SYSTEMS 45

where we have used that∫ τ

0

dt1

∫ τ

0

dt2e
−iω(t1−t2) = 4

sin2 (ωτ/2)

ω2
= τ 2sinc2

(ωτ
2

)
(2.114)

with the band-filter function sinc(x) = sin(x)/x. We note that this dynamics can be solved exactly,
and that coarse-graining readily provides the exact solution. In the limit of infinite coarse-graining
times τ →∞, this would yield

ρ̇ = γ(0) [σzρσz − ρ] , (2.115)

where we have used that γ(0) = limω→0 Γ(ω)[1 + nB(ω)]. Generally, the evolution equation ρ̇ =
Γ(τ)[σzρσz − ρ] leads to the expectation values

d

dt

〈
σ±
〉

= −2Γ(τ)
〈
σ±
〉
,

〈
σ±
〉
t

= e−2Γ(τ)t
〈
σ±
〉

0
. (2.116)

Therefore for time-dependent coarse-graining time Γ(τ) = Γ(t) we obtain a time-dependent coher-
ence decay rate exponent, which can also be written as

ρ01(t) = e−2Γ(t)tρ0
01 . (2.117)

With

2Γ(t)t =
1

π

∫
dωΓ(ω)[1 + nB(ω)]

4 sin2(ωt/2)

ω2

=
4

π

∫ ∞
0

dωΓ(ω)[1 + 2nB(ω)]
4 sin2(ωt/2)

ω2

=
4

π

∫ ∞
0

dωΓ(ω) coth

(
βω

2

)
sin2(ωt/2)

ω2
. (2.118)

This is precisely the same as the decay predicted in Eq. (2.102)
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Chapter 3

Nonequilibrium Case I: Multiple
Reservoirs

The most obvious way to achieve non-equilibrium dynamics is to use reservoir states that are non-
thermalized, i.e., states that cannot simply be characterized by just temperature and chemical
potential. Since the derivation of the master equation only requires [ρ̄B,HB] = 0, this would still
allow for many nontrivial models, 〈n| ρ̄B |n〉 could e.g. follow multi-modal distributions. Alterna-
tively, a non-equilibrium situation may be established when a system is coupled to different thermal
equilibrium baths or of course when the system itself is externally driven – either unconditionally
(open-loop feedback) or conditioned on the actual state of the system (closed-loop feedback).

First, we will consider the case of multiple reservoirs at different thermal equilibria that are only
indirectly coupled via the system: Without the system, they would be completely independent.
Since these are chosen at different equilibria, they drag the system towards different thermal states,
and the resulting stationary state is in general a non-thermal one. Since the different compartments
interact only indirectly via the system, we have the case of a multi-terminal system, where one can
most easily derive the corresponding master equation, since each contact may be treated separately.
Therefore, we do now consider multiple (K) reservoirs

HB =
K∑
`=1

H(`)
B (3.1)

with commuting individual parts
[
H(`)

B ,H(k)
B

]
= 0. These are held at different chemical potentials

and different temperatures

ρ̄B =
e−β(H(1)

B −µN
(1)
B )

Tr
{
e−β(H(1)

B −µN
(1)
B )
} ⊗ . . .⊗ e−β(H(K)

B −µN(K)
B )

Tr
{
e−β(H(K)

B −µN(K)
B )
} . (3.2)

To each of the reservoirs, the system is coupled via different coupling operators

HI =
∑
α

Aα ⊗
k∑
`=1

B(`)
α . (3.3)

Since we assume that the first order bath correlation functions vanish
〈
B`
αρ̄B

〉
= 0, the second-order

bath correlation functions may be computed additively

Cαβ(τ) =
K∑
`=1

C
(`)
αβ(τ) . (3.4)

47
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Exercise 27 (Additive Reservoirs). Show with using Eqns. (3.1) and (3.2) that expectation values
of coupling operators belonging to different reservoirs vanish, i.e.,

C(α,`),(β,k)(τ) = Tr
{
B(`)
α (τ)B

(k)
β ρ̄B

}
= δk`C(α,`),(β,`) .

This obviously transfers to their Fourier transforms and thus, also to the final Liouvillian (to
second order in the coupling)

L = L(0) +
K∑
`=1

L(`) . (3.4)

Here, L(0)ρ=̂ − i [HS, ρ] describes the action of the system Hamiltonian and L(`) denotes the Li-
ouvillian resulting only from the `-th reservoir. The resulting stationary state is in general a
non-equilibrium one.

3.1 Example: Effective equilibrium dynamics

Let us however first identify a special case where even in a non-equilibrium setup we can determine
the non-equilibrium steady state analytically. For some simple models, one obtains that the
coupling structure of all Liouvillians is identical for different reservoirs

L(`) = Γ(`)
[
LA + n(`)LB

]
, (3.5)

i.e., the reservoirs trigger exactly the same transitions within the system. Here, n(`) is a parameter
encoding the thermal properties of the respective bath (e.g. a Fermi-Dirac or a Bose-Einstein
distribution evaluated at one of the systems transition frequencies), and LA/B simply label parts
of the Liouvillian that are proportional to thermal characteristics (B) or not (A). Finally, Γ(`)

represent coupling constants to the different reservoirs. For coupling to a single reservoir, the
stationary state is defined via the equation

L(`)ρ̄(`) = Γ(`)
[
LA + n(`)LB

]
ρ̄(`) = 0 (3.6)

and thus implicitly depends on the thermal parameter ρ̄(`) = ρ̄(n(`)). Obviously, the steady state
will be independent of the coupling strength Γ(`). For the total Liouvillian, it follows that the
dependence of the full stationary state on all thermal parameters simply given by the same depen-
dence on an average thermal parameter

Lρ̄ =
∑
`

L(`)ρ̄ =
∑
`

Γ(`)
[
LA + n(`)LB

]
ρ̄ =

[∑
`

Γ(`)

][
LA +

∑
` Γ(`)n(`)∑
`′ Γ

(`′)
LB
]
ρ̄ ,

=

[∑
`

Γ(`)

]
[LA + n̄LB] ρ̄ , (3.7)

where

n̄ =

∑
` Γ(`)n(`)∑
` Γ(`)

(3.8)
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represents an average thermal parameter (e.g. the average occupation). Formally, this is the
same equation that determines the steady state for a single reservoir, which may now however be
non-thermal.

This can be illustrated by upgrading the Liouvillian for a single resonant level coupled to a
single junction

L =

(
−Γf +Γ(1− f)
+Γf −Γ(1− f)

)
, (3.9)

where the Fermi function f =
[
eβ(ε−µ) + 1

]−1
of the contact is evaluated at the dot level ε, to the

Liouvillian for a single-electron transistor (SET) coupled to two (left and right) junctions

L =

(
−ΓLfL − ΓRfR +ΓL(1− fL) + ΓR(1− fR)
+ΓLfL + ΓRfR −ΓL(1− fL)− ΓR(1− fR)

)
. (3.10)

Now, the system is coupled to two fermionic reservoirs, and in order to support a current, the dot
level ε must be within the transport window, see Fig. 3.1. This also explains the name single-

Figure 3.1: Sketch of a single resonant level (QD at energy level ε) coupled to two junctions with
different Fermi distributions (e.g. with different chemical potentials or different temperatures. If
the dot level ε is changed with a third gate, the device functions as a transistor, since the current
through the system is exponentially suppressed when the the dot level ε is not within the transport
window.

electron transistor, since the dot level ε may be tuned by a third gate, which thereby controls the
current.

Exercise 28 (Pseudo-Nonequilibrium). Show that the stationary state of Eq.(3.10) is a thermal
one, i.e., that

ρ̄11

ρ̄00

=
f̄

1− f̄
.

Determine f̄ in dependence of Γα and fα.

3.2 Phenomenologic definition of currents

Strictly speaking, a conventional master equation only tells us about the state of the system and not
about the changes in the reservoir. For a system that is coupled to a single reservoir, we might from
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total conservation laws and the dynamics of the system conclude how much energy or how many
particles have passed into the reservoir. This is different however for multiple reservoirs, which at
non-equilibrium may give rise to steady-state currents. However, the additive decomposition of
the Liouville superoperators allows us to phenomenologically identify contributions to the currents
from individual reservoirs.

From Eq. (3.4) we can conclude for the energy of the system

d

dt
〈E〉 = Tr {HS ρ̇} = −iTr {HS[HS, ρ]}+

∑
ν

Tr
{
HS(L(ν)ρ)

}
. (3.10)

We immediately see that the first term vanishes, and that the contributions of the individual
reservoirs is additive. This gives rise to the definition of the energy current entering the system
from reservoir ν

I
(ν)
E = Tr

{
HS(L(ν)ρ)

}
= Tr

{
HSL(ν)ρ

}
. (3.11)

Similarly, we can define a particle current. This only makes sense if the system Hamiltonian
conserves the total particle number [NS, HS] = 0, which leads to

d

dt
〈N〉 = Tr {NS ρ̇} = −iTr {NS[HS, ρ]}+

∑
ν

Tr
{
NS(L(ν)ρ)

}
. (3.12)

Again, the commutator term vanishes and the particle (or matter) current entering the system
from reservoir ν becomes

I
(ν)
M = Tr

{
NS(L(ν)ρ)

}
= Tr

{
NSL(ν)ρ

}
. (3.13)

We note that in these definitions we have mixed superoperator (calligraphic) and operator
notations, which explains why we have put some brackets in the expressions. Let us first consider
the simple case where each Liouvillian L(ν) has block structure in the system energy eigenbasis
separating populations and diagonals, with the evolution of the diagonals being given by the usual
rate equation

ρ̇aa =
∑
ν

∑
b

γ
(ν)
ab,abρbb −

∑
ν

∑
b

γ
(ν)
ba,baρaa . (3.14)

Representing the density matrix, particle number operator, and Hamiltonian in the time-independent
energy eigenbasis as

ρ =
∑
a

ρaa |a〉 〈a|+
∑
a6=b

ρab |a〉 〈b| , NS =
∑
a

Na |a〉 〈a| , HS =
∑
a

Ha |a〉 〈a| , (3.15)

we see that

I
(ν)
M =

∑
a

Na

[∑
b

γ
(ν)
ab,abρbb −

∑
b

γ
(ν)
ba,baρaa

]
=
∑
ab

(Na −Nb)γ
(ν)
ab,abρbb . (3.16)

At steady state ρbb → ρ̄bb, this corresponds to the traditional definition of the matter current,
given by the steady state occupation multiplied by the transition rate γ

(ν)
ab,ab and the particle
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number difference between the new state a and the old state b. In a completely analogous fashion,
we obtain for the energy current entering the system from reservoir ν

I
(ν)
E =

∑
a

Ea

[∑
b

γ
(ν)
ab,abρbb −

∑
b

γ
(ν)
ba,baρaa

]
=
∑
ab

(Ea − Eb)γ(ν)
ab,abρbb . (3.17)

We have defined these currents from the perspective of the system. These definitions just
require an additive decomposition of the Liouville superoperator, it does actually not need to be
of Lindblad form. But can they really be associated with the corresponding change of energy and
particle number in the reservoir? Where does e.g. in case of energy balances the energy contained
in the interaction Hamiltonian enter? This requires a more careful analysis to be provided later.
Below, we will discuss the phenomenologic thermodynamics arising from these definitions.

3.3 Nonequilibrium thermodynamics

We first phrase the necessary prerequisites. Let us assume that we have a system coupled to many
reservoirs and subject to slow driving HS → HS(t). This assumption is necessary to ensure that all
previous approximations are applicable, such that only the parameters in the dissipators become
time-dependent, eventually leading to a master equation of the form

ρ̇ = −i[HS(t), ρ] +
∑
ν

L(ν)(t)ρ . (3.18)

Looking at the energy balance of the system, we can directly state the first law of thermody-
namics

Ė =
d

dt
Tr {HS(t)ρS(t)}

= Tr
{
ḢSρS

}
+
∑
ν

µνTr
{
NS(L(ν)ρ)

}
+
∑
ν

Tr
{

(HS − µνNS)(L(ν)ρ)
}
. (3.19)

Here, the first term can be identified as mechanical work rate

Ẇ = Tr
{
ḢSρS

}
, (3.20)

the second as chemical work rate injected by reservoir ν

Ẇ (ν) = µνTr
{
NS(L(ν)ρ)

}
, (3.21)

and the third as a heat current entering the system from reservoir ν

Q̇(ν) = Tr
{

(HS − µνNS)(L(ν)ρ)
}
. (3.22)

We note that this is not a derivation of the first law. Rather, we have postulated it and used it to
classify the individual currents. These definitions remain sensible when HS is time-dependent.

Furthermore, we assume that also in case of slow time-dependent driving one has that the
dissipators L(ν)(t) drag towards the time-local Gibbs state

L(ν)(t)
e−βν(HS(t)−µνNS)

Z
≡ L(ν)(t)ρ̄(ν)(t) = 0 . (3.23)
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In particular, this implies that

ln ρ̄(ν)(t) = −βν(HS(t)− µνNS)− lnZ , (3.24)

where lnZ is just a number, such that Tr
{

(L(ν)ρ) lnZ
}

= 0. Then, we can show the second law
in non-equilibrium as follows

Ṡi = Ṡ −
∑
ν

βνQ̇
(ν)

= −Tr {ρ̇ ln ρ}+
∑
ν

Tr
{

[L(ν)(t)ρ(t)] ln ρ̄(ν)(t)
}

= −
∑
ν

Tr
{

[L(ν)(t)ρ(t)][ln ρ(t)− ln ρ̄(ν)(t)]
}
, (3.25)

where we have used that Ṡ = −Tr {ρ̇ ln ρ} = −
∑

ν Tr
{

(L(ν)ρ) ln ρ
}

, since the commutator term
does not contribute. With view on Eq. (3.23), we can for each term in the summation use Spohn’s
inequality to conclude that the entropy production rate

Ṡi = Ṡ −
∑
ν

βνQ̇
(ν) ≥ 0 . (3.26)

This denotes the second law in presence of (slow) driving and multiple reservoirs. We stress that
we have used only that the total Liouville superoperator is additive in the baths and probability
conserving, and that the stationary state of each Lindblad superoperator is the local thermal
equilibrium state, possibly depending on time.

We will now discuss some consequences of this second law.

3.4 Steady-State Dynamics

By steady-state we mean that the system density matrix has reached a stationary value, which
will in general be a complicated nonequilibrium steady state. The term steady state also means
that for the moment we neglect driving HS(t) → HS, and the reservoirs only perform chemical
work on the system and exchange heat with it – in other words, only matter and energy currents
determine the thermodynamics of the model. Given a finite-dimensional Hilbert space and ergodic
dynamics, the von-Neumann entropy of the system will saturate at some point Ṡ → 0 and the
entropy production rate is given by the heat flows

Ṡi → −
∑
ν

βνQ̇
(ν) = −

∑
ν

βν

[
I

(ν)
E − µνI

(ν)
M

]
≥ 0 , (3.27)

where I
(ν)
E and I

(ν)
M are the energy and matter currents entering the system from reservoir ν, respec-

tively. Naturally, we see that the entropy production has to vanish when all the currents vanish
(e.g. at a global equilibrium state). Whereas energy and matter conservation imply equalities
among the currents at steady state∑

ν

I
(ν)
M = 0 ,

∑
ν

I
(ν)
E = 0 , (3.28)
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the positivity of entropy production imposes a further constraint among the currents, e.g. for a
two-terminal system

Ṡi = −βL(I
(L)
E − µLI(L)

M )− βR(I
(R)
E − µRI(R)

M )

= (βR − βL)IE + (µLβL − µRβR)IM ≥ 0 , (3.29)

where we have introduced the currents from left to right IE = +I
(L)
E = −I(R)

E and IM = +I
(L)
M =

−I(R)
M .
We first discuss the case of equal temperatures β = βL = βR. The second law implies that

(µL − µR)IM ≥ 0 , (3.30)

which is nothing but the trivial statement that the current is always directed from a lead with
large chemical potential towards the lead with smaller chemical potential.

Next, we consider equal chemical potentials µL = µR = µ but different temperatures. Then,
our setup has to obey

(βR − βL)(IE − µIM) ≥ 0 , (3.31)

where IE − µIM can now be interpreted as the heat transferred from left to right. When βR >
βL (i.e., the left lead is hotter than the right one TL > TR), the second law just implies that
IE − µIM ≥ 0, i.e., the heat has to flow from left to right. Similarly, it has to revert sign when
βR < βL. Altogether, this only tells us that heat always flows from hot to cold – another well-known
statement of the second law of thermodynamics.

An interesting scenario arises when there are both a temperature and a potential gradient
present, dragging to different directions. For a two-terminal system the second law reads

(βR − βL)IE + (µLβL − µRβR)IM ≥ 0 . (3.32)

Then, it is possible to use a temperature gradient to drive a current against a potential bias,
i.e., to perform work. In case of e.g. electrons driven against an electric bias, this would be called
a thermoelectric generator. Without loss of generality we assume µL < µR and βL < βR (i.e.,
the left reservoir is hotter than the right one). The efficiency of this generator is then given by the
ratio of the generated electric power P = −IM(µL − µR) divided by the heat entering the system
from the hot reservoir

η =
−IM(µL − µR)

IE − µLIM
=

−(βR − βL)(µL − µR)IM
(βR − βL)IE − (βR − βL)µLIM

=
−(βR − βL)(µL − µR)IM

(βR − βL)IE + (µLβL − µRβR)IM − (µLβL − µRβR)IM − (βR − βL)µLIM

≤ −(βR − βL)(µL − µR)IM
−(µLβL − µRβR)IM − (βR − βL)µLIM

=
(βR − βL)(µL − µR)

(µLβL − µRβR) + (βR − βL)µL

= 1− βL
βR

= 1− TR
TL

= 1− Tcold

Thot

= ηCarnot . (3.33)

The efficiency of such a generator is bounded by Carnot efficiency, irrespective of the microscopic
details. We note that our scenario is different from the classical Carnot or Otto cycles, since our
reservoirs are coupled at all times to the system, but it is interesting to see that the same universal
law holds.
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Conversely, one may apply a potential gradient to a system and use it to let the heat flow
against the usual direction. This can be used as a refrigerator by cooling a cold reservoir or as a
heat pump by heating a hot reservoir. Keeping the previous conventions µL < µR and βL < βR,
let us take a closer look at the performance of such engines. For a refrigerator, we assume that
there exists a regime of parameters where the heat entering the system from the cold reservoir is
positive Q̇cold = −(IE−µRIM) > 0, which can only be driven by chemical or electric work injected
into the system Ẇcons = +(µL− µR)IM > 0. In this regime, we can compare the heat entering the
system from the cold reservoir with the chemical work rate injected into the system (alternatively,
the electric power consumed). This is commonly called coefficient of performance (COP)

COPcooling =
−(IE − µRIM)

(µL − µR)IM

=
−[(βR − βL)IE + (µLβL − µRβR)IM ] + (µLβL − µRβR)IM + (βR − βL)µRIM

(βR − βL)(µL − µR)IM

≤ +(µLβL − µRβR)IM + (βR − βL)µRIM
(βR − βL)(µL − µR)IM

=
βL

βR − βL
=

TR
TL − TR

=
Tcold

Thot − Tcold

. (3.34)

A similar calculation holds for the case of heating, where we compare the heat entering the hot
reservoir Q̇hot = −(IE − µLIM) > 0 with the consumed work rate Ẇcons = +(µL − µR)IM > 0

COPheating =
−(IE − µLIM)

(µL − µR)IM

≤ βR
βR − βL

=
TL

TL − TR
=

Thot

Thot − Tcold

. (3.35)

Exercise 29 (Coefficient of Performance). Calculate the upper bound on the coefficient of perfor-
mance for heating.

Conventional heat pumps for houses reach COPs in the order of four, i.e., with each kWh
of electric energy one pumps on average four kWh of heat into the house. This explains their
commercial use in some occasions despite the relatively hight cost of electric energy.

3.5 Example: The single-electron transistor

For the previously discussed example of the single-electron transistor with two reservoirs

H = εd†d+
∑

ν∈{L,R}

(
tkνdc

†
kν + h.c.

)
+

∑
ν∈{L,R}

εkνc
†
kνckν (3.36)

we had obtained that the dynamics of the populations (P0, P1) = (ρ00, ρ11) followed a simple rate
equation, additive in the reservoirs

W =

(
−ΓLfL − ΓRfR +ΓL(1− fL) + ΓR(1− fR)
+ΓLfL + ΓRfR −ΓL(1− fL)− ΓR(1− fR)

)
. (3.37)
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This implies for the currents from left to right

IM = I
(L)
M =

ΓLΓR
ΓL + ΓR

(fL − fR) , IE = I
(L)
E = εIM , (3.38)

where ε denotes the dot level, at which the Fermi functions and tunneling rates are evaluated

fν =
1

eβν(ε−µν) + 1
, Γν = Γν(ε) = 2π

∑
k

|tkν |2δ(ε− εkν) . (3.39)

We can plot the currents versus the bias voltage at µL = +V/2 and µR = −V/2 to identify the
regimes where the device acts as thermoelectric generator or refrigerator, see Fig. 3.2.
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Figure 3.2: Plot of the matter current (solid black) and heat currents entering from left (solid
red) and right (solid blue) versus bias voltage. The dashed black curve is a reference curve for
equal temperatures εβα = 1. In particular for large bias voltages, both reservoirs are heated.
However, since here the energy is mainly provided by the bias voltage across the system, it rather
corresponds to a conventional heater than a heat pump. We also see that there is a region where
−IM(µL − µR) > 0, where the system acts as thermoelectric generator, and to the left of it there
is a region where the cold right reservoir is cooled while simultaneously the hot left reservoir is
heated (blue text). Here, the system acts as a true heat pump.

3.6 Example: The double quantum dot

We consider a double quantum dot with internal tunnel coupling T and Coulomb interaction U
that is weakly coupled to two fermionic contacts via the rates ΓL and ΓR, see Fig. 3.3. The
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Figure 3.3: A double quantum dot (system)
with on-site energies εA/B and internal tun-
neling amplitude T and Coulomb interaction
U may host at most two electrons. It is
weakly tunnel-coupled to two fermionic con-
tacts via the rates ΓL/R at different thermal
equilibria described by the Fermi distribu-
tions fL/R(ω).

corresponding Hamiltonian reads

HS = εAd
†
AdA + εBd

†
BdB + T

(
dAd

†
B + dBd

†
A

)
+ Ud†AdAd

†
BdB ,

HB =
∑
k

εkLc
†
kLckL +

∑
k

εkRc
†
kRckR ,

HI =
∑
k

(
tkLdAc

†
kL + t∗kLckLd

†
A

)
+
∑
k

(
tkRdBc

†
kR + t∗kRckRd

†
B

)
. (3.40)

In contrast to simple rate equations, the internal tunneling T is not a transition rate but an
amplitude, since it occurs at the level of the Hamiltonian. Furthermore, we note that strictly
speaking we do not have a tensor product decomposition in the interaction Hamiltonian, as the
coupling operators anti-commute, e.g.,

{d, ckR} = 0 . (3.41)

We may however use the Jordan-Wigner transform, which decomposes the Fermionic operators in
terms of Pauli matrices acting on different spins

dA = σ− ⊗ 1⊗ 1⊗ . . .⊗ 1 , dB = σz ⊗ σ− ⊗ 1⊗ . . .⊗ 1 ,

ckL = σz ⊗ σz ⊗ σz ⊗ . . .⊗ σz︸ ︷︷ ︸
k−1

⊗σ− ⊗ 1⊗ . . .⊗ 1 ,

ckR = σz ⊗ σz ⊗ σz ⊗ . . .⊗ σz︸ ︷︷ ︸
KL

⊗σz ⊗ . . .⊗ σz︸ ︷︷ ︸
k−1

⊗σ− ⊗ 1⊗ . . .⊗ 1 (3.42)

to map to a tensor-product decomposition of the interaction Hamiltonian, where σ± = 1
2

[σx ± iσy].

The remaining operators follow from (σ+)
†

= σ− and vice versa. This decomposition automat-
ically obeys the fermionic anti-commutation relations such as e.g.

{
ck, d

†} = 0 and may there-
fore also be used to create a fermionic operator basis with computer algebra programs (e.g. use
KroneckerProduct in Mathematica).

Exercise 30 (Jordan-Wigner transform). Show that for fermions distributed on N sites, the de-
composition

ci = σz ⊗ . . .⊗ σz︸ ︷︷ ︸
i−1

⊗σ− ⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
N−i

preserves the fermionic anti-commutation relations

{ci, cj} = 0 =
{
c†i , c

†
j

}
,

{
ci, c

†
j

}
= δij1 .
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Show also that the fermionic Fock space basis c†ici |n1, . . . , nN〉 = ni |n1, . . . , nN〉 obeys
σzi |n1, . . . , nN〉 = (−1)ni+1 |n1, . . . , nN〉.

Inserting the decomposition (3.42) in the Hamiltonian, we may simply use the relations

(σx)2 = (σy)2 = (σz)2 = 1 , σ+σ− =
1

2
[1 + σz] , σ−σ+ =

1

2
[1− σz] ,

σzσ− = −σ− , σ−σz = +σ− , σzσ+ = +σ+ , σ+σz = −σ+ (3.41)

to obtain a system of interacting spins

HS = εA
1

2
[1 + σzA] + εB

1

2
[1 + σzB] + T

[
σ−Aσ

+
B + σ+

Aσ
−
B

]
+ U

1

2
[1 + σzA]

1

2
[1 + σzB]

HB =
∑
k

εkL
1

2
[1 + σzkL] +

∑
k

εkR
1

2
[1 + σzkR]

HI = σ−Aσ
z
B ⊗

∑
k

tkL

[∏
k′<k

σzk′L

]
σ+
kL + σ+

Aσ
z
B ⊗

∑
k

t∗kL

[∏
k′<k

σzk′L

]
σ−kL

+σ−B ⊗
∑
k

tkR

[∏
k′

σzk′L

][∏
k′′<k

σzk′′R

]
σ+
kR + σ+

B ⊗
∑
k

t∗kR

[∏
k′

σzk′L

][∏
k′′<k

σzk′′R

]
σ−kR

. (3.42)

With this, we could proceed by simply viewing the Hamiltonian as a complicated total system
of non-locally interacting spins. However, the order of operators in the nonlocal Jordan-Wigner
transformation may be chosen as convenient without destroying the fermionic anticommutation
relations. We may therefore also define new fermionic operators on the subspace of the system (first
two sites, with reversed order) and the baths (all remaining sites with original order), respectively

d̃A = σ− ⊗ σz , d̃B = 1⊗ σ− ,
c̃kL = σz ⊗ . . .⊗ σz︸ ︷︷ ︸

k−1

⊗σ− ⊗ 1⊗ . . .⊗ 1 ,

c̃kR = σz ⊗ . . .⊗ σz︸ ︷︷ ︸
KL

⊗σz ⊗ . . .⊗ σz︸ ︷︷ ︸
k−1

⊗σ− ⊗ 1⊗ . . .⊗ 1 . (3.43)

These new operators obey fermionic anti-commutation relations in system and bath separately
(e.g. {d̃A, d̃B} = 0 and {c̃kL, c̃k′L} = 0), but act on different Hilbert spaces, such that system and
bath operators do commute by construction (e.g. [d̃A, c̃kL] = 0). In the new operator basis, the
Hamiltonian appears as

HS =
[
εAd̃

†
Ad̃A + εBd̃

†
Bd̃B + T

(
d̃Ad̃

†
B + d̃Bd̃

†
A

)
+ Ud̃†Ad̃Ad̃

†
Bd̃B

]
⊗ 1 ,

HB = 1⊗

[∑
k

εkLc̃
†
kLc̃kL +

∑
k

εkRc̃
†
kRc̃kR

]
,

HI = d̃A ⊗
∑
k

tkLc̃
†
kL + d̃†A ⊗

∑
k

t∗kLc̃kL + d̃B ⊗
∑
k

tkRc̃
†
kR + d̃†B ⊗

∑
k

t∗kRc̃kR , (3.44)
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which is the same (for this and some more special cases) as if we had ignored the anticommuting
nature of the system and bath operators from the beginning.

We do now proceed by calculating the Fourier transforms of the bath correlation functions

γ12(ω) = ΓL(−ω)fL(−ω) , γ21(ω) = ΓL(+ω)[1− fL(+ω)] ,

γ34(ω) = ΓR(−ω)fR(−ω) , γ43(ω) = ΓR(+ω)[1− fR(+ω)] (3.45)

with the continuum tunneling rates Γα(ω) = 2π
∑

k |tkα|
2δ(ω− εkα) and Fermi functions fα(εkα) =〈

c†kαckα

〉
=
[
eβα(εkα−µα) + 1

]−1
.

Exercise 31 (DQD bath correlation functions). Calculate the Fourier transforms (3.45) of the
bath correlation functions for the double quantum dot, assuming that the reservoirs are in a thermal
equilibrium state with inverse temperatures βα and chemical potential µα.

Next, we diagonalize the system Hamiltonian (in the Fock space basis)

E0 = 0 , |v0〉 = |00〉 ,

E− = ε−
√

∆2 + T 2 , |v−〉 ∝
[(

∆ +
√

∆2 + T 2
)
|10〉+ T |01〉

]
,

E+ = ε+
√

∆2 + T 2 , |v+〉 ∝
[(

∆−
√

∆2 + T 2
)
|10〉+ T |01〉

]
,

E2 = 2ε+ U , |v2〉 = |11〉 , (3.46)

where ∆ = (εB − εA)/2 and ε = (εA + εB)/2 and |01〉 = −d̃†B |00〉, |10〉 = d̃†A |00〉, and |11〉 =
d̃†Bd̃

†
A |00〉. We have not symmetrized the coupling operators but to obtain the BMS limit, we may

alternatively use Eqns. (2.89) and (2.90) when τ →∞ . Specifically, when we have no degeneracies
in the system Hamiltonian (∆2 + T 2 > 0), the master equation in the energy eigenbasis (where
a, b ∈ {0,−,+, 2}) becomes a rate equation (2.52), where for non-hermitian coupling operators the
transition rates from b to a are given by

γab,ab =
∑
αβ

γαβ(Eb − Ea) 〈a|Aβ |b〉 〈a|A†α |b〉
∗ . (3.47)

We may calculate the Liouvillians for the interaction with the left and right contact separately

γab,ab = γLab,ab + γRab,ab , (3.48)

since we are constrained to second order perturbation theory in the tunneling amplitudes. Since
we have d̃A = A†2 = A1 = d̃A and d̃B = A†4 = A3 = d̃B, we obtain for the left-associated dampening
coefficients

γLab,ab = γ12(Eb − Ea)|〈a|A2 |b〉|2 + γ21(Eb − Ea)|〈a|A1 |b〉|2 ,
γRab,ab = γ34(Eb − Ea)|〈a|A4 |b〉|2 + γ43(Eb − Ea)|〈a|A3 |b〉|2 . (3.49)

In the wideband (flatband) limit ΓL/R(ω) = ΓL/R, we obtain for the nonvanishing transition rates
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in the energy eigenbasis

γL0−,0− = ΓLγ+[1− fL(ε−
√

∆2 + T 2)] , γR0−,0− = ΓRγ−[1− fR(ε−
√

∆2 + T 2)] ,

γL0+,0+ = ΓLγ−[1− fL(ε+
√

∆2 + T 2)] , γR0+,0+ = ΓRγ+[1− fR(ε+
√

∆2 + T 2)] ,

γL−2,−2 = ΓLγ−[1− fL(ε+ U +
√

∆2 + T 2)] , γR−2,−2 = ΓRγ+[1− fR(ε+ U +
√

∆2 + T 2)] ,

γL+2,+2 = ΓLγ+[1− fL(ε+ U −
√

∆2 + T 2)] , γR+2,+2 = ΓRγ−[1− fR(ε+ U −
√

∆2 + T 2)] ,

γL−0,−0 = ΓLγ+fL(ε−
√

∆2 + T 2) , γR−0,−0 = ΓRγ−fR(ε−
√

∆2 + T 2) ,

γL+0,+0 = ΓLγ−fL(ε+
√

∆2 + T 2) , γR+0,+0 = ΓRγ+fR(ε+
√

∆2 + T 2) ,

γL2−,2− = ΓLγ−fL(ε+ U +
√

∆2 + T 2) , γR2−,2− = ΓRγ+fR(ε+ U +
√

∆2 + T 2) ,

γL2+,2+ = ΓLγ+fL(ε+ U −
√

∆2 + T 2) , γR2+,2+ = ΓRγ−fR(ε+ U −
√

∆2 + T 2) , (3.50)

with the dimensionless coefficients

γ± =
1

2

[
1± ∆√

∆2 + T 2

]
(3.51)

arising from the matrix elements of the system coupling operators. This rate equation can also be
visualized with a network, see Fig. 3.4. We note that although both reservoirs drive all transitions,

Figure 3.4: Configuration space of a serial
double quantum dot coupled to two leads.
Due to the hybridization of the two levels,
electrons may jump directly from the left
contact to right-localized modes and vice
versa, such that in principle all transitions
are driven by both contacts. However, the
relative strength of the couplings is different,
such that the two Liouillians have a different
structure. In the Coulomb-blockade limit,
transitions to the doubly occupied state are
forbidden (thin dotted lines), such that – if
the doubly occupied state is initially not oc-
cupied – the system dimension can be re-
duced.

their relative strength is different, and we do not have a simple situation as discussed previously
in Eq. (3.5). Consequently, the stationary state of the rate equation cannot be written as some
grand-canonical equilibrium state, which is most conveniently shown by disproving the relations
ρ̄−−/ρ̄00 = e−β(E−−E0−µ), ρ̄++/ρ̄00 = e−β(E+−E0−µ) and ρ̄++/ρ̄−− = e−β(E+−E−).

As the simplest example of the resulting rate equation, we study the high-bias and Coulomb-
blockade limit fL/R(ε+U±

√
∆2 + T 2)→ 0 and fL(ε±

√
∆2 + T 2)→ 1 and fR(ε±

√
∆2 + T 2)→ 0
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when the onsite-energies are degenerate such that ∆→ 0 (such that γ± → 1/2). This removes any
dependence on the internal tunneling amplitude T . Consequently, derived quantities such as e.g.
the current will not depend on T either and we would obtain a current even when T → 0 (where
we have a disconnected structure). However, precisely in this limit (i.e., ∆ → 0 and T → 0), the
two levels E− and E+ become energetically degenerate, and a simple rate equation description is
not applicable. The take-home message of this failure is that one should not use plug and play
formulas without learning about their limits. Therefore, keeping in mind that T 6= 0, the resulting
Liouvillian reads

L =
1

2


−2ΓL ΓR ΓR 0

ΓL −ΓR 0 ΓL + ΓR
ΓL 0 −ΓR ΓL + ΓR
0 0 0 −2(ΓL + ΓR)

 , (3.52)

where it becomes visible that the doubly occupied state will simply decay and may therefore –
since we are interested in the long-term dynamics – be eliminated completely

LCBHB =
1

2

 −2ΓL ΓR ΓR
ΓL −ΓR 0
ΓL 0 −ΓR

 . (3.53)

Exercise 32 (Stationary DQD currents). Calculate the stationary currents entering the right
reservoir.

At finite bias voltages, it becomes of course harder to calculate steady states and stationary
currents. However, for low temperatures, the Fermi functions will behave similar to step functions,
and the transport window becomes sharp. Then, by enlarging the bias voltage, the transport
window is opened, and the currents will exhibit steps when a new transport channel is inside the
transport window, see Fig. 3.5. A further obvious observation is that at zero bias voltage, we have
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Figure 3.5: Plot of matter (solid black) and en-
ergy (dashed red) currents. At sufficiently low
temperatures, the steps in the currents occur
for positive bias voltage at µL = V/2 ∈ {E− −
E0, E+ −E0, E2 −E+, E2 −E−}. The inset dis-
plays the configuration of these transition ener-
gies relative to left (blue) and right (green) Fermi
functions taken at V = 10T . Then, only the low-
est transition energy (arrow) is inside the trans-
port window, such that transport is dominated
by transitions between |−〉 and |0〉. Other pa-
rameters have been chosen as µL = −µR = V/2,
ΓL = ΓR = Γ, εA = 4T , εB = 6T ,U = 5T , and
βT = 10.

vanishing currents. This must happen only at equal temperatures. The entropy production in this
case is fully determined by the matter current Ṡi = β(µL − µR)IM , where IM denotes the current
from left to right. Identifying P = (µL − µR)IM with the power dissipated by the device, the
entropy production just becomes Ṡi = βP .
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3.7 Phonon-Assisted Tunneling

We consider here a three-terminal system, comprised as before of two quantum dots. The left dot
is tunnel-coupled to the left lead, the right dot to the right, but in addition, tunneling between
the dots is now triggered by a third (bosonic) reservoir that does not change the particle content.
That is, without the bosonic reservoir (e.g. phonons or photons) the model would not support a
steady state matter current – which is in contrast to the previous model

Figure 3.6: Sketch of two quantum dots that
are separately tunnel-coupled to their adja-
cent reservoir in the conventional way by
rates ΓL and ΓR. The mere Coulomb in-
teraction U only allows for the exchange of
energy between the dots, but with phonons
present (rounded terminals), tunneling be-
tween A andB becomes possible (dotted and
dashed). The device may act as a thermo-
electric generator converting thermal gradi-
ents into power.

The system is described by the Hamiltonian

HS = εAd
†
AdA + εBd

†
BdB + Ud†AdAd

†
BdB (3.54)

with on-site energies εA < εB and Coulomb interaction U . Since there is no internal tunneling,
its energy eigenstates coincide with the localized basis |nA, nB〉 with the dot occupations nA, nB ∈
{0, 1}. This structure makes it particularly simple to derive a master equation in rate equation
representation. The jumps between states are triggered by the electronic tunneling Hamiltonians
and the electron-phonon interaction

HI =
∑
k

(
tkLdAc

†
kL + t∗kLckLd

†
A

)
+
∑
k

(
tkRdBc

†
kR + t∗kRckRd

†
B

)
+
(
dAd

†
B + dBd

†
A

)
⊗
∑
q

(
hqaq + h∗qa

†
q

)
, (3.55)

where ckα are fermionic and aq bosonic annihilation operators. The three reservoirs

HB =
∑
k

εkLc
†
kLckL +

∑
k

εkRc
†
kRckR +

∑
q

ωqa
†
qqq (3.56)

are assumed to remain in separate thermal equilibrium states, such that the reservoir density
matrix is assumed to be a product of the single density matrices. This automatically implies that
the expectation value of linear combinations of the coupling operators vanishes. In the weak-
coupling limit, the rate matrix will be additively decomposed into contributions resulting from
the electronic (L,R) and bosonic (B) reservoirs L = LL + LR + LB From our results with the
single-electron transistor, we may readily reproduce the rates for the electronic jumps. Ordering
the basis as ρ00,00, ρ10,10, ρ01,01, and ρ11,11 and using for simplicity the wide-band limit Γα(ω) ≈ Γα
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these read

LL = ΓL


−fL(εA) 1− fL(εA) 0 0
+fL(εA) −[1− fL(εA)] 0 0

0 0 −fL(εA + U) 1− fL(εA + U)
0 0 +fL(εA + U) −[1− fL(εA + U)]



LR = ΓR


−fR(εB) 0 1− fR(εB) 0

0 −fR(εB + U) 0 1− fR(εB + U)
+fR(εB) 0 −[1− fR(εB)] 0

0 +fR(εB + U) 0 −[1− fR(εB + U)]

 , (3.57)

where the electronic tunneling rates are as usual obtained via (in the wide-band limit) Γα ≈
Γα(ω) = 2π

∑
k |tkα|

2δ(ω − εkα) from the microscopic tunneling amplitudes tkα. We note that the
Fermi functions are evaluated at the energy difference of the jump to which they refer. Although
energy may be transferred between the left and right junctions without the presence of phonons,
it is not possible to transfer charges.

For the spin-boson example, we have also already calculated the correlation function for the
phonons for a spin-boson model in Sec. 2.2.4. Since the reservoir coupling operator is identical, we
may use our result from Eq. (2.107).

γ(ω) = Γ(+ω)Θ(+ω)[1 + nB(+ω)] + Γ(−ω)Θ(−ω)nB(−ω) , (3.58)

where Γ(ω) = 2π
∑

k |hk|
2δ(ω−ωk) was the bosonic emission or absorption rate and nB(ω) denoted

the Bose-Einstein distribution function. For consistency, we just note that the KMS condition is
obeyed. With this, we may readily evaluate the rates due to the phonon reservoirs, i.e., we have
with Γ = Γ(εB − εA)

LB = Γ


0 0 0 0
0 −nB(εB − εA) 1 + nB(εB − εA) 0
0 +nB(εB − εA) −[1 + nB(εB − εA)] 0
0 0 0 0

 . (3.59)

The rate matrices in Eqs. (3.57) and (3.59) can be used to determine all currents. We have
a three terminal system, where the phonon terminal only allows for the exchange of energy, i.e.,
in total we can calculate five non-vanishing currents. With the conservation laws on matter and
energy currents, we can at steady state eliminate two of these, and the entropy production becomes

Ṡi = −βphI
B
E − βL(ILE − µLILM)− βR(IRE − µRIRM)

= −βphI
B
E − βL(ILE − µLILM) + βR(ILE + IBE − µRILM)

= (βR − βph)IBE + (βR − βL)ILE + (βLµL − βRµR)ILM , (3.60)

which has the characteristic affinity-flux form. In usual electronic setups, the electronic tempera-
tures will be the same βel = βL = βR, such that the entropy production further reduces to

Ṡi = (βel − βph)IBE + βel(µL − µR)ILM ≥ 0 , (3.61)

where we can identify the term (µL − µR)ILM as a power consumed or produced by the device.
Furthermore, we note that the device obeys the tight-coupling property: Every electron traversing
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the system from left to right must absorb energy εB−εA from the phonon reservoir IBE = (εB−εA)ILM .
Therefore, the entropy production can also be written as

Ṡi = [(βel − βph)(εB − εA) + βel(µL − µR)] ILM ≥ 0 . (3.62)

We note that the prefactor of the matter current vanishes at

V ∗ = µ∗L − µ∗R =

(
Tel

Tph

− 1

)
(εB − εA) . (3.63)

Since the prefactor switches sign at this voltage, the matter current must vanish at this voltage, too
– otherwise the entropy production would not be positive. Without calculation, we have therefore
found that at bias voltage V ∗ the current must vanish.

Noting that the total entropy production is positive does not imply that all contributions are
separately positive. Fig. 3.7 displays the current as a function of the bias voltage for different
electronic and phonon temperature configurations. It is visible that at zero bias, the matter
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Figure 3.7: Electronic matter current in units of ΓL = ΓR = Γ versus dimensionless bias voltage
βelV . For low phonon temperatures βph(εB − εA) � 1, the current cannot flow from left to right,
such that the system acts as a rectifier (dashed red). For large phonon temperatures βph(εB−εA)�
1, the energy driving the current against the bias (see zoomed inset) is supplied by the phonon
bath. Other parameters: βelεB = 2, βelεA = 0, βelU = 10, JB = Γ, βL = βR = βel, and
µL = +V/2 = −µR.

current does not vanish when electron and phonon temperatures are not chosen equal.
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3.7.1 Thermoelectric performance

We concentrate on the simple case discussed before and use βL = βR = βel and βph = βB. In
regions where the current runs against the bias, the power

P = −(µL − µR)ILM (3.64)

becomes positive, and we can define an efficiency via

η =
−(µL − µR)ILM

Q̇in

Θ(P ) , (3.65)

where Q̇in is the heat entering the system from the hot reservoir. The purpose of the Heaviside
function is just to avoid misinterpretations of the efficiency.

Consequently, when the phonon temperature is larger than the electron temperature Tph > Tel,
the input heat is given by the positive energy flow from the hot phonon bath into the system, such
that – due to the tight-coupling property – the efficiency becomes trivially dependent on the bias
voltage

ηTph>Tel
=

P

IBE
Θ(P ) = − V

εB − εA
Θ(P ) . (3.66)

At first sight, one might think that this efficiency could become larger than one. It should be kept
in mind however that it is only valid in regimes where the power (3.64) is positive, which limits
the applicability of these efficiencies to voltages within V = 0 and V = V ∗ from Eq. (3.63). The
maximum efficiency is reached at V = V ∗ and reads

ηTph>Tel
< ηmax = 1− Tel

Tph

= ηCa , (3.67)

and is thus upper-bounded by Carnot efficiency

ηCa = 1− Tcold

Thot

. (3.68)

In the opposite case, where Tph < Tel, the input heat is given by the sum of the energy currents
entering from the hot electronic leads Q̇in = Q̇L + Q̇R = ILE + IRE + P = −IBE + P , such that the
efficiency becomes

ηTph<Tel
=

P

−IBE + P
=

(µL − µR)

(εB − εA) + (µL − µR)
=

1

1 + εB−εA
µL−µR

, (3.69)

which also trivially depends on the bias voltage. Inserting the maximum bias voltage with positive
power in Eq. (3.63) we obtain the maximum efficiency

ηTph<Tel
<

1

1 + 1
Tel
Tph
−1

= 1− Tph

Tel

, (3.70)

which is also just the Carnot efficiency.
Unfortunately, Carnot efficiencies are reached at vanishing current, i.e., at zero power. At

these parameters, a thermoelectric device is useless. It is therefore more practical to consider the
efficiency at maximum power. However, since the currents depend in a highly nonlinear fashion on
all parameters (coupling constants, temperatures, chemical potentials, and system parameters),
this becomes a numerical optimization problem – unless one restricts the analysis to the linear
response regime.



Chapter 4

Full Counting Statistics

Previous definitions of currents were based on balances of the system and the phenomenologic
identification of the change of the system observable (energy, particle number). This automatically
implies that e.g. there is no contribution from the interaction. Sometimes one is also interested
in more information beyond the mean values, i.e., the statistics of single jumps into the reservoir.
In Full Counting Statistics (FCS) one is interested in the probability distribution Pn(t) denoting
the number of particles n transferred to a specific reservoir after time t. This can in principle be
generalized to full energy counting statistics.

4.1 Phenomenologic Introduction

Suppose that by some method we can identify jump terms between different states in the master
equation, i.e., we can separate the total dissipator as

L = L0 + L1 , (4.1)

where L1 denotes the jump term and L0 the jump-free evolution (containing the isolated dynamics
of the system or un-monitored jumps). We would like to have an expansion of the total propagator
P(t) = eLt that makes the number of such jumps explicit. We could go to some interaction picture,
considering L0 as the free evolution and L1 as the perturbation. However, for our purposes it is
more useful to consider the Laplace transform P(z) =

∫∞
0
P(t)e−ztdt of the propagator

P(z) = [z1− L0 − L1]−1 = [(z1− L0)(1− (z1− L0)−1L1)]−1

= (1− (z1− L0)−1L1)−1(z1− L0)−1 . (4.2)

At this time, it is useful to introduce the free propagator

P0(z) = [z1− L0]−1 =

∫ ∞
0

eL0te−ztdt . (4.3)

Using it, we can expand the full propagator as

P(z) =
∞∑
n=0

[P0(z)L1]nP0(z) = P0(z) + P0(z)L1P0(z) + P0(z)L1P0(z)L1P0(z) + . . . . (4.4)

65
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We remark that the convolution property holds also for matrix-valued functions (provided we do
not change their order)∫ ∞

0

dte−zt
∫ t

0

dτA(t− τ)B(τ) =

∫ ∞
0

dτ

∫ ∞
τ

dtA(t− τ)e−ztB(τ)

=

∫ ∞
0

[∫ ∞
0

dt′A(t′)e−zt
′
]
e−zτB(τ)dτ = A(z)B(z) . (4.5)

Here, we have exchanged in the first equality sign the integrals, using that the total integration
region is the same. Applying this recursively, we can indeed show that (4.4) is equivalent to a
convolution series

P(t) = eL0(t−0) +

∫ t

0

eL0(t−t1)L1e
L0(t1−0)dt1

+

∫ t

0

dt2

∫ t2

0

dt1e
L0(t−t2)L1e

L0(t2−t1)L1e
L0(t1−0) + . . . , (4.6)

which has the appealing interpretation that we have periods of free evolutions interrupted by single
jump events, see Fig. 4.1.

Figure 4.1: Illustration of the first three
terms in the series expansion in Eq. (4.6).
Periods of free evolution (lines) are inter-
rupted by instantaneous jumps (marks). In
the end, one has to integrate over all times
at which jumps may occur.

Exercise 33 (Jump series expansion). Show that the expansion (4.6) can also be obtained in an
interaction picture by using ρ(t) = eL0tρ̃(t).

The benefit of this series expansion is that it yields a decomposition where we can readily write
down the probabilities for n jump events during time t

Pn(t) = Tr

{∫ t

0

dtn . . .

∫ t2

0

dt1e
L0(t−tn)L1 . . .L1e

L0(t2−t1)L1e
L0(t1−0)ρ0

}
, (4.7)

which looks way more convenient in Laplace space

Pn(z) = Tr {[P0(z)L1]nP0(z)ρ0} . (4.8)
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But suppose we are only given the full propagator P(t). Is there a convenient way to sort out only
those contributions that have exactly n jump events? Taking the orthonormality relation

1

2π

∫ +π

−π
e+inχe−imχdχ = δnm (4.9)

into account, it becomes quite obvious that one can infer the statistics of such jumps with following
replacement

L1 → L1e
+iχ , L → L(χ) = L0 + L1e

+iχ (4.10)

in the full propagator P(χ, t) = eL(χ)t. The new variable χ is conventionally called counting field.
Then, we can use the orthonormality relation (4.9) to conclude

Pn(t) =
1

2π

∫ +π

−π
Tr {P(χ, t)ρ0} e−inχdχ , Pn(z) =

1

2π

∫ +π

−π
Tr {P(χ, z)ρ0} e−inχdχ . (4.11)

The corresponding Moment-generating function is given by the Fourier transform of the probability
distribution, and we can infer the definition below.

Def. 12 (Moment-Generating function).

M(χ, t) = Tr
{
eL(χ)tρ0

}
. (4.12)

Once this function is known, all moments can be computed by differentiation with respect to the
counting field 〈

nk
〉
t

=
∑
n

nkPn(t) = (−i∂χ)kM(χ, t)
∣∣∣
χ=0

. (4.13)

The cumulant-generating function is given by

C(χ, t) = lnM(χ, t) , (4.14)

and by differentiation with respect to the counting field all cumulants are recovered
〈〈
nk
〉〉

t
=

(−i∂χ)kC(χ, t)
∣∣∣
χ=0

.

An easy way to see that moments can be obtained by differentiation with respect to the counting
field χ is to consider Eq. (4.7) under the replacement L1 → L1e

+iχ. The total momeng-generating
function (MGF) can be expanded as

M(χ, t) =
∑
n

e+inχPn(t) , (4.15)

which is just the inverse Fourier transform (FT) of Eq. (4.11). This makes it quite obvious that〈
nk
〉

= (−i∂χ)kM(χ, t)
∣∣∣
χ→0

. Cumulants and Moments are of course related, we just summarize



68 CHAPTER 4. FULL COUNTING STATISTICS

relations for the lowest few cumulants

〈〈n〉〉 = 〈n〉 ,〈〈
n2
〉〉

=
〈
n2
〉
− 〈n〉2 ,〈〈

n3
〉〉

=
〈
n3
〉
− 3 〈n〉

〈
n2
〉

+ 2 〈n〉3 ,〈〈
n4
〉〉

=
〈
n4
〉
− 4 〈n〉

〈
n3
〉
− 3

〈
n2
〉2

+ 12 〈n〉2
〈
n2
〉
− 6 〈n〉4 . (4.16)

Obviously, the first two cumulants are just the mean and width of the probability distribution. For
unimodal distributions, the third cumulant (skewness) and the fourth cumulant (kurtosis) describe
the shape of the distribution near its maximum. In contrast to moments, higher cumulants are
inert when a trivial transformation such as a simple shift is performed on a probability distribution.

4.1.1 Multiple jumps

So how is it then possible to count different jumps? In principle, we can base this on the already
existing expansion. By further splitting the free Liouvillian L0 = L00 + L2 we would obtain the
decomposition

P0(z) =
∞∑
m=0

[P00(z)L2]n L2 , (4.17)

which we can insert in Eq. (4.4). The first terms of the resulting expansion would read

P(z) = P00(z) + P00(z)L1P00(z) + P00(z)L2P00(z)

+P00(z)L1P00(z)L1P00(z) + P00(z)L2P00(z)L2P00(z)

+P00(z)L1P00(z)L2P00(z) + P00(z)L2P00(z)L1P00(z) + . . . . (4.18)

This becomes pretty involved very soon, and a diagrammatic representation is more useful, see
Fig. 4.2. However, we see that with the replacement L1 → L1e

+iχ and L2 → L2e
+iξ the probability

Figure 4.2: Illustration of the first 7 terms in
the series expansion in Eq. (4.18). Periods
of free evolution (lines) are interrupted by
instantaneous jumps of the first (marks) or
second (balls) type. In practice, many dia-
grams may vanish as e.g. for a system host-
ing at most one electron one will not observe
two electrons jumping out subsequently.

of getting n jumps of type L1 and m jumps of type L2 can be obtained via

Pnm(z) =
1

2π

∫ +π

−π
dχ

1

2π

∫ +π

−π
dξTr {P(χ, ξ, z)ρ0} e−inχe−imξ . (4.19)
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An important special case arises when we are interested in all trajectories that only lead to a net
difference. For example, we may be interested in counting the outgoing jumps of a particle (L+)
and subtract the ingoing jumps (L−) of the same particle type. Then, we can simply use the
decomposition L(χ) = L0 + e+iχL+ + e−iχL−, i.e., we use ξ = −χ. Performing the integral over
dχ now reconstructs all trajectories with the correct net number n = n1 − n2.

4.1.2 Cumulant dynamics

The clear advantage of the description by cumulants however lies in the fact that the long-term
evolution of the cumulant-generating function is usually given by the dominant eigenvalue of the
Liouvillian

C(χ, t) ≈ λ(χ)t , (4.20)

where λ(χ) is the (uniqueness assumed) eigenvalue of the Liouvillian that vanishes at zero counting
field λ(0) = 0. For this reason, the dominant eigenvalue is also interpreted as the cumulant-
generating function of the stationary current. We recall that the Liouville superoperator is in
general non-hermitian and may not have a spectral representation. Nevertheless, we can represent
it in Jordan Block form

L(χ) = Q(χ)LJ(χ)Q−1(χ) , (4.21)

where Q(χ) is a (non-unitary) similarity matrix and LJ(χ) contains the eigenvalues of the Liouvil-
lian on its diagonal – distributed in blocks with a size corresponding to the eigenvalue multiplicity.
We assume that there exists one stationary state ρ̄, i.e., one eigenvalue λ(χ) with λ(0) = 0 and that
all other eigenvalues have a larger negative real part near χ = 0. Then, we use this decomposition
in the matrix exponential to estimate its long-term evolution

M(χ, t) = Tr
{
eL(χ)tρ0

}
= Tr

{
eQ(χ)LJ (χ)Q−1(χ)tρ0

}
= Tr

{
Q(χ)eLJ (χ)tQ−1(χ)ρ0

}

→ Tr

Q(χ)


eλ(χ)·t

0
. . .

0

Q−1(χ)ρ0


= eλ(χ)·tTr

Q(χ)


1

0
. . .

0

Q−1(χ)ρ0

 = eλ(χ)tc(χ) (4.22)

with some polynomial c(χ) depending on the matrix Q(χ). This implies that the cumulant-
generating function

C(χ, t) = lnM(χ, t) = λ(χ)t+ ln c(χ) ≈ λ(χ)t (4.23)

becomes linear in λ(χ) for large times. Therefore, for large times, the cumulants can be conveniently
determined once the dominant eigenvalue of the Liouvillian is known.
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4.1.3 Example: The single-electron transistor

We will illustrate these findings with the simple rate equation of the SET with two junctions

L =

(
−ΓLfL +ΓL(1− fL)
+ΓLfL −ΓL(1− fL)

)
+

(
−ΓRfR +ΓR(1− fR)
+ΓRfR −ΓR(1− fR)

)
. (4.24)

For such rate equations, we can naturally interpret the off-diagonal matrix elements as jump terms.
Counting, for example the particles entering the system from the left as positive and leaving to
the left as negative, we would get the generalized Liouvillian

L(χ) =

(
−ΓLfL +ΓL(1− fL)e−iχ

+ΓLfLe
+iχ −ΓL(1− fL)

)
+

(
−ΓRfR +ΓR(1− fR)
+ΓRfR −ΓR(1− fR)

)
. (4.25)

The full moment-generating function can be obtained by exponentiating this matrix, but we can
also consider its dominant eigenvalue (simpler). Here we will for simplicity only discuss the infinite
bias regime fL → 1 and fR → 0. Then, we get two eigenvalues

λ±(χ) =
1

2

(
−ΓL − ΓR ±

√
(ΓL − ΓR)2 + 4e+iχΓLΓR

)
, (4.26)

and it is visible that λ+(0) = 0, such that λ(χ) = λ+(χ) is the sought-after generating function for
the cumulants. In the long-time limit, the first cumulants become

〈〈n〉〉 =
ΓLΓR

ΓL + ΓR
t ,〈〈

n2
〉〉

=
ΓLΓR

ΓL + ΓR

Γ2
L + Γ2

R

(ΓL + ΓR)2
t ,

〈〈
n3
〉〉

=
ΓLΓR

ΓL + ΓR

Γ4
L − 2Γ3

LΓR + 6Γ2
LΓ2

R − 2ΓLΓ3
R + Γ4

R

(ΓL + ΓR)4
t (4.27)

Exercise 34 (Cumulants). Show that the above formulas hold.

Alternatively, we can count different things, e.g. the jumps over the right junction, the total
number of outgoing or ingoing jumps, the total number of jumps etc.

Exercise 35 (Total number of jumps at infinite bias). Calculate the long-term cumulant-
generating function in the infinite bias limit fL → 1 and fR → 0 for the probability Pn(t) of
measuring n jumps in total. How is the first cumulant related to the current?

For example, one may be interested in the total number of jumps when the dot is only coupled
to a single equilibrium reservoir

L(χ) = Γ

(
−f +(1− f)e+iχ

+fe+iχ −1 + f

)
. (4.28)

The dominant eigenvalue is given by

λ(χ) =
Γ

2

(
−1 +

√
1− 4 (1− e+2iχ) f(1− f)

)
. (4.29)
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From it, we can determine the average value of total jumps for long times

〈n〉 = 2Γtf(1− f) ≤ Γt

2
. (4.30)

One concludes that the average number of jumps vanishes at zero temperature (where f ∈ [0, 1])
at becomes maximal at infinite temperature (where f → 1/2).

4.2 Derivation with virtual detectors

There exist many cases where we have some physical process that we can clearly identify on the
level of a given Hamiltonian but possibly not on the level of a Liouville superoperator. For example,
we may consider to monitor our single electron transistor with a point contact. If we only look
at jumps of the dot, we may not infer from them the statistics of the point contact particles.
However, given a microscopic model, we may phenomenologically identify terms which we might
want to count. Technically, such problems can still be handled with a quantum master equation by
introducing a virtual detector at the level of the interaction Hamiltonian. Suppose that in the
interaction Hamiltonian we can identify terms associated with a change of the tracked obervable
in the reservoir

HI = A+ ⊗B+ + A− ⊗B− +
∑

α 6={+,−}

Aα ⊗Bα , (4.31)

where e.g. B+ increases and B− decreases the reservoir particle number. We now artificially extend
the system Hilbert space by adding a virtual detector

HS → HS ⊗ 1 , HB → HB

HI → +
[
A+ ⊗D†

]
⊗B+ + [A− ⊗D]⊗B− +

∑
α 6={+,−}

[Aα ⊗ 1]⊗Bα , (4.32)

where

D =
∑
n

|n〉 〈n+ 1| , D† =
∑
n

|n+ 1〉 〈n| (4.33)

are the detector operators, and −∞ < n < +∞ is an integer number. Here |n〉 are the eigenstates
of the detector, and we see that D† |n〉 = |n+ 1〉 and D |n〉 = |n− 1〉. This obviously also implies
that DD† = D†D = 1. We see that each time a B+ event occurs, the detector changes its state
from n to n + 1 and reduces it when a B− event occurs. Such a detector is ideal in the sense
that it does not have its own energy content (its own Hamiltonian vanishes). Therefore, it will be
called virtual detector here. The detector operators in the interaction Hamiltonian can also be
viewed as bookkeeping operators that simply facilitate the correct identification of terms in the
master equation. We can now formally consider the detector as part of the system and derive the
master equation. Since there is no direct interaction between the original system and the detector,
the eigenbasis of both system and detector is now given by |a, n〉 = |a〉 ⊗ |n〉, and we may derive
e.g. the coarse-graining master equation or the BMS master equation in the usual way. When we
decompose the system density matrix as

ρ(t) =
∑
n

ρ(n)(t)⊗ |n〉 〈n| , (4.34)
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we can interpret ρ(n)(t) as the system density matrix conditional on detector state n. By using
that

〈n|DA−ρA+D
† |n〉 = A−ρ

(n+1)A+ ,

〈n|D†A+ρA−D |n〉 = A+ρ
(n−1)A− (4.35)

we can reduce the resulting master equation to a form like

ρ̇(n) = L0ρ
(n) + L+ρ

(n−1) + L−ρ(n+1) . (4.36)

The coarse-graining master equation in Box 11 for example shows that such conditioned master
equations can be readily derived. This form now provides a natural decomposition into no-jump
(L0), and jumps into and out of the system (L±). We can re-introduce the counting field by
performing a discrete Fourier transform

ρ(χ, t) =
∑
n

e+inχρ(n)(t) , (4.37)

which recovers the generalized Liouville superoperator

L(χ) = L0 + L−e−iχ + L+e
+iχ . (4.38)

4.2.1 Example: single resonant level

As the most trivial application we consider a quantum dot coupled to a single lead

H = εd†d+
∑
k

(
tkdc

†
k + t∗kckd

†
)

+
∑
k

εkc
†
kck

→ εd†d+ d⊗B† ⊗
∑
k

tkdc
†
k + d† ⊗B ⊗

∑
k

t∗kck +
∑
k

εkc
†
kck , (4.39)

where we have tacitly performed the tensor-product mapping and also introduced the virtual
detector in the second line. The system coupling operators become

A1 = d⊗B† , A2 = d† ⊗B , (4.40)

and the reservoir correlation functions read

C12(τ) =
1

2π

∫
Γ(ω)f(ω)e+iωτdω , C21(τ) =

1

2π

∫
Γ(ω)[1− f(ω)]e−iωτdω . (4.41)

Now, we can for example consider the coarse-graining master equation from Def. 11

ρ̇ = −i

[
1

2iτ

∫ τ

0

dt1dt2sgn(t1 − t2)
(
C12(t1 − t2)e−iε(t1−t2)dd† + C21(t1 − t2)e+iε(t1−t2)d†d

)
,ρ

]
+

1

τ

∫ τ

0

dt1dt2C12(t1 − t2)e−iε(t1−t2)

[
(d† ⊗B)ρ(d⊗B†)− 1

2

{
dd†,ρ

}]
+

1

τ

∫ τ

0

dt1dt2C21(t1 − t2)e+iε(t1−t2)

[
(d⊗B†)ρ(d† ⊗B)− 1

2

{
d†d,ρ

}]
, (4.42)
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where we have used that BB† = B†B = 1. Now, inserting a decomposition of the form

ρ =
∑
n

ρ(n)(t)⊗ |n〉 〈n| (4.43)

and sandwiching the equation with the states 〈n| . . . |n〉 we obtain a conditional (or n-resolved)
master equation for the dot alone

ρ̇(n) = −i

[
1

2iτ

∫ τ

0

dt1dt2sgn(t1 − t2)
(
C12(t1 − t2)e−iε(t1−t2)dd† + C21(t1 − t2)e+iε(t1−t2)d†d

)
,ρ(n)

]
+

1

τ

∫ τ

0

dt1dt2C12(t1 − t2)e−iε(t1−t2)

[
d†ρ(n+1)d− 1

2

{
dd†,ρ(n)

}]
+

1

τ

∫ τ

0

dt1dt2C21(t1 − t2)e+iε(t1−t2)

[
dρ(n−1)d† − 1

2

{
d†d,ρ(n)

}]
. (4.44)

Upon discrete Fourier transformation, this yields

ρ̇(χ, t) = −i

[
1

2iτ

∫ τ

0

dt1dt2sgn(t1 − t2)
(
C12(t1 − t2)e−iε(t1−t2)dd† + C21(t1 − t2)e+iε(t1−t2)d†d

)
,ρ(χ, t)

]
+

1

τ

∫ τ

0

dt1dt2C12(t1 − t2)e−iε(t1−t2)

[
d†ρ(χ, t)e−iχd− 1

2

{
dd†,ρ(χ, t)

}]
+

1

τ

∫ τ

0

dt1dt2C21(t1 − t2)e+iε(t1−t2)

[
dρ(χ, t)e+iχd† − 1

2

{
d†d,ρ(χ, t)

}]
. (4.45)

Upon using that

lim
τ→∞

1

τ

∫ τ

0

dt1dt2C12(t1 − t2)e−iε(t1−t2) = Γ(ε)f(ε) ,

lim
τ→∞

1

τ

∫ τ

0

dt1dt2C21(t1 − t2)e+iε(t1−t2) = Γ(ε)[1− f(ε)] , (4.46)

we see that we recover the rate equation with counting fields we had phenomenologically introduced
before

d

dt

(
ρ00

ρ11

)
= Γ(ε)

(
−f(ε) +(1− f(ε))e+iχ

+f(ε)e−iχ −(1− f(ε))ρ11

)
. (4.47)

We note that the difference in sign arises from our convention that particles entering the reservoirs
should be counted positive.

4.2.2 Example: SET monitored by a point contact

High-precision tests of counting statistics have been performed with a quantum point contact that
is capacitively coupled to a single-electron transistor [9]. The Hamiltonian of the system depicted
in Fig. 4.3 reads

HS = εd†d ,

HB =
∑
k

εkLc
†
kLckL +

∑
k

εkLc
†
kRckR +

∑
k

εkLγ
†
kLγkL +

∑
k

εkLγ
†
kRγkR ,

HI =

[∑
k

tkLdc
†
kL +

∑
k

tkRdc
†
kR + h.c.

]
+

[∑
kk′

(
tkk′ + d†dτkk′

)
γkLγ

†
k′R + h.c.

]
, (4.48)



74 CHAPTER 4. FULL COUNTING STATISTICS

Figure 4.3: Sketch of a quantum point contact (in fact, a two component bath with the components
held at different chemical potential) monitoring a single electron transistor. The tunneling through
the quantum point contact is modified when the SET is occupied.

where ε denotes the dot level, ckα annihilate electrons on SET lead α and γkα are the annihilation
operators for the QPC lead α. The QPC baseline tunneling amplitude is given by tkk′ and describes
the scattering of and electron from mode k in the left lead to mode k′ in the right QPC contact.
When the nearby SET is occupied it is modified to tkk′ + τkk′ , where τkk′ represents the change of
the tunneling amplitude.

We will derive a master equation for the dynamics of the SET due to the interaction with the
QPC and the two SET contacts. In addition, we are interested not only in the charge counting
statistics of the SET but also the QPC. The Liouvillian for the SET-contact interaction is well
known and has been stated previously (we insert counting fields at the right lead to count charges
traversing the SET from left to right)

LSET(χ) =

(
−ΓLfL − ΓRfR +ΓL(1− fL) + ΓR(1− fR)e+iχ

+ΓLfL + ΓRfRe
−iχ −ΓL(1− fL)− ΓR(1− fR)

)
. (4.49)

We will therefore derive the dissipator for the SET-QPC interaction separately. To keep track
of the tunneled QPC electrons, we insert a virtual detector operator in the respective tunneling
Hamiltonian

HQPC
I =

∑
kk′

(
tkk′1 + d†dτkk′

)
B†γkLγ

†
k′R +

∑
kk′

(
t∗kk′1 + d†dτ ∗kk′

)
Bγk′Rγ

†
kL

= 1⊗B† ⊗
∑
kk′

tkk′γkLγ
†
k′R + 1⊗B ⊗

∑
kk′

t∗kk′γk′Rγ
†
kL

+d†d⊗B† ⊗
∑
kk′

τkk′γkLγ
†
k′R + d†d⊗B ⊗

∑
kk′

τ ∗kk′γk′Rγ
†
kL . (4.50)

Note that we have implicitly performed the mapping to a tensor product representation of the
fermionic operators, which is unproblematic here as between SET and QPC no particle exchange
takes place and the electrons in the QPC and the SET may be treated as different particle types.
To simplify the system, we assume that the change of tunneling amplitudes affects all modes in
the same manner, i.e., τkk′ = τ̃ tkk′ , which enables us to combine some coupling operators

HQPC
I =

[
1 + τ̃ d†d

]
⊗B† ⊗

∑
kk′

tkk′γkLγ
†
k′R +

[
1 + τ̃ ∗d†d

]
⊗B ⊗

∑
kk′

t∗kk′γk′Rγ
†
kL . (4.51)
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The evident advantage of this approximation is that only two correlation functions have to be
computed. We can now straightforwardly (since the baseline tunneling term is not included in the
bath Hamiltonian) map to the interaction picture

B1(τ) =
∑
kk′

tkk′γkLγ
†
k′Re

−i(εkL−εk′R)τ , B2(τ) =
∑
kk′

t∗kk′γk′Rγ
†
kLe

+i(εkL−εk′R)τ . (4.52)

For the first bath correlation function we obtain

C12(τ) =
∑
kk′

∑
``′

tkk′t
∗
``′e
−i(εkL−εk′R)τ

〈
γkLγ

†
k′Rγ`′Rγ

†
`L

〉
=

∑
kk′

|tkk′|2e−i(εkL−εk′R)τ [1− fL(εkL)] fR(εk′R)

=
1

2π

∫ ∫
T (ω, ω′) [1− fL(ω)] fR(ω′)e−i(ω−ω′)τdωdω′ , (4.53)

where we have introduced T (ω, ω′) = 2π
∑

kk′ |tkk′ |
2δ(ω − εkL)δ(ω − εk′R). Note that in contrast

to previous tunneling rates, this quantity is dimensionless. The integral factorizes when T (ω, ω′)
factorizes (or when it is flat T (ω, ω′) = t).

In this case, the correlation function C12(τ) is expressed as a product in the time domain, such
that its Fourier transform will be given by a convolution integral

γ12(Ω) =

∫
C12(τ)e+iΩτdτ

= t

∫
dωdω′ [1− fL(ω)] fR(ω′)δ(ω − ω′ − Ω)

= t

∫
[1− fL(ω)] fR(ω − Ω)dω . (4.54)

For the other correlation function, we have

γ21(Ω) = t

∫
fL(ω) [1− fR(ω + Ω)] dω . (4.55)

Exercise 36 (Correlation functions for the QPC). Show the validity of Eqns. (4.55).

The structure of the Fermi functions demonstrates that the shift Ω can be included in the
chemical potentials. Therefore, we consider integrals of the type

I =

∫
f1(ω) [1− f2(ω)] dω . (4.56)

At zero temperature, these should behave as I ≈ (µ1 − µ2)Θ(µ1 − µ2), where Θ(x) denotes the
Heaviside-Θ function, which follows from the structure of the integrand, see Fig. 4.4. For finite
temperatures, the value of the integral can also be calculated, for simplicity we constrain ourselves
to the (experimentally relevant) case of equal temperatures (β1 = β2 = β), for which we obtain

I =

∫
1

(eβ(µ2−ω) + 1) (e−β(µ1−ω) + 1)
dω

= lim
δ→∞

∫
1

(eβ(µ2−ω) + 1) (e−β(µ1−ω) + 1)

δ2

δ2 + ω2
dω , (4.57)
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Figure 4.4: Integrand in Eq. (4.56). At zero
temperature at both contacts, we obtain a
product of two step functions and the area
under the curve is given by the difference
µ1 − µ2 as soon as µ1 > µ2 (and zero other-
wise).

where we have introduced the Lorentzian-shaped regulator to enforce convergence. By identifying
the poles of the integrand

ω∗± = ±iδ ,

ω∗1,n = µ1 + i
π

β
(2n+ 1) ,

ω∗2,n = µ2 + i
π

β
(2n+ 1) , (4.58)

where n ∈ {0,±1,±2,±3, . . . we can solve the integral by using the residue theorem, see also
Fig. 4.5 for the integration contour. Finally, we obtain for the integral

Figure 4.5: Poles and integration contour for
Eq. (4.56) in the complex plane. The in-
tegral along the real axis (blue line) closed
by an arc (red curve) in the upper complex
plane, along which (due to the regulator) the
integrand vanishes sufficiently fast.

I = 2πi lim
δ→∞

{
Res f1(ω) [1− f2(ω)]

δ2

δ2 + ω2

∣∣∣∣
ω=+iδ

+
∞∑
n=0

Res f1(ω) [1− f2(ω)]
δ2

δ2 + ω2

∣∣∣∣
ω=µ1+iπ

β
(2n+1)

+
∞∑
n=0

Res f1(ω) [1− f2(ω)]
δ2

δ2 + ω2

∣∣∣∣
ω=µ2+iπ

β
(2n+1)

}
=

µ1 − µ2

1− e−β(µ1−µ2)
, (4.59)

which automatically obeys the simple zero-temperature (β → ∞) limit. With the replacements
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µ1 → µR + Ω and µ2 → µL, we obtain for the first bath correlation function

γ12(Ω) = t
Ω− V

1− e−β(Ω−V )
, (4.60)

where V = µL − µR is the QPC bias voltage. Likewise, with the replacements µ1 → µL and
µ2 → µR − Ω, the second bath correlation function becomes

γ21(Ω) = t
Ω + V

1− e−β(Ω+V )
. (4.61)

Now we can calculate the transition rates in our system (containing the virtual detector and the
quantum dot) for a non-degenerate system spectrum. However, now the detector is part of our
system. Therefore, the system state is not only characterized by the number of charges on the
SET dot a ∈ {0, 1} but also by the number of charges n that have tunneled through the QPC and
have thereby changed the detector state

ρ̇(a,n)(a,n) =
∑
b,m

γ(a,n)(b,m),(a,n)(b,m)ρ(b,m)(b,m) −

[∑
b,m

γ(b,m)(a,n),(b,m)(a,n)

]
ρ(a,n)(a,n) . (4.62)

Shortening the notation by omitting the double-indices we may also write

ρ̇(n)
aa =

∑
b,m

γ(a,n),(b,m)ρ
(m)
bb −

[∑
b,m

γ(b,m),(a,n)

]
ρ(n)
aa , (4.63)

where ρ
(n)
aa = ρ(a,n),(a,n) and γ(a,n),(b,m) = γ(a,n)(a,n),(b,m)(b,m). It is evident that the coupling operators

A1 = (1 + τ̃ d†d) ⊗ B† and A2 = (1 + τ̃ ∗d†d) ⊗ B only allow for sequential tunneling through the
QPC at lowest order (i.e., m = n ± 1) and do not induce transitions between different dot states
(i.e., a = b), such that the only non-vanishing contributions may arise for

γ(0,n)(0,n+1) = γ12(0) 〈0, n|A2 |0, n+ 1〉 〈0, n|A†1 |0, n+ 1〉∗ = γ12(0) ,

γ(0,n)(0,n−1) = γ21(0) 〈0, n|A1 |0, n− 1〉 〈0, n|A†2 |0, n− 1〉∗ = γ21(0) ,

γ(1,n)(1,n+1) = γ12(0) 〈1, n|A2 |1, n+ 1〉 〈1, n|A†1 |1, n+ 1〉∗ = γ12(0)|1 + τ̃ |2 ,
γ(1,n)(1,n−1) = γ21(0) 〈1, n|A1 |1, n− 1〉 〈1, n|A†2 |1, n− 1〉∗ = γ21(0)|1 + τ̃ |2 . (4.64)

The remaining terms just account for the normalization.

Exercise 37 (Normalization terms). Compute the remaining rates∑
m

γ(0,m)(0,m),(0,n)(0,n) , and
∑
m

γ(1,m)(1,m),(1,n)(1,n)

explicitly.

Adopting the notation of conditional master equations, this leads to the connected system

ρ̇
(n)
00 = γ12(0)ρ

(n+1)
00 + γ21(0)ρ

(n−1)
00 − [γ12(0) + γ21(0)] ρ

(n)
00

ρ̇
(n)
11 = |1 + τ̃ |2γ12(0)ρ

(n+1)
11 + |1 + τ̃ |2γ21(0)ρ

(n−1)
11 − |1 + τ̃ |2 [γ12(0) + γ21(0)] ρ

(n)
11 , (4.64)
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such that after Fourier transformation with the counting field ξ for the QPC, we obtain the
following dissipator

LQPC(ξ) =

( [
γ21

(
e+iξ − 1

)
+ γ12

(
e−iξ − 1

)]
0

0 |1 + τ̃ |2
[
γ21

(
e+iξ − 1

)
+ γ12

(
e−iξ − 1

)] ) ,

(4.65)

which could not have been deduced directly from a Liouvillian for the SET alone. More closely
analyzing the Fourier transforms of the bath correlation functions

γ21 = γ21(0) = t
V

1− e−βV
,

γ12 = γ12(0) = t
V

e+βV − 1
(4.66)

we see that for sufficiently large QPC bias voltages V →∞, transport becomes unidirectional: One
contribution becomes linear in the voltage γ21 → tV and the other one is exponentially suppressed
γ12 → 0. Despite the unusual form of the tunneling rates we see that they obey the usual detailed
balance relations

γ21

γ12

= e+βV . (4.67)

The sum of both Liouvillians (4.49) and (4.65) constitutes the total dissipator

L(χ, ξ) = LSET(χ) + LQPC(ξ) , (4.68)

which can be used to calculate the probability distributions for tunneling through both transport
channels (QPC and SET).

Exercise 38 (QPC current). Show that the stationary state of the SET is unaffected by the addi-
tional QPC dissipator and calculate the stationary current through the QPC for Liouvillian (4.68).

When we consider the case {ΓL,ΓR} � {tV, |1 + τ̃ |tV }, we approach a bistable system, where
for a nearly stationary SET the QPC transmits many charges. Then, the QPC current measured
at finite times will be large when the SET dot is empty and reduced otherwise. In this case,
the counting statistics approaches the case of telegraph noise. When the dot is empty or filled
throughout respectively, the current can easily be determined as

I0 = [γ21(0)− γ12(0)] , I1 = |1 + τ̃ |2 [γ21(0)− γ12(0)] . (4.69)

For finite time intervals ∆t, the number of electrons tunneling through the QPC ∆n is determined
by the probability distribution

P∆n(∆t) =
1

2π

+π∫
−π

Tr
{
eL(0,ξ)∆t−i∆nξρ(t)

}
dξ , (4.70)

where ρ(t) represents the initial density matrix. This quantity can e.g. be evaluated numerically.
When ∆t is not too large (such that the stationary state is not really reached) and not too small



4.2. DERIVATION WITH VIRTUAL DETECTORS 79

(such that there are sufficiently many particles tunneling through the QPC to meaningfully define a
current), a continuous measurement of the QPC current maps to a fixed-point iteration as follows:
Measuring a certain particle number corresponds to a projection, i.e., the system-detector density
matrix is projected to a certain measurement outcome which occurs with the probability P∆n(∆t)

ρ =
∑
n

ρ(n) ⊗ |n〉 〈n| m→ ρ(m)

Tr {ρ(m)}
. (4.71)

It is now essential to use the density matrix after the measurement as the initial state for the
next iteration. This ensures that e.g. after measuring a large current it is in the next step more
likely to measure a large current than a low current. Consequently, the ratio of measured particles
divided by measurement time gives a current estimate I(t) ≈ ∆n

∆t
for the time interval. Such

current trajectories are used to track the full counting statistics through quantum point contacts,
see Fig. 4.6 In this way, the QPC acts as a detector for the counting statistics of the SET circuit.
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Figure 4.6: Numerical simulation of the time-resolved QPC current for a fluctuating dot occu-
pation. At infinite SET bias, the QPC current allows to reconstruct the full counting statis-
tics of the SET, since each current blip from low (red line) to high (green line) current corre-
sponds to an electron leaving the SET to its right junction. Parameters: ΓL∆t = ΓR∆t = 0.01,
γ12(0) = |1 + τ̃ |2γ12(0) = 0, γ21(0) = 100.0, |1 + τ̃ |2γ21(0) = 50.0, fL = 1.0, fR = 0.0. The right
panel shows the corresponding probability distribution Pn(∆t) versus n = I∆t, where the blue
curve is sampled from the left panel and the black curve is the theoretical limit for infinitely long
times.

Finally, we note that for an SET, a QPC only acts as a reliable detector when the SET transport
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is unidirectional (large bias).

4.2.3 Example: Pure-Dephasing Model

As another example where the counting statistics cannot be deduced from the system dynamics,
we revisit the pure-dephasing limit of the spin-boson model

H = Ωσz + σz ⊗
∑
k

(
hkbk + h∗kb

†
k

)
+
∑
k

ωkb
†
kbk . (4.72)

If we wish to count the total number of particles radiated into the reservoir, we introduce virtual
detector operators and generalize the Hamiltonian to

H = Ωσz + σz ⊗B ⊗
∑
k

hkbk + σz ⊗B† ⊗ h∗kb
†
k +

∑
k

ωkb
†
kbk , (4.73)

from which we can infer the system coupling operators

A1 = σz ⊗B† , A2 = σz ⊗B . (4.74)

We note that these are time-independent in the interaction picture Ai(t) = Ai. Furthermore, the
reservoir correlation functions become

C12(τ) =
1

2π

∫ ∞
0

Γ(ω)[1 + nB(ω)]e−iωτdω ,

C21(τ) =
1

2π

∫ 0

−∞
Γ(−Ω)nB(−Ω)e−iωτdω . (4.75)

From these expressions, we can read off their Fourier transforms

γ21(ω) = Θ(−ω)Γ(−ω)nB(−ω) , γ12(ω) = Θ(+ω)Γ(+ω)[1 + nB(+ω)] . (4.76)

The coupling operators are evidently not hermitian. Therefore, we recall the coarse-graining
Liouvillian from Def. 11. With σ2

z = 1 we see that we can ignore the Lamb-shift contribution, and
the coarse-graining master equation becomes

ρ̇ =
1

2πτ

∫ τ

0

dt1

∫ τ

0

dt2

∫
dωΘ(ω)Γ(ω)[1 + nB(ω)]e−iω(t1−t2)

[
(σz ⊗B)ρ(σz ⊗B†)− ρ

]
+

1

2πτ

∫ τ

0

dt1

∫ τ

0

dt2

∫
dωΘ(−ω)Γ(−ω)nB(−ω)e−iω(t1−t2)

[
(σz ⊗B†)ρ(σz ⊗B)− ρ

]
.(4.77)

In contrast to Eq. (2.113) we have split the two terms in the dissipator since we count one as
particle-creating and the other one as particle annihilating in the reservoir. Performing the tem-
poral integrations we obtain

ρ̇ = γ−(τ)
[
e−iχσzρσz − ρ

]
+ γ+(τ)

[
e+iχσzρσz − ρ

]
,

γ+(τ) =

∫
Θ(ω)Γ(ω)[1 + nB(ω)]

τ

2π
sinc2

[ωτ
2

]
dω ,

γ−(τ) =

∫
Θ(−ω)Γ(−ω)nB(−ω)

τ

2π
sinc2

[ωτ
2

]
dω . (4.78)
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Eventually, we can write this as Liouville superoperator with counting fields on the diagonals

ρ̇00 =
[
γ−(τ)(e−iχ − 1) + γ+(τ)(e+iχ − 1)

]
ρ00 ,

ρ̇11 =
[
γ−(τ)(e−iχ − 1) + γ+(τ)(e+iχ − 1)

]
ρ11 ,

ρ̇01 = −
[
γ−(τ)(e−iχ + 1) + γ+(τ)(e+iχ + 1)

]
ρ01 ,

ρ̇00 = −
[
γ−(τ)(e−iχ + 1) + γ+(τ)(e+iχ + 1)

]
ρ10 . (4.79)

When setting the counting field to zero, we recover Eq. (2.113). Since this is diagonal, we can
easily exponentiate the Liouvillian, and the cumulant-generating function becomes at finite times

C(χ, τ) =
[
γ−(τ)(e−iχ − 1) + γ+(τ)(e+iχ − 1)

]
τ . (4.80)

Interestingly, the cumulant generating function does not depend on the initial state of the system
in this particular example. With this, the first cumulant becomes

〈〈N〉〉τ = (−i∂χ) Tr
{
eLτ (χ)τρ0

}∣∣
χ→0

= [γ+(τ)− γ−(τ)] τ

=

∫ ∞
0

Γ(ω)
τ 2

2π
sinc2

[ωτ
2

]
dω =

2

π

∫ ∞
0

Γ(ω)

ω2
sin2

(ωτ
2

)
dω . (4.81)

We see that this becomes completely independent of the initial state of the system and also of the
thermal properties of the reservoir. Similarly, we get for the second cumulant〈〈

N2
〉〉

τ
= [γ+(τ) + γ−(τ)] τ =

∫ ∞
0

Γ(ω)[1 + 2nB(ω)]
τ 2

2π
sinc2

[ωτ
2

]
dω

=
2

π

∫ ∞
0

Γ(ω)[1 + 2nB(ω)]

ω2
sin2

(ωτ
2

)
dω . (4.82)

Whereas the mean does not depend on the thermal properties of the reservoirs, the second cumulant
does. We should therefore try to confirm this result independently.

Exact solution

To solve the pure-dephasing spin-boson problem exactly for the evolution of reservoir observables,
we now consider the Heisenberg equations of motion. The reservoir modes evolve according to

ḃk = +i[H, bk] = −ih∗kσ
z − iωkbk(t) . (4.83)

Since σz is constant in the Heisenberg picture, this is readily solved by

bk(t) = e−iωktbk +
h∗k
ωk

(
e−iωkt − 1

)
σz , (4.84)

and similar for the hermitian conjugate operator. Therefore, the exact expectation value of the
particle number in the reservoir becomes

〈N〉t =
∑
k

Tr

{(
e+iωktb†k +

hk
ωk

(
e+iωkt − 1

)
σz
)(

e−iωktbk +
h∗k
ωk

(
e−iωkt − 1

)
σz
)
ρ0
S ⊗ ρ0

B

}
= 〈N〉0 +

∑
k

|hk|2

ω2
[2− 2 cos(ωt)] . (4.85)
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This change arises from the interaction. The change in the particle number can be compared with
our previous result

∆N(t) =
1

2π

∫
Γ(ω)

ω2
4 sin2

[
ωt

2

]
dω , (4.86)

and we see that the coarse-graining current matches the exact solution when the coarse-graining
time is chosen dynamically with the physical time τ = t.

Now, we consider the second moment〈
N2
〉
t

=
∑
kq

Tr
{(

e+iωktb†k +
hk
ωk

(
e+iωkt − 1

)
σz
)(

e−iωktbk +
h∗k
ωk

(
e−iωkt − 1

)
σz
)
×

×
(
e+iωqtb†q +

hq
ωq

(
e+iωqt − 1

)
σz
)(

e−iωqtbq +
h∗q
ωq

(
e−iωqt − 1

)
σz
)
ρ0
S ⊗ ρ0

B

}
=

〈
N2
〉

0
+
∑
kq

|hk|2

ω2
k

[2− 2 cos(ωkt)]
|hq|2

ω2
q

[2− 2 cos(ωqt)]

+2 〈N〉0
∑
k

|hk|2

ω2
k

[2− 2 cos(ωkt)] +
∑
k

[1 + 2nB(ωk)]
|hk|2

ω2
k

[2− 2 cos(ωkt)] . (4.87)

Putting things together we construct the second cumulant

〈〈
N2
〉〉

t
=
∑
k

[1 + 2nB(ωk)]
|hk|2

ω2
k

[2− 2 cos(ωkt)] =
2

π

∫ ∞
0

Γ(ω)

ω2
[1 + 2nB(ω)] sin2

(
ωt

2

)
dω .(4.88)

Also the second cumulant agrees with the exact solution.

4.3 Waiting times and Full Counting Statistics

We will also briefly discuss the relation between full counting statistics and waiting times, see also
Ref. [10]. Suppose we have a decomposition of the Liouville superoperator into n jump terms

L = L0 + L1 + . . .+ Ln , (4.89)

where Li describes a jump of type i. With the FCS, we can ask for the probabilities of having ni
jumps of type i during a time interval ∆t. In contrast, a waiting time distribution P (τ) denotes the
distribution of times between two events. A trivial example of a waiting time distribution can be
easily constructed from the FCS by asking for the average waiting time for the first jump to occur.
The probability of observing no jump from t0 = 0 up to time t is given by P0(t) = Tr

{
eL0tρ0

}
.

Then, one can easily show that P (τ) = −Ṗ0(τ) = −Tr
{
L0e

L0τρ0

}
is the distribution of waiting

times. Since we always have P (τ) ≥ 0 and
∫∞

0
P (τ)dτ = −P0(∞) + P0(0) = 1, this is a valid

probability distribution. The starting event here is the beginning of the observation, and the final
event is the first observed jump.

However, the waiting time problem can be formulated much more generally. For example, we
can ask for the waiting time distribution between two successive jump events, i.e., for the time
between a jump of type i followed by a jump of type j. This will of course depend on the initial
state, such that to avoid ambiguities one usually chooses it to be the steady state ρ0 = ρ̄, obeying
Lρ̄ = 0. We also note that we assume that there exists only one steady state.
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First, to meaningfully define the waiting time distribution, we have to ask ourselves about the
density matrix after the first jump has occurred. From the probability P i

1(t) of observing a single
jump of type i during ∆t

P i
1(∆t) =

∫ t0+∆t

t0

Tr
{
eL0(t0+∆t−t1)LieL0(t1−t0)ρ̄

}
dt1 (4.90)

we can infer that as ∆t→ 0, the probability becomes P i
n(∆t)→ ∆tTr {Liρ̄}, and the corresponding

density matrix right after the jump becomes

ρ(i) =
∆tLiρ̄

∆tTr {Liρ̄}
=

Liρ̄
Tr {Liρ̄}

. (4.91)

Here, we have normalized by the probability of this particular jump. We can now take this as the
initial state and ask for the probability that no second jump of any type occurs up to time t

P i
0(t) = Tr

{
eL0tρ(i)

}
. (4.92)

The corresponding waiting time distribution would – in complete analogy to our previous argu-
ments – be given by P i(τ) = −Tr

{
L0e

L0τρ(i)
}

, but our sought-after final event is not the end of
the observations, but should be the observation of a second jump. We can also write down the
un-normalized density matrix for this trajectory, defined by an initial jump of type i, followed by
a jump-free evolution up to time τ

ρ(0,i)(τ) = eL0τρ(i) . (4.93)

Now, observing a jump of type j at time τ yields the conditional density matrix

ρ(j,i)(τ) = LjeL0τρ(i) , (4.94)

and the corresponding probability is given by the trace of this expression. This leads to the
definition below.

Def. 13 (Waiting time distribution). For a Liouvillian decomposition L = L0 +
∑n

i=1 Li with
jump terms Li and steady state Lρ̄ = 0, the waiting time distribution between an initial jump of
type i and a successive jump of type j is defined as

wji(τ) =
Tr
{
LjeL0τLiρ̄

}
Tr {Liρ̄}

. (4.95)

The waiting times defined this way are positive when our probability interpretation of the
Dyson series holds. However, they are not always normalized to one, since a jump i may not
necessarily be followed by a jump j.

For example, we can consider the single resonant level with the splitting L = L0 + L1 + L2,
where

L0 = Γ

(
−f 0
0 −(1− f)

)
, L1 = Γ

(
0 0
f 0

)
, L2 = Γ

(
0 1− f
0 0

)
. (4.96)
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The steady state of the full Liouvillian is given by ρ̄ = (1 − f, f)T . Then, we can compute the
waiting time distributions

w(τ) =

(
0 Γfe−Γfτ

Γ(1− f)e−Γ(1−f)τ 0

)
. (4.97)

This trivially shows that it is not possible to observe two successive jumps of the same type in this
system, it can only hold a single electron. Consequently, we also observe that these waiting time
distributions are normalized.

For completeness, we also revisit the SET in the infinite bias regime with the splitting

L0 =

(
−ΓL 0

0 −ΓR

)
, L1 =

(
0 0

+ΓL 0

)
, L2 =

(
0 +ΓR
0 0

)
. (4.98)

The steady state is given by ρ = (ΓR,ΓL)T/(ΓL + ΓR), and the waiting time distributions become

w(τ) =

(
0 ΓLe

−ΓLτ

ΓRe
−ΓRτ 0

)
. (4.99)

These are precisely the waiting time distributions that could be extracted from Fig. 4.6. Here,
ΓLe

−ΓLτ is the distributions for the empty dot, and ΓRe
−ΓRτ corresponds to the filled dot.

4.4 General Microscopic Derivation

Sometimes, we are interested not only in the number of particles but also e.g. in the energy
transferred into the reservoir. Then, it is less clear how one would proceed with a virtual detector
approach. Alternatively, one could be interested in other observables of the reservoir, where at the
level of the Hamiltonian it is not immediately apparent how these reservoir observables are changed
by individual terms. Therefore, we also consider another microscopic way of deriving generalized
master equations here. At this point, we only assume that the observable of interest Ô commutes
with the reservoir Hamiltonian [Ô,HB] = 0. The observable in the reservoir can already initially
take infinite values – after all, a reservoir can contain an infinite amount of particles. To say by
how much the observable has changed, we have to define a reference, which can be done with an
initial measurement.

We therefore employ the spectral decomposition of the observable

Ô =
∑
`

O` |`〉 〈`| . (4.100)

The initial measurement projects the bath density matrix to

ρ̄B
`→ |`〉 〈`| ρ̄B |`〉 〈`|

P`
=
ρ̄

(`)
B

P`
, (4.101)

where P` = Tr {|`〉 〈`| ρ̄B} denotes the probability for the outcome ` to be obtained in the first
measurement. Since we only measure a reservoir observable, this does not affect the system density
matrix. The initial value O` is now our reference point with respect to which we define the change.
Since we do not only want a generating function specific to a certain initial value, we perform a
weighted average over all outcomes to define the moment-generating function

M(χ, t) =
∑
`

Tr
{
eiχ(Ô−O`)U(t)ρ0

S ⊗ ρ̄
(`)
B U

†(t)
}
, (4.102)
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where we see that the probability P` has cancelled due to the weighted average. We note that
this equation has been written down in the interaction picture, where due to our assumption
the reservoir observable did not pick up a time dependence. Clearly, computing derivatives with
respect to χ pulls down powers of (Ô −O`) in the usual way.

We now evaluate the moment-generating function as

M(χ, t) =
∑
`

Tr
{
e+i(Ô−O`)χU(t)ρ0

S ⊗ ρ
(`)
B U

†(t)
}

=
∑
`

Tr
{
e+iÔ χ

2U(t)e−iO`
χ
2 ρ0

S ⊗ ρ
(`)
B e
−iO`

χ
2U †(t)e+iÔ χ

2

}
=

∑
`

Tr
{
e+iÔ χ

2U(t)e−iÔ χ
2 ρ0

S ⊗ e+i(Ô−O`)χ2 ρ
(`)
B e

+i(Ô−O`)χ2 e−iÔ χ
2U †(t)e+iÔ χ

2

}
=

∑
`

Tr
{
e+iÔ χ

2U(t)e−iÔ χ
2 ρ0

S ⊗ ρ
(`)
B e
−iÔ χ

2U †(t)e+iÔ χ
2

}
= Tr

{
U+χ

2
(t)ρ0 ⊗

(∑
`

ρ̄
(`)
B

)
U †−χ

2
(t)

}
= Tr

{
U+χ

2
(t)ρ0 ⊗ ¯̄ρBU

†
−χ

2
(t)
}

(4.103)

Here, we have used that O` is just a number (first line) and also that ei(Ô−O`)χ/2ρ̄
(`)
B e

i(Ô−O`)χ/2 = ρ̄
(`)
B

by construction, cf. Eq. (4.101). Instead of the usual bath density matrix, we have now used its
averaged initial value after the projection ¯̄ρB =

∑
` |`〉 〈`| ρ̄B |`〉 〈`|. Depending on measurement

and initial state, this may or may not have any effect on the statistics. Eventually, this defines a
generalized time evolution operator

U+χ
2
(t) = e+iÔ χ

2U (t)e−iÔ χ
2 . (4.104)

This obeys the same initial condition as the normal time evolution operator, and from U̇(t) =
−iHI(t)U(t) we can conclude that

U̇+χ
2
(t) = −ie+iÔ χ

2HI(t)e
−iÔ χ

2U+χ
2
(t) = −iHI

(χ
2
, t
)
U+χ

2
(t) . (4.105)

This defines a generalized interaction Hamiltonian

HI

(χ
2
, t
)

= e+iÔ χ
2HI(t)e

−iÔ χ
2 =

∑
α

Aα(t)⊗ e+iÔ χ
2Bα(t)e−iÔ χ

2 , (4.106)

and with an analogous calculation, we obtain

U̇ †−χ
2

= +iU †−χ
2
HI

(
−χ
2
, t

)
. (4.107)

In Eqns. (2.78) and (2.79) this then simply implies

U+χ
2
(t) = 1− i

t∫
0

HI

(
+
χ

2
, t1

)
dt1 −

t∫
0

dt1dt2HI

(
+
χ

2
, t1

)
HI

(
+
χ

2
, t2

)
Θ(t1 − t2) + . . . ,

U †−χ
2
(t) = 1 + i

t∫
0

HI

(
−χ

2
, t1

)
dt1 −

t∫
0

dt1dt2HI

(
−χ

2
, t1

)
HI

(
−χ

2
, t2

)
Θ(t2 − t1) + . . . .(4.108)
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Based on this evolution, we can now follow e.g. the coarse-graining derivation of a master equation
with using only minor modifications. Using the same assumptions as in Sec. 2.2.3 (vanishing of
first order, initially factorizing state) we get

tLtρ0
S = +

∫ t

0

dt1dt2TrB

{
HI

(
+
χ

2
, t2

)
ρ0
S ⊗ ¯̄ρBHI

(
−χ

2
, t1

)}
−
∫ t

0

dt1dt2Θ(t1 − t2)TrB

{
HI

(
+
χ

2
, t1

)
HI

(
+
χ

2
, t2

)
ρ0
S ⊗ ¯̄ρB

}
−
∫ t

0

dt1dt2Θ(t2 − t1)TrB

{
ρ0
S ⊗ ¯̄ρBHI

(
−χ

2
, t1

)
HI

(
−χ

2
, t1

)}
=

∑
αβ

∫ t

0

dt1dt2

[
Cχ
αβ(t1, t2)Aβ(t2)ρ0

SAα(t1) (4.109)

−C0
αβ(t1, t2)Θ(t1 − t2)Aα(t1)Aβ(t2)ρ0

S − C0
αβ(t1, t2)Θ(t2 − t1)ρ0

SAα(t1)Aβ(t2)
]
.

In the last line, we have used that e.g. TrB

{
e+iÔχBα(t1)e−iÔχe+iÔχBα(t2)e−iÔχ ¯̄ρB

}
= C0

αβ(t1, t2).

Furthermore, we defined the generalized correlation function.

Def. 14 (Generalized Correlation Function). The generalized reservoir correlation function is
defined as

Cχ
αβ(t1, t2) = Tr

{
e−iÔ χ

2Bα(t1)e+iÔ χ
2 e+iÔ χ

2Bβ(t2)e−iÔ χ
2 ¯̄ρB

}
. (4.110)

If in addition [HB, ¯̄ρB] = 0, this simplifies with τ = t1 − t2

Cχ
αβ(τ) = Tr

{
e−iÔχBα(τ)e+iÔχBβ ¯̄ρB

}
(4.111)

This definition can be used to complete the coarse-graining master equation to the counting-
field dependent case

Def. 15 (Generalized CG Master Equation). An interaction Hamiltonian of the form HI =∑
αAα ⊗Bα with reservoir observable Ô leads in the interaction picture to the generalized master

equation

ρ̇S = −i

 1

2iτ

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

C0
αβ(t1, t2)sgn(t1 − t2)Aα(t1)Aβ(t2),ρS

 (4.112)

+
1

τ

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

[
Cχ
αβ(t1, t2)Aβ(t2)ρSAα(t1)−

C0
αβ(t1, t2)

2
{Aα(t1)Aβ(t2),ρS}

]
.

As with the virtual detectors, we see that the counting-field dependence only affects the terms
with the density matrix in the middle.
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4.4.1 Example: SRL energy current

Let us consider the energy current entering the single resonant level (SRL). The Hamiltonian reads
(we implicitly use the mapping to tensor products)

H = εd†d+ d⊗
∑
k

hkc
†
k + d† ⊗

∑
k

h∗kck +
∑
k

εkc
†
kck . (4.113)

We define B1 =
∑

k hkc
†
k and B2 = B†1. If we are interested in the energy entering the reservoir,

the observable obviously commutes with the reservoir density matrix, when this is held at a Gibbs
state. Furthermore, since the bath density matrix is already diagonal in the measurement basis,
we have ¯̄ρB = ρ̄B. The generalized correlation functions then become

Cχ
12(τ) =

1

2π

∫
Γ(ω)f(ω)e−iωχe+iωτdω =

1

2π

∫
Γ(−ω)f(−ω)e+iωχe−iωτ ,

Cχ
21(τ) =

1

2π

∫
Γ(ω)[1− f(ω)]e+iωχe−iωτ . (4.114)

From this, we can read off the Fourier transforms of the correlation functions

γχ12(ω) = Γ(−ω)f(−ω)e+iωχ , γχ21(ω) = Γ(+ω)[1− f(+ω)]e+iωχ . (4.115)

When we want to evaluate the rate equation, we get for the transition rates

γab,ab =
∑
αβ

γαβ(Eb − Ea) 〈a|Aβ |b〉 〈a|A†α |b〉
∗ , (4.116)

which in our case become dependent on the counting field

γχ01,01 = γχ21(+ε) = Γ(ε)[1− f(ε)]e+iεχ , γχ10,10 = γχ12(−ε) = Γ(ε)f(ε)e−iεχ , (4.117)

and our generalized rate matrix becomes

L(χ) = Γ(ε)

(
−f(ε) +[1− f(ε)]e+iεχ

+f(ε)e−iεχ −[1− f(ε)]

)
. (4.118)

These are precisely the differences we would have guessed from a rate equation representation.
The sign convention here has been chosen such that currents count positively when they enter the
reservoir. Note however, that there exist examples where a microscopic derivation is required to
obtain a consistent treatment, see below.

4.4.2 Example: pure dephasing model

We revisit the pure dephasing model

H = Ωσz + σz ⊗
∑
k

(
hkbk + h∗kb

†
k

)
+
∑
k

ωkb
†
kbk (4.119)
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and consider the total energy radiated into the reservoir, such that Ô =
∑

k ωkb
†
kbk. Again we have

¯̄ρB = ρ̄B, and the additional benefit is now that we can get away with a single correlation function

Cχ(τ) = TrB

{
e−iHBχ

∑
k

(
hkbke

−iωkτ + h∗kb
†
ke

+iωkτ
)
e+iHBχ

∑
q

(
hqbq + h∗qb

†
q

)
ρ̄B

}
=

∑
k

|hk|2
[
e+iωkχe−iωkτ [1 + nB(ωk)] + e−iωkχe+iωkτnB(ωk)

]
=

1

2π

∫ ∞
0

Γ(ω)
[
e+iωχe−iωτ [1 + nB(ω)] + e−iωχe+iωτnB(ω)

]
dω

=
1

2π

∫
dωe−iωτ

[
Θ(ω)Γ(ω)[1 + nB(ω)]e+iωχ + Θ(−ω)Γ(−ω)nB(−ω)e+iωχ

]
.(4.120)

With σ2
z = 1 we can again ignore the Lamb-shift contribution, and the coarse-graining master

equation (4.112) becomes

ρ̇ =
1

2πτ

∫ τ

0

dt1

∫ τ

0

dt2

∫
dωΘ(ω)Γ(ω)[1 + nB(ω)]e−iω(t1−t2)

[
e+iωχσzρσz − ρ

]
+

1

2πτ

∫ τ

0

dt1

∫ τ

0

dt2

∫
dωΘ(−ω)Γ(−ω)nB(−ω)e−iω(t1−t2)

[
e+iωχσzρσz − ρ

]
. (4.121)

We can also write this as

ρ̇ = [γ−(χ, τ)σzρσz − γ−(0, τ)ρ] + [γ+(χ, τ)σzρσz − γ+(0, τ)ρ] ,

γ+(χ, τ) =

∫
Θ(ω)Γ(ω)[1 + nB(ω)]e+iωχ τ

2π
sinc2

[ωτ
2

]
dω ,

γ−(χ, τ) =

∫
Θ(−ω)Γ(−ω)nB(−ω)e+iωχ τ

2π
sinc2

[ωτ
2

]
dω . (4.122)

As before with the particle counting in Eq. (4.79), this Liouvillian is diagonal

ρ̇00 = [γ−(χ, τ)− γ−(0, τ) + γ+(χ, τ)− γ+(0, τ)]ρ00 ,

ρ̇11 = [γ−(χ, τ)− γ−(0, τ) + γ+(χ, τ)− γ+(0, τ)]ρ11 ,

ρ̇01 = − [γ−(χ, τ) + γ−(0, τ) + γ+(χ, τ) + γ+(0, τ)]ρ01 ,

ρ̇00 = − [γ−(χ, τ) + γ−(0, τ) + γ+(χ, τ) + γ+(0, τ)]ρ10 , (4.123)

and the cumulant-generating function becomes C(χ, τ) = [γ−(χ, τ)− γ−(0, τ) + γ+(χ, τ)− γ+(0, τ)] τ .
When setting the counting field to zero, we also recover Eq. (2.113). The mean energy for example
becomes

E(τ) =

∫
Θ(ω)ωΓ(ω)[1 + nB(ω)]

τ 2

2π
sinc2

(ωτ
2

)
dω +

∫
Θ(−ω)ωΓ(−ω)nB(−ω)

τ 2

2π
sinc2

(ωτ
2

)
dω

=

∫ ∞
0

ωΓ(ω)
τ 2

2π
sinc2

(ωτ
2

)
dω =

2

π

∫ ∞
0

Γ(ω)

ω
sin2

(ωτ
2

)
dω . (4.124)

To obtain the exact solution for the radiated energy, we can use the same approach as in
Eq. (4.84), i.e., the exact Heisenberg picture dynamics. Then, the expectation value of the reservoir
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energy becomes

〈E〉t =
∑
k

ωkTr

{(
e+iωktb†k +

hk
ωk

(
e+iωkt − 1

)
σz
)(

e−iωktbk +
h∗k
ωk

(
e−iωkt − 1

)
σz
)
ρ0
S ⊗ ρ0

B

}
= 〈E〉0 +

∑
k

|hk|2

ωk
[2− 2 cos(ωkt)] = 〈E〉0 +

2

π

∫ ∞
0

Γ(ω)

ω
sin2

(
ωt

2

)
dω , (4.125)

and we see that the difference agrees exactly with our previously computed mean value for coarse-
graining, derived using energy counting fields

Exercise 39 (Energetic noise). Show that also for the second cumulant of the radiated energy the
results from the generalized coarse-graining master equation and the exact solution agree

〈〈
E2
〉〉

=
2

π

∫ ∞
0

Γ(ω)[1 + 2nB(ω)] sin2

(
ωt

2

)
dω . (4.126)

4.5 Symmetries

4.5.1 Mathematical Motivation

The probability distribution Pn(t) is given by the inverse Fourier transform of the moment-
generating function

Pn(t) =
1

2π

+π∫
−π

M(χ, t)e−inχdχ =
1

2π

+π∫
−π

eC(χ,t)−inχdχ . (4.127)

Accordingly, a symmetry in the cumulant-generating function (or moment-generating function) of
the form

C(−χ, t) = C(+χ+ iα, t) (4.128)

leads to a symmetry of the probabilities

P+n(t)

P−n(t)
=

1
2π

∫ +π

−π e
C(χ,t)−inχdχ

1
2π

∫ +π

−π e
C(χ,t)+inχdχ

=

∫ +π

−π e
C(χ,t)−inχdχ∫ +π

−π e
C(−χ,t)−inχdχ

=

∫ +π

−π e
C(χ,t)−inχdχ∫ +π

−π e
C(χ+iα,t)−inχdχ

=

∫ +π

−π e
C(χ,t)−inχdχ∫ +π+iα

−π+iα
eC(χ,t)−in[χ−iα]dχ

=

∫ +π

−π e
C(χ,t)−inχdχ

e−nα
∫ +π

−π e
C(χ,t)−inχdχ

= e+nα , (4.129)

where we have used in the last step that the counting field always enters as a function of e±iχ.
This automatically implies that C(−π + iσ, t) = C(+π + iσ, t) for all real numbers σ, such that
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we can add two further integration paths from −π to −π + iα and from +π + iα to +π to the
integral in the denominator. The value of the cumulant-generating function along these paths
is the same, such that due to the different integral orientation there is no net change. Finally,
using analyticity of the integrand, we deform the integration contour in the denominator, leaving
two identical integrals in numerator and denominator. Note that the system may be very far
from thermodynamic equilibrium but still obey a symmetry of the form (4.128), which leads to a
fluctuation theorem of the form (4.129) being valid far from equilibrium.

As example, we consider the SET. The characteristic polynomial D(χ) = |L(χ)− λ1| of the
Liouvillian (4.25) and therefore also all eigenvalues obeys the symmetry

D(−χ) = D
(

+χ+ i ln

[
fL(1− fR)

(1− fL)fR

])
= D (χ+ i [(βR − βL) ε+ βLµL − βRµR]) . (4.130)

Exercise 40 (Eigenvalue Symmetry). (1 points)
Compute the characteristic polynomial of the Liouvillian (4.25) and confirm the symmetry (4.130).

which leads to the fluctuation theorem

lim
t→∞

P+n(t)

P−n(t)
= en[(βR−βL)ε+βLµL−βRµR] . (4.131)

We note that the exponent does not depend on the microscopic details of the model (Γα) but
only on thermodynamic quantities. Indeed, we had computed the entropy production rate for this
model before

Ṡi = [(βR − βL) ε+ βLµL − βRµR] , (4.132)

such that in the exponent, we simply have the integrated entropy production.
We would obtain the same result for a DQD coupled to two terminals. For equal temperatures,

this becomes

lim
t→∞

P+n(t)

P−n(t)
= enβV , (4.133)

which directly demonstrates that the average current

I =
d

dt
〈n(t)〉 =

d

dt

+∞∑
n=−∞

nPn(t) =
∞∑
n=1

n [P+n(t)− P−n(t)] =
∞∑
n=1

nPn(t)
[
1− e−nβV

]
(4.134)

always follows the voltage. We can interpret the exponent in Eq. (4.131) in terms of the entropy
that has been produced: The quantity nε describes the energy that has traversed the SET for large
times, and consequently, the term in the exponent approximates the entropy production, which is
for large times simply proportional to the number of particles that have travelled from left to right

∆Si ≈ (βR − βL)nε+ (βLµL − βRµR)n . (4.135)

Therefore, we can interpret the fluctuation theorem also as a stochastic manifestation of the second
law

P (+∆Si)

P (−∆Si)
= e+∆Si . (4.136)
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Here, trajectories with a negative entropy production ∆Si are not forbidden. They are just less
likely to occur than their positive-production counterparts, such that – on average – the second
law is always obeyed.

The SET has the property of tight coupling between enery and matter currents: Every
electron carries the same energy. For more general systems, where this property is not present,
one still obtains a fluctuation theorem for the entropy production. Then, the combined counting
statistics of energy and matter currents is necessary to obtain it. Furthermore, one will for an
n-terminal system need 2n counting fields to quantify the entropy production. In the long-term
limit, one can use conservation laws, such that the maximum number of counting fields is given
by 2n− 2, which can be further reduced when one has further symmetries (like tight-coupling).

4.5.2 Microscopic discussion for multiple counting fields

In general, we can decide to count matter and energy exchanges with all N junctions of our model.
Then, our Liouvillian depends on counting fields for both matter and energy at all these junctions
L → L(χ, ξ), where χ = (χ1, . . . , χN) denotes the matter and ξ = (ξ1, . . . , ξN) the energy counting
fields. Let us further assume that our model leads to an additive rate equation

Ṗa =
∑
ν

∑
b6=a

γ
(ν)
ab e

+i(Na−Nb)χνe+i(Ea−Eb)ξνPb −
∑
ν

∑
b 6=a

γ
(ν)
ba Pa . (4.137)

Here, γab denotes the rate from b to a and Ea and Na denote the corresponding energies and
particle numbers. We have inserted the particle counting field χν and energy counting field ξν
for exchanges with reservoir ν adopting the convention that contributions entering the system are
counted positively. The rates obey the detailed balance property (2.60)

γ
(ν)
ab

γ
(ν)
ba

= eβν [(Eb−Ea)−µν(Nb−Na)] . (4.138)

Writing this in matrix notation

Ṗ =W(χ, ξ)P , (4.139)

we note that the counting fields would only enter the off-diagonal entries due to our assumptions.
Then, we can show the following symmetry relation

WT (−χ− iA,−ξ − iB) =W(χ, ξ) , B = (β1, . . . , βN)T , A = − (µ1β1, . . . , µNβN)T , (4.140)

where T denotes the transpose. In components, this means (we do assume a 6= b)

γ
(ν)
ba e

+i(−χν−iAν)(Nb−Na)e+i(−ξν−iBν)(Eb−Ea) = γ
(ν)
ab e

+βν(Ea−Eb)e−βνµν(Na−Nb) ×
×e−i(−χν−iAν)(Na−Nb)e−i(−ξν−iBν)(Ea−Eb)

!
= γ

(ν)
ab,abe

+iχν(Na−Nb)e+iξν(Ea−Eb) . (4.141)

In the first equality sign, we have inserted the local detailed balance relation specific to reservoir
ν. Now, solving for the coefficients we see that this is fulfilled when Aν = −µνβν and Bν = βν ,
proving our relation (4.140).
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This symmetry transfers to the long-term cumulant-generating function. The eigenvalues
λα(χ, ξ) of the rate matrix solve the characteristic polynomial at all χ and ξ

|W(χ, ξ)− λα(χ, ξ)| = 0 . (4.142)

Evaluating this at shifted values we see that

|W(−χ− iA,−ξ − iB)− λα(−χ− iA,−ξ − iB) · 1|
=
∣∣WT (−χ− iA,−ξ − iB)− λα(−χ− iA,−ξ − iB) · 1

∣∣
= |W(χ, ξ)− λα(−χ− iA,−ξ − iB) · 1| , (4.143)

where we have used that the eigenvalues do not change under transposition for an arbitrary
quadratic matrix. Therefore, the eigenvalues and in particular the long-term cumulant-generating
function inherit this symmetry

lim
t→∞

C(−χ− iA,−ξ − iB, t) = lim
t→∞

C(χ, ξ, t) . (4.144)

Before, we have learned for the example that a symmetry relation of the form C(−χ − iα, t) =
C(+χ, t) implies a fluctuation theorem of the form P+n(t)/P−n(t) = e−nα. Now, applying this to
2N dimensions, we conclude

lim
t→∞

P
+∆N ,+∆E(t)

P−∆N ,−∆E(t)
= e−(∆E·B+∆N ·A) = e−

∑
ν βν [∆Eν−µν∆Nν ] . (4.145)

In the exponent, we recognize the integrated entropy change of the reservoirs, which in the long-
term limit becomes the entropy production. Therefore, the interpretation of the above formula is
as follows: Each trajectory with an exchange of ∆N particles and an energy of ∆E is associated
with an entropy production of ∆iS = −

∑
ν βν [∆Eν − µν∆Nν ]. Then, the fluctuation theorem

corresponds to a stochastic formulation of the second law

Def. 16 (Crooks fluctuation theorem). A stochastic formulation of the second law is given by
Crooks fluctuation theorem

P+∆iS

P−∆iS

= e+∆iS , (4.146)

where ∆iS is the total entropy production.

The Crooks relation [11] is more quantitative than the average statement of the second law
discussed before.

4.5.3 Symmetries in the coarse-graining master equation

Assume that we are given a generalized coarse-graining master equation as in Def. 15.

ρ̇S = −i

 1

2iτ

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

C0
αβ(t1, t2)sgn(t1 − t2)Aα(t1)Aβ(t2),ρS

 (4.147)

+
1

τ

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

[
Cξ
αβ(t1, t2)Aβ(t2)ρSAα(t1)−

C0
αβ(t1, t2)

2
{Aα(t1)Aβ(t2),ρS}

]
.
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We further assume that the reservoir density matrix commutes with the bath Hamiltonian and
that the tracked observable is the energy of the reservoir Ô = HB, such that ξ denotes an energy
counting field of the reservoir. This does imply that ¯̄ρB = ρ̄B, and the generalized correlation
function can be written as the conventional correlation function

Cξ
αβ(t1, t2) = Cαβ(t1 − t2 − ξ) . (4.148)

We can evaluate this equation in the basis where the time-dependent density matrix is diagonal
ρ =

∑
j Pj |j〉 〈j|. This basis will for finite τ in general not coincide with the system energy

eigenbasis. Then, the transition rate from j to i at coarse-graining time τ is only given by the
jump term

Rτ
ij(ξ) =

1

τ

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

Cαβ(t1 − t2 − ξ) 〈i|Aβ(t2) |j〉 〈j|Aα(t1) |i〉

=

∫
dω
∑
αβ

γαβ(ω)e+iωξ 1

2πτ

τ∫
0

dt1

τ∫
0

dt2e
−iω(t1−t2) 〈i|Aβ(t2) |j〉 〈j|Aα(t1) |i〉

=

∫
Rτ
ij,+ωe

+iωξdω . (4.149)

The rate Rτ
ij,+ω describes at coarse-graining time τ the processes fro a system transition from j → i

that go along with a reservoir energy change +ω.

To allow for the description of particle exchange processes, we can generalize this by a particle
counting field for the reservoir

Rτ
ij(χ, ξ) =

∫
Rτ
ij,+ωe

+i(Nj−Ni)χe+iωξdω . (4.150)

Here, we have assumed that the total particle number is conserved, such that a process j → i
in the system must imply the opposite particle change Nj − Ni in the reservoir. This is not a
severe restriction, as |j〉 still does not need to coincide with the energy eigenbasis of the system.
Conservation of the total particle number [HI , NS +NB] = 0 implies that the eigenstates of system
and reservoir can be grouped in blocks with a defined particle number. For reservoirs with a
chemical potential and interactions supporting conservation of the total particle number, we had
found before that the KMS relation generalizes, see Eq. (2.59)

∑
ᾱ

AᾱCαᾱ(τ) =
∑
ᾱ

e+βµNSAᾱe
−βµNSCᾱα(−τ − iβ) . (4.151)

Simply Fourier-transforming this equation yields

∑
ᾱ

Aᾱγαᾱ(ω) =
∑
ᾱ

e+βµNSAᾱe
−βµNSγᾱα(−ω)e+βω . (4.152)
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From this, we can conclude

Rτ
ij,+ω

Rji,−ω
=

∑
αβ γαβ(ω) 1

2πτ

τ∫
0

dt1
τ∫
0

dt2e
−iω(t1−t2) 〈i|Aβ(t2) |j〉 〈j|Aα(t1) |i〉

∑
αβ γαβ(−ω) 1

2πτ

τ∫
0

dt1
τ∫
0

dt2e+iω(t1−t2) 〈j|Aβ(t2) |i〉 〈i|Aα(t1) |j〉

=

∑
αβ γαβ(ω)

τ∫
0

dt1
τ∫
0

dt2e
−iω(t1−t2) 〈i|Aβ(t2) |j〉 〈j|Aα(t1) |i〉

∑
αβ γβα(−ω)

τ∫
0

dt1
τ∫
0

dt2e−iω(t1−t2) 〈j|Aα(t1) |i〉 〈i|Aβ(t2) |j〉

=

∑
αβ γαβ(ω)

τ∫
0

dt1
τ∫
0

dt2e
−iω(t1−t2) 〈i|Aβ(t2) |j〉 〈j|Aα(t1) |i〉

e−βω
∑

αβ γαβ(ω)
τ∫
0

dt1
τ∫
0

dt2e−iω(t1−t2) 〈j| e+βµNSAα(t1)e−βµNS |i〉 〈i|Aβ(t2) |j〉

= e+β[ω−µ(Nj−Ni)] . (4.153)

We stress again that Nj − Ni = −(Ni − Nj) is the reservoir particle change when the system
undergoes the transition j → i. This is similar to our detailed balance relation used before. We
can therefore conclude the symmetry relation

Rτ
ji(−χ− iβµ,−ξ + iβ) = Rτ

ij(χ, ξ) , (4.154)

which implies the fluctuation theorem (now for multiple counting fields and multiple reservoirs,
assuming an additive decomposition of all rates such that the symmetries prevail)

lim
t→∞

P
+∆N ,+∆E
P−∆N ,−∆E

= e+
∑
ν βν(∆Eν−µν∆Nν) . (4.155)

Comparing this to Eq. (4.145), we see that there is a different sign in the exponent. This comes
from our different way of counting. Making the fluctuation theorem explicit e.g. for two terminals

lim
t→∞

P+∆NL,+∆EL,+∆NR,+∆ER

P−∆NL,−∆EL,−∆NR,−∆ER

= eβL(∆EL−µL∆NL)+βR(∆ER−µR∆NR) (4.156)

we can consider the limit where ∆NL ≈ −∆N ≈ +∆NR and ∆EL ≈ −∆E ≈ +∆ER to conclude
for these trajectories (counting positive when transfers from left to right occur)

P+∆N,+∆E

P−∆N,−∆E

→ e(βR−βL)∆E+(βLµL−βRµR)∆N , (4.157)

which agrees with our previous results.



Chapter 5

Periodically driven systems

In the previous chapters, we have treated mainly undriven systems, and if driving was considered,
we assumed it to be so slow that the previous approximations would go through. This resulted
in trivial time-dependencies: In the Liouvillian, simply the time-dependent Hamiltonian had to
be used. In general, time-dependent systems are notoriously difficult to solve already for closed
quantum systems. There are only the treatable cases of an adiabatic evolution (this one also
includes Hamiltonians obeying [H(t1), H(t2)] = 0) and the case of periodic driving, where H(t +
T ) = H(t) with period T . Here, we will investigate how the master eqution for a periodically driven
system Hamiltonian should be derived. Thereby, we will allow for driven system Hamiltonians and
driven interactions, but will leave the reservoir time-independent. The latter constraint comes
from the fact that we would like to keep the reservoirs at equilibrium states throughout, which
would be incompatible with fast driving.

5.1 Floquet treatment of closed systems

For a closed system
∣∣∣Ψ̇〉 = −iH(t) |Ψ〉 with periodic H(t) = H(t + T ) we can write the time

evolution operator U̇ = −iH(t)U(t) from initial time t1 to final time t always as a product of
operators

U(t, t1) = e−iKt0 (t)e−iH̄t0 ·(t−t1)e+iKt0 (t1) , (5.1)

where the kick operator Kt0(T ) inherits the periodicity of the Hamiltonian and vanishes at
Kt0(t0 + nT ) = 0 for integer n. Note that the kick operator is a function of time, we will try to
mark products with a dot. This implies that the stroboscopic evolution between full periods is
just given by the Floquet Hamiltonian U(t0 + nT, t0) = e−iH̄t0nT . We note that both Floquet
Hamiltonian and kick operator depend on the initial time t0 which should therefore be specified.
Furthermore, they are both not uniquely defined, adding integer multiples of 2π1 does not change
the dynamics. Here, we will be interested in t0 = 0 and also take the initial time to be the same
t1 = 0. With this choice (and by dropping the indices we conventionally refer to this choice), we
have

U(t, 0) = U(t) = Ukick(t)e−iH̄t , (5.2)

where we have that the kick operator is unitary, periodic Ukick(t) = Ukick(t + T ), and vanishes at
multiples of the period Ukick(nT ) = 1. In what follows, we will only need the properties of the
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decomposition above, for a more general discussion see Ref. [12]. To illustrate these concepts, we
will consider simple examples below.

5.1.1 General properties

From the periodicity of the kick operator we can conclude that the transformation into the Heisen-
berg picture (which for an open system becomes the interaction picture) can be written in a special
form

U †(t)AU(t) = e+iH̄tU †kick(t)ÂUkick(t)e−iH̄t =
+∞∑

n=−∞

e+iH̄tÂne
inΩte−iH̄t , (5.3)

where we have used that U †kick(t)ÂUkick(t) has the periodicity of the original driving and can
therefore be expanded in a Fourier series

Ân =
Ω

2π

∫ +T/2

−T/2
U †kick(t)ÂUkick(t)e−inΩtdt , T =

2π

Ω
. (5.4)

Inserting the eigenbasis of the Floquet Hamiltonian H̄ |a〉 = Ea |a〉, we can further write

U †(t)AU(t) =
∑
ab

∑
n

Âabn e
i(Ea−Eb+nΩ)t . (5.5)

The energy differences Ea − Eb are also called Bohr frequencies of the Floquet Hamiltonian, and
the operators in the sum are given by

Âabn = |a〉 〈a| Ân |b〉 〈b| . (5.6)

5.1.2 Train of δ-kicks

Here, we consider a simple time-dependence of the form

H(t) = H0 + V
∞∑
n=0

δ(t− 2n+ 1

2
T ) , (5.7)

with some constant Hamiltonian H0 and a periodically acting perturbation V , which is ultrastrong
and ultrashort acting at T/2, 3T/2, 5T/2, . . .. We have chosen the kick to act in the middle of the
observation interval in order to avoid ambiguities. To get the time evolution during a δ-kick, we
can integrate

Uδ = lim
ε→0

T̂ exp

{
−i

∫ T/2+ε

T/2−ε
H(t′)dt′

}
= lim

ε→0
exp

{
−i

∫ T/2+ε

T/2−ε

V

2ε
dt′

}
= e−iV . (5.8)

Here, we have approximated δ(x) = limε→0 Θ(x+ ε)Θ(ε−x)/(2ε), and for small enough ε the influ-
ence of H0 can be safely neglected. The time-dependence can therefore be modelled as piecewise-
constant, we can construct the time evolution operator from

U(t, 0) =


e−iH0t : 0 < t < T/2

e−iH0(t−T/2)e−iV e−iH0T/2 : T/2 < t < 3T/2
e−iH0(t−3T/2)e−iV e−iH0T e−iV e−iH0T/2 : 3T/2 < t < 5T/2

...

. (5.9)
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This form arises since during the kick operation we can completely neglect the influence of H0,
and the δ-function can be approximated by a very fast time-dependent turning on and off of
V → V g(t), which does of course commute with itself. We can therefore conclude for the Floquet
Hamiltonian for the initial time t0 = 0

U(T ) = e−iH0T/2e−iV e−iH0T/2 ≡ e−iH̄T . (5.10)

From this form we already see that H̄ is some sort of average Hamiltonian that has to act for the
full period to obtain the same result as the time-dependent one. Note that the terminus average
should not be used literally as in general H̄ 6= 1

T

∫ T
0
H(t)dt. However, when [V,H0] = 0 we do

indeed see that the average Hamiltonian can be computed by the conventional average.
From comparing the time evolution at arbitrary time (note that ∆t < T/2 though)

U(nT + ∆t) = e−iH0∆t
[
e−iH0T/2e−iV e−iH0T/2

]n
= e−iH0∆te+iH̄∆te−iH̄(nT+∆t) (5.11)

we conclude that the kick operator is for 0 < ∆t < T/2 defined by

Ukick(nT + ∆t) = Ukick(∆t) = e−iH0∆te+iH̄∆t . (5.12)

From this expression we can already see that Ukick(0) = 1. Similarly, we can look at the evolution
during the second half of the period

U(nT + T/2 + ∆t) = e−iH0∆te−iV e−iH0T/2e−iH̄nT

= e−iH0∆te−iV e−iH0T/2e+iH̄(T/2+∆t)e−iH̄(nT+T/2+∆t) , (5.13)

which defines the kick operator during the second half

Ukick(+T/2 + ∆t) = e−iH0∆te−iV e−iH0T/2e+iH̄(T/2+∆t) . (5.14)

This expression tells us that Ukick(T ) = 1 as well.
To make the example more explicit, we consider in the following

H0 =
ω

2
σz , V = λσx . (5.15)

This implies that

e−iαH0 = cos(
αω

2
)1− i sin(

αω

2
)σz , e−iV = cos(λ)1− i sin(λ)σx . (5.16)

The exponential of the Floquet Hamiltonian is then given by

e−iH̄T = e−iH0T/2e−iV e−iH0T/2 = cos(λ) cos(ωT/2)1− i cos(λ) sin(ωT/2)σz − i sin(λ)σx . (5.17)

To obtain the Floquet Hamiltonian, we have to take the logarithm of that matrix, which demon-
strates the difficulties. Even more specific, when ωT = π, some terms cancel and we obtain for
the Floquet Hamiltonian

H̄ωT=π =
ω

2
cos(λ)σz +

ω

2
sin(λ)σx . (5.18)

It is interesting to see that by the application of a diagonal Hamiltonian and a δ-kick we obtain an
effective evolution that is rotated. The kick operator would then be calculated in a similar fashion.

To sum up, we can for this example calculate the Floquet operators because we can write down
the full time evolution operator. Already for simple systems, finding the Floquet Hamiltonian and
kick operator is quite involved.
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5.1.3 Driven two-level system

Another popular example that is simple to treat is the driven two-level system

H(t) =
ω

2
σz + Pσ+e−iΩt + P ∗σ−e+iΩt . (5.19)

We can use the rotation

V (t) = e−iΩ/2σzt (5.20)

on the complete Hamiltonian to move into a time-independent frame.
Then, we get

V †(t)σzV (t) = σz , V †(t)σ±V (t) = σ±e±iΩt . (5.21)

Therefore, applying this to the Schrödinger equation |Ψ〉 = V (t)
∣∣∣Ψ̃〉 transforms it into a time-

independent frame

−i
Ω

2
σzV (t)

∣∣∣Ψ̃〉+ V (t)
∣∣∣ ˙̃Ψ
〉

= −iHV (t)
∣∣∣Ψ̃〉 , (5.22)

which we can rewrite as∣∣∣ ˙̃Ψ
〉

=

[
−iV †(t)HV (t) + i

Ω

2
σz
] ∣∣∣Ψ̃〉 = −i

[(
ω − Ω

2

)
σz + Pσ+ + P ∗σ−

] ∣∣∣Ψ̃〉 . (5.23)

In this frame, the Hamiltonian is time-independent, and by exponentiating it we obtain the corre-
sponding time evolution operator. Inserting the original transformation, therefore time evolution
operator in the original frame is given by

U(t) = e−i Ω
2
σzte−i[(ω−Ω

2 )σz+Pσ++P ∗σ−]t . (5.24)

Correspondingly, the Floquet Hamiltonian can be obtained by looking at times t = T = 2π
Ω

. Then,
we get

U(T ) = exp {−iπσz} exp

{
−i

[(
ω − Ω

2

)
σz + Pσ+ + P ∗σ−

]
2π

Ω

}
= − exp

{
−i

[(
ω − Ω

2

)
σz + Pσ+ + P ∗σ−

]
2π

Ω

}
= exp

{
−i

[(
ω − Ω

2

)
σz + Pσ+ + P ∗σ−

]
2π

Ω
+ iπ1

}
= exp

{
−i

[(
ω − Ω

2

)
σz + Pσ+ + P ∗σ− − Ω

2
1

]
2π

Ω

}
. (5.25)

From this, we can directly read off the Floquet Hamiltonian

H̄ =

(
ω − Ω

2

)
σz + Pσ+ + P ∗σ− − Ω

2
1 . (5.26)

Clearly, this is not the conventional average Hamiltonian (which would not have terms proportional
to P and P ∗). To find the kick operator, we proceed with this result

U(t) = V (t)e−i Ωt
2
1e−iH̄t = e−iΩt/2(σz+1)e−iH̄t , (5.27)

which leaves us with

Ukick(t) = e−iΩt/2(σz+1) =

(
e−iΩt 0

0 1

)
, (5.28)

from which we can clearly see the periodicity.
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5.1.4 Driven cavity

Let us consider the example before with bosonic operators

H(t) = ωa†a+ Pe+iΩta+ P ∗e−iΩta† . (5.29)

As before, we can find a unitary transformation that moves into a frame |Ψ〉 = e−iΩa†at
∣∣∣Ψ̃〉 =

V (t)
∣∣∣Ψ̃〉, where the Hamiltonian becomes time-independent∣∣∣ ˙̃Ψ

〉
= −iV †(t)[H(t)− Ωa†a]V (t)

∣∣∣Ψ̃〉 = −i[(ω − Ω)a†a+ Pa+ P ∗a†]
∣∣∣Ψ̃〉 . (5.30)

We can therefore write the full time evolution operator in the original frame as

U(t) = e−iΩa†ate−i[(ω−Ω)a†a+Pa+P ∗a†]t . (5.31)

Therefore,

U(2π/Ω) = e−i2πa†ae−i[(ω−Ω)a†a+Pa+P ∗a†]T = e−i[(ω−Ω)a†a+Pa+P ∗a†]T = e−iH̄T , (5.32)

where we have used that e−i2πa†a = 1. This can be seen e.g. by evaluating the operator in the
Fock space basis. Then, we can read off the Floquet Hamiltonian

H̄ = (ω − Ω)a†a+ Pa+ P ∗a† (5.33)

and the kick operator

Ukick(t) = e−iΩa†at . (5.34)

5.1.5 Application: Generalized RWAs

The RWA neglects rapidly oscillating terms in a suitable regime. Let as assume we are given a
driven system of the form

H(t) = H0 +H1 cos(Ωt) , (5.35)

where H0 denotes the undriven (static) part of the Hamiltonian and H1 is periodically modulated.
The naive RWA approximation would simply average over one period T = 2π/Ω, which would
yield

H(t)
Ω→∞→ 1

T

∫ T

0

H(t)dt = H0 . (5.36)

This is the brute-force RWA approximation that we have used e.g. in the derivation of the quantum-
optical master equation, where it was called secular approximation. However, if the driving fre-
quency is finite, we can improve on this estimate by transforming into an interaction picture with
respect to H1. In this picture, the relevant Hamiltonian becomes

H̃(t) = e+i
∫ t
0 cos(Ωt′)dt′H1H0e

−i
∫ t
0 cos(Ωt′)dt′H1 = e+i sin(Ωt)/ΩH1H0e

−i sin(Ωt)/ΩH1 , (5.37)
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where we have used that the driven part of the Hamiltonian commutes with itself at different times,
such that the time ordering need not be applied. The Hamiltonian is thus still time-dependent,
but by performing the RWA approximation in this frame

H̃(t)→ 1

T

∫ T

0

H̃(t)dt , (5.38)

we would get a time-independent approximation. Then, the total time evolution operator could
be approximated as

U(t) ≈ exp

{
−i

sin(Ωt)

Ω
H1

}
exp

{
−i

[
1

T

∫ T

0

H̃(t′)dt′
]
t

}
, (5.39)

and the quality of this truncation depends on the microscopic details. From the periodicity of the
first term, we can identify this as the first approximation to the kick operator

Ukick(t) ≈ exp

{
−i

sin(Ωt)

Ω
H1

}
, (5.40)

and consequently, we have found an approximation to the Floquet Hamiltonian

H̄ ≈ 1

T

∫ T

0

H̃(t)dt (5.41)

as a conventional average over the Hamiltonian in the interaction picture (but not the original
picture).

We can exemplify this for a simple two-level system

H(t) =
ω

2
σz + λσx cos(Ωt) . (5.42)

Since this has a small Hilbert space, we can solve it numerically exact. But for now, we calculate
the Hamiltonian in the transformed frame

H̃(t) = e+i sin(Ωt)/ΩH1H0e
+i sin(Ωt)/ΩH1

=

[
cos

(
λ

sin(Ωt)

Ω

)
+ i sin

(
λ

sin(Ωt)

Ω

)
σx
]
H0

[
cos

(
λ

sin(Ωt)

Ω

)
− i sin

(
λ

sin(Ωt)

Ω

)
σx
]

= cos

(
2
λ

Ω
sin(Ωt)

)
ω

2
σz + sin

(
2
λ

Ω
sin(Ωt)

)
ω

2
σy . (5.43)

The zero-frequency component of this Hamiltonian becomes

H̄ ≈ 1

T

∫ T

0

H̃(t)dt = J0

(
2
λ

Ω

)
ω

2
σz , (5.44)

where J0(z) denotes the Bessel function of the first kind, defined by the differential equation
z2J ′′n (z) + zJ ′n(z) + (z2 − n2)Jn(z) = 0. Our improved version of the time evolution operator
would therefore read

U(t) ≈ exp

{
−i sin(Ωt)

λ

Ω
σx
}

exp

{
−iJ0

(
2
λ

Ω

)
ω

2
σzt

}
. (5.45)
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To compute the full numerical solution technically, we use the Heisenberg picture, where

d

dt
〈σα〉 = Tr

{
U †(t) [iH(t), σα]U(t)ρ0

}
, (5.46)

to obtain a closed set of differential equations for the operator expectation values

d

dt
〈σx〉 = −ω 〈σy〉 ,

d

dt
〈σy〉 = −2λ cos(Ωt) 〈σz〉+ ω 〈σx〉 ,

d

dt
〈σz〉 = +2λ cos(Ωt) 〈σy〉 . (5.47)

This set can be solved numerically and thereby yields the true solution of the dynamics in terms
of all relevant expectation values. For most real-world problems we will not be able to calculate
such an exact benchmark solution.

We can compare the effects of performing the RWA in the original frame and in the frame defined
by the driving with the exact solution, see Fig. 5.1. We see that the naive RWA approximation
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exact solution
naive RWA
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Figure 5.1: Expectation value for σz versus time for the exact solution (black), the RWA approxi-
mation in the original frame (red), and the RWA approximation in the comoving frame (green).

leaves the 〈σz〉 constant. In contrast, by applying the RWA approximation in the comoving frame,
the dynamics of the exact solution is reproduced much better. However, we also see that it is
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still far from perfect. Therefore, we could gain further improvements by switching to yet another
comoving frame, applying the same methodology as before in the original Schrödinger frame. This
would require to include at least the first non-vanishing Fourier components

H̃−1e
−iΩt + H̃+1e

+iΩt =
1

T

∫ T

0

H̃(t′)e+iΩt′dt′e−iΩt +
1

T

∫ T

0

H̃(t′)e−iΩt′dt′e+iΩt

= J1

(
2λ

Ω

)
ω sin(Ωt)σy (5.48)

in the next transformation.

5.2 Floquet treatment of open systems

Now we imagine our driven system coupled to a bath, where we allow also for driven interactions
H(t) = HS(t) +HI(t) +HB in general, but let us first review the standard case.

5.2.1 Standard Floquet treatment

In the standard treatment, we only consider a periodically driven system

H(t) = HS(t) +HI +HB , HS(t+ T ) = HS(t) . (5.49)

Essentially, the derivation of the master equation follows conceptionally the same steps as in
Sec. 2.2.1, see e.g. Ref. [13] The only difference is that for a driven system, the transformation
into the interaction picture is much more involved

Aα(t) =
[
T̂ e−i

∫ t
0 HS(t′)dt′

]†
Aα

[
T̂ e−i

∫ t
0 HS(t′)dt′

]
=

∑
n

∑
ab

An,abα e+i(Ea−Eb+nΩ)t =
∑
n

∑
ω

An,ωα e+i(ω+nΩ)t , (5.50)

where the ω are the Bohr frequencies of the Floquet Hamiltonian, which we have only introduced
to shorten the notation. Here, we have implicitly used the Floquet decomposition by applying
Eq. (5.5). We see that the transition frequencies of the system are no longer relevant, but rather
the transition frequencies of the Floquet Hamiltonian, supplemented by integer multiples of the
driving. Floquet theory essentially just tells us that such a decomposition does exist, but it does
not provide help to obtain this decomposition. In this section, we will assume that we have found
the operators An,ωα . We can perform the Born and Markov approximations as usual and can
therefore directly start with Eq. (2.30)

ρ̇S = −
∞∫

0

TrB {[HI(t), [HI(t− τ),ρS(t)⊗ ρ̄B]]} dτ (5.51)

= −
∫ ∞

0

∑
αβ

∑
nn′

∑
ωω′

TrB

{[
Anωα e+i(ω+nΩ)tBα(t),

[
An
′ω′

β e+i(ω′+n′Ω)(t−τ)Bβ(t− τ),ρS(t)⊗ ρ̄B

]]}
dτ .

The standard way to perform the secular approximation is now to assume in addition that the
driving is fast, keeping in the equation above only the terms where the resonance conditions
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ω′ = −ω and n′ = −n are fulfilled separately. This yields

ρ̇S = −
∫ ∞

0

∑
αβ

∑
n

∑
ω

TrB

{[
Anωα Bα(t),

[
A−n,−ωβ e+i(ω+nΩ)τBβ(t− τ),ρS(t)⊗ ρ̄B

]]}
dτ

= −
∑
αβ

∑
n

∑
ω

∫ ∞
0

dτe+i(ω+nΩ)τ
[

+ A+n,+ω
α A−n,−ωβ ρS(t)Cαβ(+τ)

−A+n,+ω
α ρS(t)A−n,−ωβ Cβα(−τ)− A−n,−ωβ ρS(t)A+n,+ω

α Cαβ(+τ)

+ρS(t)A−n,−ωβ A+n,+ω
α Cβα(−τ)

]
= +

∑
αβ

∑
n

∑
ω

[
− A+n,+ω

α A−n,−ωβ ρS(t)Γαβ(+ω + nΩ)

+A+n,+ω
α ρS(t)A−n,−ωβ Γ∗αβ(−ω − nΩ) + A−n,−ωβ ρS(t)A+n,+ω

α Γαβ(+ω + nΩ)

−ρS(t)A−n,−ωβ A+n,+ω
α Γ∗αβ(−ω − nΩ)

]
, (5.52)

where we have introduced as in standard discussions our half-sided Fourier transforms and used that
Cαβ(−τ) = C∗αβ(+τ) for hermitian coupling operators. Expressing them as before in hermitian and
anti-hermitian parts via Γαβ(ω) = 1/2γαβ(ω) + 1/2σαβ(ω), we eventually get the Floquet master
equation.

Def. 17 (Floquet master equation). For a decomposition of the (hermitian) system coupling op-
erators Aα(t) =

∑
n

∑
ω A

n,ω
α e+i(ω+nΩ)t, the Floquet master equation becomes

ρ̇S = −i

[∑
αβ

∑
n

∑
ω

1

2i
σαβ(ω + nΩ)A+n,+ω

α A−n,−ωβ ,ρS

]

+
∑
αβ

∑
n

∑
ω

γαβ(ω + nΩ)

[
A−n,−ωβ ρSA

+n,+ω
α − 1

2

{
A+n,+ω
α A−n,−ωβ ,ρS

}]
. (5.53)

Here, ω are the Bohr frequencies of the Floquet Hamiltonian.

We see that we can not in general expect the system to thermalize, not even in the Floquet
Hamiltonian basis, since the KMS relations encoded in the correlation functions involve transitions
with an additional shifts nΩ [14]. In order to derive this master equation, we had – on top of the
usual Born, Markov, and secular approximation – a fast driving assumption Ω→∞ (to motivate
the separate cancellation of phase factors). Finally, when the coupling operators are hermitian, we

can relate An,ωα = (A−n,−ωα )
†
. For such a system, it is less obvious how one should define the energy

counting. Indeed, there is ample evidence that microscopically-derived counting fields need to be
used to obtain a consistent thermodynamic description [15].

5.2.2 Coarse-graining treatment

To avoid the aforementioned fast-driving assumption, we recall the coarse-graining method from
Def. 15, using that [HB, ¯̄ρB] = 0 and that we count the energy of the reservoir with the counting
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field ξ

ρ̇S = −i

 1

2iτ

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

C0
αβ(t1 − t2)sgn(t1 − t2)Aα(t1)Aβ(t2),ρS

 (5.54)

+
1

τ

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

[
C0
αβ(t1 − t2 − ξ)Aβ(t2)ρSAα(t1)−

C0
αβ(t1 − t2)

2
{Aα(t1)Aβ(t2),ρS}

]
.

Here, we did not use any assumption on the system coupling operators, i.e., the whole scheme is
applicable also when we drive our system or our system coupling operators (i.e., the interaction
Hamiltonian) periodically. Indeed, for a static system Hamiltonian with a periodically driven
coupling to the system

H(t) = HS +
∑
α

Aα(t)⊗Bα(t) +HB , Aα(t+ T ) = Aα(t) , (5.55)

we could also switch to the interaction picture, where the system coupling operators would assume
the familiar form

Aα(t) =
∑
n

∑
ω̃

An,ω̃α e+i(ω̃+nΩ)t . (5.56)

Then however, the ω̃ would be the transition frequencies of HS. We therefore simply start from
the above general decomposition, leaving at present open whether we drive system or interaction
Hamiltonian. We can insert the inverse Fourier transforms

C0
αβ(τ) =

1

2π

∫
γ0
αβ(ω)e−iωτdω , C0

αβ(τ)sgn(τ) =
1

2π

∫
σ0
αβ(ω)e−iωτdω (5.57)

to perform the temporal integrals. As before, we hereby employ

1

2πτ

∫ τ

0

∫ τ

0

e−iω(t1−t2)e+iαt1e−iβt2dt1dt2 =
τ

2π
e+i(α−β)τ/2sinc

[
(α− ω)

τ

2

]
sinc

[
(β − ω)

τ

2

]
, (5.58)

which eventually yields

ρ̇S = −i

∫
dω
∑
αβ

σ0
αβ(ω)

τ

4πi

∑
nn′

∑
ω̃,ω̃′

e+i(ω̃+nΩ−ω̃′−n′Ω)τ/2 ×

×sinc
[
(ω̃ + nΩ− ω)

τ

2

]
sinc

[
(ω̃′ + n′Ω− ω)

τ

2

] [
A+n,+ω̃
α A−n

′,−ω̃′
β ,ρS

]
+

∫
dω
∑
αβ

γ0
αβ(ω)

τ

2π

∑
nn′

∑
ω̃,ω̃′

e+i(ω̃+nΩ−ω̃′−n′Ω)τ/2sinc
[
(ω̃ + nΩ− ω)

τ

2

]
sinc

[
(ω̃′ + n′Ω− ω)

τ

2

]
×
[
e+iωξA−n

′,−ω̃′
β ρSA

+n,+ω̃
α − 1

2

{
A+n,+ω̃
α A−n

′,−ω̃′
β ,ρS

}]
. (5.59)

For fixed τ , we can consider the asymptotics of this master equation. When the driving is very fast
Ω → ∞, we will only keep the terms where n′ = n, and subsequently taking τ → ∞ reproduces
the Floquet master equation (5.53). In contrast, when the driving is very slow Ω → 0, we can
neglect the Ω-dependence in the sinc- and exponential functions and absorb the dependence via
Aω̃α =

∑
nA

n,ω̃
α , which would reproduce our previous coarse-graining master equation, but now

with ω̃ denoting the transition frequencies of the Floquet Hamiltonian. However, for slow driving
Ω → 0, the Floquet Hamiltonian falls back to the original system Hamiltonian, such that we
reproduce the known dynamics of an open two-level system. The general dynamics for finite Ω is
hard to estimate, we will therefore discuss only specific cases here.
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5.2.3 Commuting driving

We consider the case where the driving commutes with the interaction

H(t) =
ω

2
σz + Pσ+e−iΩt + P ∗σ−e+iΩt

+
(
Pσ+e−iΩt + P ∗σ−e+iΩt

)
⊗
∑
k

(hkbk + h∗kb
†
k) +

∑
k

ωkb
†
kbk . (5.60)

Here, both the system part and the interaction are driven, but in a completely synchronous way,
such the system part of the driving and the interaction part commute at the same times. In
addition, it has the advantage that we can compute the Floquet Hamiltonian exactly without
approximation. The time evolution operator for the system was found to be (5.24)

U(t) = e−i Ω
2
σzte−i[(ω−Ω

2 )σz+Pσ++P ∗σ−]t , (5.61)

such that it is not difficult to transform the system coupling operator into the interaction picture

A(t) = U †(t)
(
Pσ+e−iΩt + P ∗σ−e+iΩt

)
U(t)

= e+i[(ω−Ω
2 )σz+Pσ++P ∗σ−]t (Pσ+ + P ∗σ−

)
e−i[(ω−Ω

2 )σz+Pσ++P ∗σ−]t

= e+iH̄t
(
Pσ+ + P ∗σ−

)
e−iH̄t . (5.62)

From this expression we see that the time-dependence of the coupling operator in the interaction
picture is trivially given only by the transition frequencies of the Floquet Hamiltonian, such that in
our general expansion (5.5) only the n = 0-term survives. For such a case, we can follow the usual
derivation of the master equation, with the coupling operator in the Schrödinger picture replaced
by A→ (Pσ+ + P ∗σ−) and the system Hamiltonian replaced by the Floquet Hamiltonian (5.26)

H̄ =

(
ω − Ω

2

)
σz + Pσ+ + P ∗σ− − Ω

2
1 . (5.63)

These will then assume the form of a simple rate equation in the energy eigenbasis of the Floquet
Hamiltonian H̄ |ā〉 = Ēa |ā〉 instead of the system Hamiltonian

ρ̇aa =
∑
b

γab,abρbb −
∑
b

γba,baρaa , (5.64)

with the transition rate

γab,ab = γ(Ēb − Ēa)
∣∣〈ā| (Pσ+ + P ∗σ−

) ∣∣b̄〉∣∣2 . (5.65)

Since the reservoir correlation function for this model γ(ω) = Γ(ω)[1 + nB(ω)] obeys the KMS
relations, the steady state of this master equation will be a Gibbs state in the Floquet basis. This
result can be shown to hold [14] when first, the Hamiltonian of the system is bounded and second,
the driving Hamiltonian commutes with itself at different times, and third, the driving commutes
with the interaction. Although our example does not support the second condition, it also yields
thermalization in the Floquet eigenbasis. Below we will see that this case is very specific.
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5.2.4 Example: Open driven Two-Level system

We revisit our example of a driven two-level system, which is now coupled to a reservoir of bosonic
oscillators

H(t) =
ω

2
σz + Pσ+e−iΩt + P ∗σ−e+iΩt + σx

∑
k

(hkbk + h∗kb
†
k) +

∑
k

ωkb
†
kbk . (5.66)

We have already derived the time-evolution operator for the system in Eq. (5.24), which yields

σx(t) = U †(t)σxU(t)

= e+i[(ω−Ω
2 )σz+Pσ++P ∗σ−]te+i Ω

2
σztσxe−i Ω

2
σzte−i[(ω−Ω

2 )σz+Pσ++P ∗σ−]t

= e+i[(ω−Ω
2 )σz+Pσ++P ∗σ−]t [cos(Ωt)σx + sin(Ωt)σy] e−i[(ω−Ω

2 )σz+Pσ++P ∗σ−]t

= e+i[(ω−Ω
2 )σz+Pσ++P ∗σ−]t [e+iΩtσ+ + e−iΩtσ−

]
e−i[(ω−Ω

2 )σz+Pσ++P ∗σ−]t

= e+iH̄t
[
e+iΩtσ+ + e−iΩtσ−

]
e−iH̄t . (5.67)

Here, the phase factors resulting from the shift of the Floquet Hamiltonian in Eq. (5.26) and kick
operator would cancel in any case, and we also see already that only the n = ±1 terms contribute.
The transition energies of the Floquet Hamiltonian become

ω̃ ∈
{

0,±
√

(ω − Ω)2 + 4|P |2
}

= {0,±ω∗} , (5.68)

and we again note that both Bohr frequencies and eigenvectors are invariant with respect to
trivial shifts of the Hamiltonian. We can now proceed by representing the coupling operators in
eigenstates of the Floquet Hamiltonian H̄ |a〉 = Ea |a〉, which we do directly in Eq. (5.54)

ρ̇S = −i

 1

2iτ

τ∫
0

dt1

τ∫
0

dt2C
0(t1 − t2)sgn(t1 − t2)σx(t1)σx(t2),ρS

 (5.69)

+
1

τ

τ∫
0

dt1

τ∫
0

dt2

[
C0(t1 − t2 − ξ)σx(t2)ρSσ

x(t1)− C0(t1 − t2)

2
{σx(t1)σx(t2),ρS}

]

= −i

∫
dωσ(ω)

1

4πiτ

τ∫
0

dt1

τ∫
0

dt2e
−iω(t1−t2)

∑
abc

e+i(Ea−Eb)t1e+i(Eb−Ec)t2 ×

×(e+iΩt1σ+
ab + e−iΩt1σ−ab)(e

+iΩt2σ+
bc + e−iΩt2σ−bc) [|a〉 〈c| ,ρS]

+

∫
dωγ(ω)e+iωξ 1

2πτ

τ∫
0

dt1

τ∫
0

dt2e
−iω(t1−t2)

∑
abcd

e+i(Ea−Eb)t2e+i(Ec−Ed)t1 ×

×(e+iΩt2σ+
ab + e−iΩt2σ−ab)(e

+iΩt1σ+
cd + e−iΩt1σ−cd) |a〉 〈b|ρS |c〉 〈d|

−
∫
dωγ(ω)

1

4πτ

τ∫
0

dt1

τ∫
0

dt2e
−iω(t1−t2)

∑
abc

e+i(Ea−Eb)t1e+i(Eb−Ec)t2 ×

×(e+iΩt1σ+
ab + e−iΩt1σ−ab)(e

+iΩt2σ+
bc + e−iΩt2σ−bc) {|a〉 〈c| ,ρS} . (5.70)
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Here, we recall again that

1

2πτ

∫ τ

0

dt1

∫ τ

0

dt2e
−i(ω−α1)t1e+i(ω−α2)t2 =

τ

2π
e+i(α1−α2)τ/2sinc

[
(ω − α1)

τ

2

]
sinc

[
(ω − α2)

τ

2

]
τ→∞→ δα1,α2δ(ω − α1) . (5.71)

For finite coarse-graining times τ , we simply have to keep all terms, but for large τ we only need
to keep those satisfying the resonance conditions

ρ̇S = −i

∫
dωσ(ω)

1

2i

∑
abc

[|a〉 〈c| ,ρS]×

×
[
δEa−Eb+Ω,Ec−Eb−Ωδ(ω − Ea + Eb − Ω)σ+

abσ
+
bc

+δEa−Eb+Ω,Ec−Eb+Ωδ(ω − Ea + Eb − Ω)σ+
abσ
−
bc

+δEa−Eb−Ω,Ec−Eb−Ωδ(ω − Ea + Eb + Ω)σ−abσ
+
bc

+δEa−Eb−Ω,Ec−Eb+Ωδ(ω − Ea + Eb + Ω)σ−abσ
−
bc

]
+

∫
dωγ(ω)e+iωξ

∑
abcd

|a〉 〈b|ρS |c〉 〈d| ×

×
[
δEc−Ed+Ω,Eb−Ea−Ωδ(ω + Ea − Eb + Ω)σ+

abσ
+
cd

+δEc−Ed+Ω,Eb−Ea+Ωδ(ω + Ea − Eb − Ω)σ−abσ
+
cd

+δEc−Ed−Ω,Eb−Ea−Ωδ(ω + Ea − Eb + Ω)σ+
abσ
−
cd

+δEc−Ed−Ω,Eb−Ea+Ωδ(ω + Ea − Eb − Ω)σ−abσ
−
cd

]
−1

2

∫
dωγ(ω)

∑
abc

{|a〉 〈c| ,ρS} ×

×
[
δEa−Eb+Ω,Ec−Eb−Ωδ(ω − Ea + Eb − Ω)σ+

abσ
+
bc

+δEa−Eb+Ω,Ec−Eb+Ωδ(ω − Ea + Eb − Ω)σ+
abσ
−
bc

+δEa−Eb−Ω,Ec−Eb−Ωδ(ω − Ea + Eb + Ω)σ−abσ
+
bc

+δEa−Eb−Ω,Ec−Eb+Ωδ(ω − Ea + Eb + Ω)σ−abσ
−
bc

]
, (5.72)

which can be further simplified. Let us look at the interesting case of fast driving Ω � ω∗. We
furthermore use that the spectrum of the Floquet Hamiltonian is non-degenerate, e.g. δEa,Ec = δac
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to obtain

ρ̇S = −i

∫
dωσ(ω)

1

2i

∑
abc

[|a〉 〈c| ,ρS]×

×
[

+ δacδ(ω − Ea + Eb − Ω)σ+
abσ
−
bc + δacδ(ω − Ea + Eb + Ω)σ−abσ

+
bc

]
+

∫
dωγ(ω)e+iωξ

∑
abcd

|a〉 〈b|ρS |c〉 〈d| ×

×
[

+ δEc−Ed,Eb−Eaδ(ω + Ea − Eb − Ω)σ−abσ
+
cd + δEc−Ed,Eb−Eaδ(ω + Ea − Eb + Ω)σ+

abσ
−
cd

]
−1

2

∫
dωγ(ω)

∑
abc

{|a〉 〈c| ,ρS} ×

×
[

+ δacδ(ω − Ea + Eb − Ω)σ+
abσ
−
bc + δacδ(ω − Ea + Eb + Ω)σ−abσ

+
bc

]
. (5.73)

Evaluating this in the eigenbasis of the Floquet Hamiltonian, we get with ρi = 〈i|ρS |i〉 a simple
rate equation of the form

ρ̇i =
∑
j

Rij(ξ)ρj −
∑
j

Rji(0)ρi , (5.74)

where the rates are given by

Rij(ξ) = σ−ijσ
+
jiγ(Ej − Ei + Ω)e+iξ(Ej−Ei+Ω) + σ+

ijσ
−
jiγ(Ej − Ei − Ω)e+iξ(Ej−Ei−Ω) . (5.75)

Note that these are actual rates, as σ∓ijσ
±
ji = |〈i|σ∓ |j〉|2 ≥ 0 and for this coupling we had previously

computed γ(ω) = Γ(ω)[1 + nB(ω)] with spectral coupling density Γ(−ω) = −Γ(+ω) and Bose
distribution nB(ω) = [eβω−1]−1. This rate equation can now be treated with our usual formalism.
We observe however a few non-standard things.

First, we see that to evaluate the energy current, we need to consider the energy differences of
the Floquet Hamiltonian instead those of the original one and furthermore, they become shifted by
multiples of the driving frequency (here just ±Ω). In particular, the diagonal entries of this rate
equation may carry counting fields. Therefore, in short, a microscopic treatment of the counting
field derivation is absolutely necessary.

Second, we see that the usual detailed balance relations do not even hold in the Floquet basis

Rij(0)

Rji(0)
6= eβ(Ej−Ei) . (5.76)

Consequently, the steady state is not a Gibbs state in the Floquet basis, which can be related to
the fact that the Hamiltonians of the driving Pσ+e−iωt + h.c. and the coupling to the bath σx⊗B
do not commute [14].

Third, we see that the generalized relations we demonstrated generally for the coarse-graining
method do hold also in this specific case

Rji(−ξ + iβ) = σ−jiσ
+
ijγ(Ei − Ej + Ω)e+i(−ξ+iβ)(Ei−Ej+Ω) + σ+

jiσ
−
ijγ(Ei − Ej − Ω)e+i(−ξ+iβ)(Ei−Ej−Ω)

= σ−ijσ
+
jiγ(Ej − Ei + Ω)e−β(Ej−Ei+Ω)e+i(−ξ+iβ)(Ei−Ej−Ω)

+σ+
ijσ
−
jiγ(Ej − Ei − Ω)e−β(Ej−Ei−Ω)e+i(−ξ+iβ)(Ei−Ej+Ω)

= Rij(+ξ) , (5.77)
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where we have used the simple KMS relation (without particle exchange) γ(−ω) = γ(ω)e−βω.
Therefore, with the energy exchange correctly defined, we again obtain a fluctuation theorem in
presence of periodic driving

lim
t→∞

P+ω(t)

P−ω(t)
= e+βω , (5.78)

where ω denotes the energy of the bath.
Finally, we note that due to energy conservation (first law), the work rate done on the system

due to the driving must be given by minus the heat current entering the system from the reservoir.

5.2.5 Upgrade: Two-terminal driven Two-Level system

We can couple our driven system to two reservoirs ν ∈ {L,R}

H(t) =
ω

2
σz + Pσ+e−iΩt + P ∗σ−e+iΩt + σx

∑
kν

(hkνbkν + h∗kνb
†
kν) +

∑
kν

ωkνb
†
kνbkν . (5.79)

All previous calculations go through, we just get additive rates

ρ̇i =
∑
ν

∑
j

R
(ν)
ij (ξν)ρj −

∑
ν

∑
j

R
(ν)
ji (0)ρi , (5.80)

where the rates are now explicitly given by

R
(ν)
ij (ξν) =

∣∣σ−ij ∣∣2Γν(Ej − Ei + Ω)[1 + nν(Ej − Ei + Ω)]e+iξν(Ej−Ei+Ω)

+
∣∣σ+
ij

∣∣2Γν(Ej − Ei − Ω)[1 + nν(Ej − Ei − Ω)]e+iξ(Ej−Ei−Ω) . (5.81)

The currents into the individual reservoirs however are now no longer conserved. Instead, the first
law reads at steady state

Ẇ = −I(L)
E − I(R)

E . (5.82)

In contrast, without driving, the energy currents would approach

Ī
(L)
E = −Ī(R)

E =
ΓL(ω)ΓR(ω)

ΓL(ω)[1 + 2nL(ω)] + ΓR(ω)[1 + 2nR(ω)]
ω[nL(ω)− nR(ω)] . (5.83)

This is illustrated in Fig. 5.2, exemplified for a spectral coupling density of the form

Γν(ω) =
4Γνωδ

2
νεν

ω4 + 2ω2(δν − εν)(δν + εν) + (δ2
ν + ε2ν)

2
= −Γν(−ω) . (5.84)

One can see that finite driving strength implies a mismatch between the energy currents. From
the individual symmetry of the generalized rates Rij(ξL, ξR) = R

(L)
ij (ξL) +R

(R)
ij (ξR),

Rji(−ξL + iβL,−ξR + iβR) = Rij(+ξL,+ξR) (5.85)

we do thus get a fluctuation theorem, which can however not be expressed by only looking at the
heat exchanged with one reservoir.
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Figure 5.2: Plot of the energy currents entering the system from the left (black) and right (red)
reservoirs for different values of the driving amplitude P (legend). Without driving (P = 0,
solid), the currents reproduce Eq. (5.83), such that their sum must cancel. For finite driving, the

observed mismatch P = −I(L)
E − I(R)

E denotes the work performed on the system (inset taken at
TL − TR = ω, vertical dash-dotted line). Parameters: Γν = Γ, (TL + TR)/(2ω) = 1, εL = 10ω,
εR = 20ω, δL = δR = ω, Ω = 100ω.

5.2.6 Driven cavity master equation

Let us consider the example before with bosonic operators

H(t) = ωa†a+ Pe+iΩta+ P ∗e−iΩta† + (a+ a†)⊗
∑
k

(hkbk + h∗kb
†
k) +

∑
k

ωkb
†
kbk . (5.86)

In Eq. (5.31), we had already derived the time evolution operator of the system, such that now,
we want to investigate how the coupling operators transfer into the interaction picture

a(t) = e+i[(ω−Ω)a†a+Pa+P ∗a†]te+iΩa†atae−iΩa†ate−i[(ω−Ω)a†a+Pa+P ∗a†]t

= e−iΩte+i[(ω−Ω)a†a+Pa+P ∗a†]tae−i[(ω−Ω)a†a+Pa+P ∗a†]t

= e−iΩtã(t) . (5.87)

For the new operator we get the differential equation

˙̃a = −i(ω − Ω)ã(t)− iP ∗1 , (5.88)

which we would like to solve with the initial condition ã(0) = a. Eventually, we get

ã(t) = e−i(ω−Ω)ta− P ∗

ω − Ω

(
1− e−i(ω−Ω)t

)
. (5.89)
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Exercise 41 (Check). Reproduce the solution above.

Combining this with our previous calculations we eventually get

a(t) = e−iΩt

[
e−i(ω−Ω)ta− P ∗

ω − Ω

(
1− e−i(ω−Ω)t

)]
= e−iωta− P ∗

ω − Ω

(
e−iΩt − e−iωt

)
= e−iωt

[
a+

P ∗

ω − Ω

]
− P ∗

ω − Ω
e−iΩt

= e−iωtb− P ∗

ω − Ω
e−iΩt , (5.90)

which can be expressed by a displaced annihilation operator b, which obviously satisfies the same
commutation relations. We note that this remains well-defined also at resonant driving Ω → ω,
but then a(t) grows linearly in time. Therefore, perturbation theory is no longer applicable for
(near) resonant driving. The Bohr frequencies of the Floquet Hamiltonian are integer multiples of
(ω−Ω), such that we have reproduced the usual Floquet representation of the coupling operator.

Exercise 42 (Bohr frequencies). Compute the transition frequencies of the Floquet Hamiltonian
H̄ = (ω − Ω)a†a+ Pa+ P ∗a†.

Therefore, our total coupling operator becomes

A(t) = e−iωtb+ e+iωtb† − P ∗

ω − Ω
e−iΩt − P

ω − Ω
e+iΩt . (5.91)

These are the ones we need to use in our coarse-graining master equation

ρ̇S = −i

 1

2iτ

τ∫
0

dt1

τ∫
0

dt2C
0(t1 − t2)sgn(t1 − t2)A(t1)A(t2),ρS


+

1

τ

τ∫
0

dt1

τ∫
0

dt2

[
C0(t1 − t2 − ξ)A(t2)ρSA(t1)− C0(t1 − t2)

2
{A(t1)A(t2),ρS}

]

≡ −i

[
1

2i

∫
dω̄σ(ω̄)η1(τ),ρS

]
+

∫
dω̄γ(ω̄)

[
e+iω̄ξη2(τ,ρS)− 1

2
{η1(τ),ρS}

]
. (5.92)

Here, we have defined

η1(τ) =
1

2πτ

∫ τ

0

dt1dt2e
−iω̄(t1−t2)

[
e−iωt1b+ e+iωt1b† − P ∗

ω − Ω
e−iΩt1 − P

ω − Ω
e+iΩt1

]
×

×
[
e−iωt2b+ e+iωt2b† − P ∗

ω − Ω
e−iΩt2 − P

ω − Ω
e+iΩt2

]
η2(τ,ρS) =

1

2πτ

∫ τ

0

dt1dt2e
−iω̄(t1−t2)

[
e−iωt2b+ e+iωt2b† − P ∗

ω − Ω
e−iΩt2 − P

ω − Ω
e+iΩt2

]
ρS ×[

e−iωt1b+ e+iωt1b† − P ∗

ω − Ω
e−iΩt1 − P

ω − Ω
e+iΩt1

]
(5.93)
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Very fast driving

To obtain a simple discussion, let us first consider the limit of very fast driving Ω � ω and large
coarse-graining times τ → ∞, where we can directly neglect many terms in η1(τ) and η2(τ,ρS),
namely all those that are of O{Ω−1}. This yields by invoking the relations (5.71) for the coefficients

η1(τ) ≈ τ

2π
sinc2

[
(ω̄ + ω)

τ

2

]
bb† +

τ

2π
sinc2

[
(ω̄ − ω)

τ

2

]
b†b ,

η2(τ,ρS) ≈ τ

2π
sinc2

[
(ω̄ + ω)

τ

2

]
b†ρSb+

τ

2π
sinc2

[
(ω̄ − ω)

τ

2

]
bρSb

† . (5.94)

Eventually, we get for τ →∞ and using that in this limit b ≈ a the simple master equation

ρ̇S = −i

[
1

2i

[
σ(−ω)aa† + σ(+ω)a†a,ρS

]]
+γ(+ω)

[
e+iωξaρSa

† − 1

2

{
a†a,ρS

}]
+ γ(−ω)

[
e−iωξa†ρSa−

1

2

{
aa†,ρS

}]
. (5.95)

Upon neglecting the Lamb-shift σ(ω)→ 0 and considering the zero-temperature limit γ(ω)→ Γ(ω)
and γ(−ω)→ 0, this reduces to

ρ̇S = Γ(ω)

[
e+iωξaρSa

† − 1

2

{
a†a,ρS

}]
. (5.96)

Finally, we can switch back to the Schrödinger picture (using the same fast driving assumptions that
we have already used, this only amounts to adding the commutator with the system Hamiltonian,
and we get

ρ̇S = −i
[
ωa†a+ Pe+iΩta+ P ∗e−iΩta†, ρS

]
+ Γ(ω)

[
e+iωξaρSa

† − 1

2

{
a†a, ρS

}]
. (5.97)

Up to the necessary replacements P → P/2 and Γ(ω)→ γ (compare the different system Hamilto-
nians), we recover the phenomenologically introduced master equation from our introduction (1.38)
when in addition ξ → 0.

Let us in this simple case compute the microscopically derived energy current, adopting the
convention that it counts positively when leaving the reservoir

IE(t) = +i∂χ
d

dt
Tr
{
eL(χ)tρ0

} ∣∣∣
χ=0

= (+i∂χ)Tr
{
L(χ)eL(χ)tρ0

} ∣∣∣
χ=0

= +iTr
{
L′(0)eL(0)tρ0

}
+ iTr

{
L(0)

(
∂χe

L(χ)t
∣∣∣
χ=0

)
ρ0

}
= +iTr {L′(0)ρ(t)} = −ωΓ(ω)Tr

{
a†aρ(t)

}
. (5.98)

For large times, we have shown that this will approach a stationary value.
Alternatively, we could have computed the energy current entering the system with the phe-

nomenologic approach of Eq. (3.19)

Iph
E (t) = Tr

{
HS(t)Γ(ω)

[
aρSa

† − 1

2

{
a†a, ρS

}]}
= Γ(ω)Tr

{[
ωa†a+ Pe+iΩta+ P ∗e−iΩta†

] [
aρSa

† − 1

2

{
a†a, ρS

}]}
= −ωΓ(ω)Tr

{
a†aρ(t)

}
− PΓ(ω)

2
e+iΩtTr {aρ(t)} − P ∗Γ(ω)

2
e−iΩtTr

{
a†ρ(t)

}
. (5.99)
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The expectation values of a and a† do not vanish (see one of our early exercises), such that the
two currents do not agree IE(t) 6= Iph

E (t). This should not be too surprising, as the basis of the
first current was the negative energy change in the reservoir, whereas the basis of the second is
the positive energy change in the system. Their long-term integral however should not differ (the
interaction Hamiltonian should not host ever-increasing amounts of energy), and indeed we see
that by averaging over one period the two currents would coincide, since all expectation values in
the above equation approach stationary values.

Very slow Driving

Now, we consider the limit of very slow driving Ω� ω, where we get approximately

η1(τ) ≈ τ

2π
sinc2

[
(ω̄ + ω)

τ

2

]
bb† +

τ

2π
sinc2

[
(ω̄ − ω)

τ

2

]
b†b+

τ

2π
sinc2

[
ω̄
τ

2

] (P + P ∗)2

(ω − Ω)2
,

η2(τ,ρS) ≈ τ

2π
sinc2

[
(ω̄ + ω)

τ

2

]
b†ρSb+

τ

2π
sinc2

[
(ω̄ − ω)

τ

2

]
bρSb

†

+
τ

2π
sinc2

[
ω̄
τ

2

] (P + P ∗)2

(ω − Ω)2
ρS . (5.100)

All the terms proportional to the identity vanish in the master equation for large coarse-graining
times τ , and we obtain

ρ̇S = −i

[
σ(−ω)

2i
bb† +

σ(+ω)

2i
b†b,ρS

]
+γ(+ω)

[
e+iωξbρSb

† − 1

2

{
b†b,ρS

}]
+ γ(−ω)

[
e−iωξb†ρSb−

1

2

{
bb†,ρS

}]
. (5.101)

In the limit of slow driving, we can approximate b ≈ a+ P ∗

ω
, and we see that the resulting master

equation is not the same as the one that we used phenomenologically. The full transformation into
the interaction picture was given by

U(t) = e−iΩa†ate−i[(ω−Ω)a†a+Pa+P ∗a†]t , (5.102)

from which we get for the inverse transformation

U(t)aU †(t) = e−iΩa†at

[
ae+i(ω−Ω)t +

P ∗

(ω − Ω)

(
e+i(ω−Ω)t − 1

)]
e+iΩa†at

= ae+iωt +
P ∗

(ω − Ω)

(
e+i(ω−Ω)t − 1

)
,

U(t)bU †(t) = e+iωt

[
a+

P ∗

ω − Ω
e−iΩt

]
≈ e+iωt

[
a+

P ∗

ω
e−iΩt

]
. (5.103)
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This implies that in the original Schrödinger picture, we get (neglecting the Lamb-shift σ(±ω)→ 0)

ρ̇S = −i
[
ωa†a+ Pae+iΩt + P ∗a†e−iΩt, ρS

]
+γ(+ω)

[
e+iωξ

(
a+

P ∗

ω
e−iΩt

)
ρS

(
a† +

P

ω
e+iΩt

)
− 1

2

{(
a† +

P

ω
e+iΩt

)(
a+

P ∗

ω
e−iΩt

)
, ρS

}]
+γ(−ω)

[
e−iωξ

(
a† +

P

ω
e+iΩt

)
ρS

(
a+

P ∗

ω
e−iΩt

)
− 1

2

{(
a+

P ∗

ω
e−iΩt

)(
a† +

P

ω
e+iΩt

)
, ρS

}]
= −i

[
ωc†(t)c(t), ρS

]
(5.104)

+γ(+ω)

[
e+iωξc(t)ρSc

†(t)− 1

2

{
c†(t)c(t), ρS

}]
+ γ(−ω)

[
e−iωξc†(t)ρSc(t)−

1

2

{
c(t)c†(t), ρS

}]
,

where we have defined c(t) = a + P ∗

ω
e−iΩt (in the Hamiltonian, the commutator with the identity

will always vanish). We note that c(t) obeys the canonical commutation relations. We further see
that for slow driving, the master equation always tends to equilibrate in the time-dependent Gibbs
state of the system, i.e., ρ(t) ∝ e−βωc

†(t)c(t) is a time-local stationary state of the master equation,
and the framework of Sec. 3.3 applies.

We can now compare the microscopic and phenomenologic currents. The microscopic energy
current of the reservoir becomes (we use the convention that it counts positive when leaving the
reservoir)

IE(t) = iTr {L′(0)ρS(t)}
= ωγ(−ω)Tr

{
c(t)c†(t)ρS(t)

}
− ωγ(+ω)Tr

{
c†(t)c(t)ρS(t)

}
. (5.105)

Similarly, the phenomenologic energy current entering the system yields

Iph
E (t) = ωγ(+ω)Tr

{
c†(t)c(t)

[
c(t)ρSc

†(t)− 1

2

{
c†(t)c(t), ρS

}]}
+ωγ(−ω)Tr

{
c†(t)c(t)

[
c†(t)ρSc(t)−

1

2

{
c(t)c†(t), ρS

}]}
= −ωγ(+ω)Tr

{
c†(t)c(t)ρS

}
+ ωγ(−ω)Tr

{
c(t)c†(t)ρS

}
. (5.106)

Therefore, we see that for slow driving, the microscopic energy current out of the reservoir and
the phenomenologic energy current entering the system coincide Iph

E (t) = IE(t).



Chapter 6

Feedback control

6.1 External feedback

In this section, we will first discuss theoretical approaches to continuous feedback control schemes.
Repeated measurements are performed on the system, and conditioned control actions are then
applied. The presented schemes are by far not complete but already cover some quite useful
overview of feedback schemes.

6.1.1 Piecewise-Constant feedback

Closed-loop (or feedback) control means that the system is monitored (either continuously or at
certain times) and that the result of these measurements is fed back by changing some parameter of
the system. Under measurement with outcome m (an index characterizing the possible outcomes),
the density matrix transforms as

ρ
m→ MmρM

†
m

Tr
{
M †

mMmρ
} , (6.1)

and the probability at which this outcome occurs is given by Tr
{
M †

mMmρ
}

= Tr
{
MmρM

†
m

}
. This

can also be written in superoperator notation (Mmρ=̂MmρM
†
m)

ρ
m→ Mmρ

Tr {Mmρ}
. (6.2)

Let us assume that conditioned on the measurement result m at time t, we apply a propagator
for the time interval ∆t. Then, a measurement result m at time t provided, the density matrix at
time t+ ∆t will be given by

ρ(m)(t+ ∆t) = eL
(m)∆t Mmρ

Tr {Mmρ}
. (6.3)

However, to obtain an effective description of the density matrix evolution, we have to average
over all measurement outcomes – where we have to weight each outcome by the corresponding
probability

ρ(t+ ∆t) =
∑
m

Tr {Mmρ(t)} eL(m)∆t Mmρ

Tr {Mmρ}
=
∑
m

eLm∆tMmρ(t) . (6.4)
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Note that this is an iteration scheme and not a conventional master equation. More generally –
not constraining the conditioned dynamics to Lindblad evolutions – one could also write

ρ(t+ ∆t) =
∑
m

K(m)(∆t)Mmρ(t) , (6.5)

where K(m)(∆t)ρ=̂
∑

αK
(m)
α (∆t)ρK

(m)†
α (∆t) with

∑
αK

(m)†
α K

(m)
α = 1 is a conditioned Kraus map.

Furthermore, the conditioned Liouvillian L(m) or the Kraus map K(m) may well depend on the time
t (at which the measurement is performed) as long as it is constant during the interval [t, t+ ∆t],
and on the width of the time interval ∆t.

Continuous feedback limit

Expanding now the exponential of the Liouvillian in the limit of a continuous feedback control
scheme ∆t→ 0, we obtain

ρ(t+ ∆t) =
∑
m

Mmρ(t) + ∆t
∑
m

LmMmρ(t) . (6.6)

In particular, when
∑

mMm = 1 holds, we can form a difference quotient on the l.h.s., which as
∆t→ 0 yields an effective Liouvillian under feedback control

Lfbρ = lim
∆t→0

ρ(t+ ∆t)− ρ(t)

∆t
=
∑
m

LmMm . (6.7)

Def. 18 (Weak measurement feedback Liouvillian). For measurement superoperators obeying∑
mMm = 1 the effective continuous feedback master equation reads

Lfb =
∑
m

LmMm , (6.8)

where Lm is the conditional Lindblad evolution and Mm describes the measurement action corre-
sponding to outcome m.

Unfortunately, the condition
∑

mMm = 1 will only hold for special cases. Physically, this
results from the fact that a quantum measurement always has an effect on the system – independent
of whether conditioned control actions or not take place. When it does not hold, an effective
Liouvillian under feedback control does not exist, and the evolution is described rather by an
iteration of the form (6.4) or (6.5). However, very often a weaker condition can be fulfilled, namely
that the measurement superoperators have projector properties

MmMn =Mmδmn . (6.9)

From this, we can conclude that∑
mMmρ(t+ ∆t)−

∑
mMmρ(t)

∆t
=
∑
n

Mn

∑
m

LmMmρ(t) , (6.10)
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which we can turn into a master equation for the projected part of the density matrix

ρ̃(t) =
∑
m

Mmρ(t) . (6.11)

We can furthermore again insert this sum of all superoperators at the right of each superoperator
Mm, sinceMm =Mm

∑
nMn, without changing the dynamics. This defines an effective feedback

master equation for projective measurements.

Def. 19 (Feedback Liouvillian for projective measurements). For projective measurements
MmMn =Mmδmn, the projected density matrix ρ̄ =

∑
nMnρ obeys the feedback master equation

˙̃ρ = Lfbρ̃ , Lfb =
∑
n

Mn

∑
m

LmMm . (6.12)

We note that Lfb typically only acts in a particular subspace. When considered for the full sys-
tem, it will become multistable. For example, considering projective measurementsMmρ=̂ |m〉 〈m| ρ |m〉 〈m|,
and one particular stationary state Lfbρ̄ = 0, we see that we can add arbitrary coherences
ρ̄′ = ρ̄ +

∑
n6=m αnm |n〉 〈m|, and will obtain another stationary state Lfbρ̄

′ = 0, since these addi-
tional terms will vanish under the projective measurements.

6.1.2 Wiseman-Milburn feedback

A special case of the weak measurement feedback discussed before arises when we consider bipartite
systems, composed of subsystems A and B, where we perform strong projective measurements only
on the subsystem B. From the perspective of the total system, such measurements will not be fully
projective and will therefore appear as weak measurements. Let us therefore denote the density
matrix of the compound system by

σ(t) =
∑
nm

ρ(nm)(t)⊗ |n〉 〈m| , (6.13)

where the |n〉 label a particular basis in the Hilbert space of subsystem B, and correspondingly,
ρ(nm)(t) is a conditional density matrix in subsystem A. Furthermore, we will assume that the
diagonal conditional density matrices ρ(n)(t) ≡ ρ(nn)(t) follow a conditional master equation

ρ̇(n)(t) = L0ρ
(n)(t) + L+ρ

(n−1)(t) + L−ρ(n+1)(t) , (6.14)

which occurs, for example, quite naturally in problems of Full Counting Statistics, cf. Sec. 4. In
this case, n actually denotes the excitations counted in a detector, which may be, for example,
the number of photons emitted by a cavity or the number of electrons that have passed through a
quantum dot system or a QPC. We recall that given a decomposition in terms of counting fields,
such an n-resolved master equation may be obtained by performing an inverse Fourier transform

ρ(n)(t) =
1

2π

∫ +π

−π
ρ(χ, t)e−inχdχ , (6.15)
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and by tracing over the ancilla (detector) states we recover the density matrix of the system

ρ(t) = TrD {σ(t)} =
∑
n

ρ(n)(t) . (6.16)

We assume that at time t, we can write the total density matrix as σ(t) = ρ(t) ⊗ |0〉 〈0|, i.e.,
ρ(nm)(t) = δn0δm0ρ(t), which simply means that we reset our counting variable to zero after each
measurement or that we use a new ancilla variable after every measurement. Then, we write the
total density matrix at time t+ ∆t as (neglecting terms of order ∆t2)

σ(t+ ∆t) = σ(t) + ∆t
∑
nm

ρ̇(nm)(t)⊗ |n〉 〈m|

= ρ(t)⊗ |0〉 〈0|+ ∆t
∑
n

ρ̇(n)(t)⊗ |n〉 〈n|+ ∆t
∑
n6=m

ρ̇(nm)(t)⊗ |n〉 〈m|

= ρ(t)⊗ |0〉 〈0|+ ∆t
∑
n

[
L0ρ

(n)(t) + L+ρ
(n−1)(t) + L−ρ(n+1)(t)

]
⊗ |n〉 〈n|

+∆t
∑
n 6=m

ρ̇(nm)(t)⊗ |n〉 〈m|

= ρ(t)⊗ |0〉 〈0|+ ∆t [L0ρ(t)⊗ |0〉 〈0|+ L+ρ(t)⊗ |+1〉 〈+1|+ L−ρ(t)⊗ |−1〉 〈−1|]
+∆t

∑
n6=m

ρ̇(nm)(t)⊗ |n〉 〈m| . (6.17)

Here, the neglect of higher-order terms means that we consider times ∆t that are so short that at
most a single particle can be detected in the detector. Now, we perform a projective measurement
of the ancilla (the particles counted by the detector) and compute the effective action of this process
(dissipation plus subsequent measurement) on the reduced density matrix

P0(∆t)ρ(t) ≡ TrD {|0〉 〈0|σ(t+ ∆t) |0〉 〈0|} = [1 + L0∆t] ρ(t) ,

P−1(∆t)ρ(t) ≡ TrD {|−1〉 〈−1|σ(t+ ∆t) |−1〉 〈−1|} = L−∆tρ(t) ,

P+1(∆t)ρ(t) ≡ TrD {|+1〉 〈+1|σ(t+ ∆t) |+1〉 〈+1|} = L+∆tρ(t) . (6.18)

We see that the effective propagation superoperators only approximately add up to the identity.
Here, this occurs as they also contain effects of dissipation.

The basic idea of Wiseman-Milburn feedback is now to perform an instantaneous unitary
rotation right after the measurement outcome ±:

U± = U±ρU
†
± , (6.19)

which can be implemented as a δ-kick on the Hamiltonian U = e−iV , see Sec. 5.1.2. Upon not
measuring any change of the ancilla variable (the particle detector), no control action is performed.
Consequently, the feedback iteration for the density matrix becomes

ρ(t+ ∆t) = [P0(∆t) + U−P−(∆t) + U+P+(∆t)] ρ(t)

= [1 + ∆t (L0 + U+L+ + U−L−)] ρ(t) , (6.20)

which yields the Wiseman-Milburn feedback Liouvillian [3].
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Def. 20 (Wisemen-Milburn feedback Liouvillian). The Wiseman-Milburn Liouvillian reads

Lfb = L0 + U+L+ + U−L− , (6.21)

where U±ρ=̂U±ρU
†
± denotes the unitary control action and L± the jump terms associated with

particle increase (+) or decrease (-) in the detector.

The major difference in the derivation in comparison to the previous section was that we
assumed that the measurement could take finite time to complete. During this time, dissipation
acts on the measured system even in absence of any control actions.

6.1.3 Application: Stabilization of Fock states

We start from the master equation of a cavity coupled to a thermal bath

ρ̇ = −i
[
Ωa†a, ρ

]
+Γ(1 + nB)

[
e+iχaρa† − 1

2

{
a†a, ρ

}]
+ ΓnB

[
e−iχa†ρa− 1

2

{
aa†, ρ

}]
, (6.22)

which we have already presented in Sec. 1.3.1, and which is here just equipped with an additional
counting field χ for the number of emitted or absorbed photons. Without any measurements
and feedback, the stationary state of this master equation is just a statistical mixture of energy
eigenstates. In particular at large temperatures, this is not a pure state but highly mixed.

Now, acting with different unitary operations whenever a photon is emitted U+ (simple detec-
tion with a click of a photo-detector) or absorbed from the system (this is more difficult, we would
need to shine light on the system and then infer the absorption from the absence of a click in a
photodetector placed on the other side), we would obtain the effective feedback master equation

ρ̇ = −i
[
Ωa†a, ρ

]
+Γ(1 + nB)

[
U+aρa

†U †+ −
1

2

{
a†a, ρ

}]
+ ΓnB

[
U−a

†ρaU †− −
1

2

{
aa†, ρ

}]
= −iHeffρ+ iρH†eff + Γ(1 + nB)U+aρa

†U †+ + ΓnBU−a
†ρaU− , (6.23)

where we have defined the effective non-Hermitian Hamiltonian

Heff = Ωa†a− i
Γ

2
(1 + nB)a†a− i

Γ

2
nBaa

† . (6.24)

Clearly, the Fock states are eigenstates of Heff

Heff |m〉 = Ωm− i
Γ

2
(1 + nB)m− i

Γ

2
nB(1 +m) ,

〈m|H†eff = Ωm+ i
Γ

2
(1 + nB)m+ i

Γ

2
nB(1 +m) . (6.25)

We can now ask what unitary operations one needs to apply to stabilize a particular particle
number eigenstate ρ̄ = |m〉 〈m|. Inserting this in the master equation yields the condition

0 = [−Γ(1 + nB)m− ΓnB(1 +m)] |m〉 〈m|
+Γ(1 + nB)mU+ |m− 1〉 〈m− 1|U †+ + ΓnB(m+ 1)U− |m+ 1〉 〈m+ 1|U †− , (6.26)
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which can be fulfilled by unitary control operations obeying

U+ |m− 1〉 = |m〉 , U− |m+ 1〉 = |m〉 . (6.27)

There are many unitaries fulfilling this condition, but their actual implementation may be hard.
Generally, the decomposition into an effective non-hermitian Hamiltonian and its eigenstates may
be helpful to find suitable control actions for obtaining pure stationary states [16].

6.2 Maxwell’s demon

Maxwell invented his famous demon as a thought experiment to demonstrate that thermodynamics
is a macroscopic effective theory: An intelligent being (the demon) living in a box is measuring
the speed of molecules of some gas in the box. An initial thermal distribution of molecules implies
that the molecules have different velocities. The demon measures the velocities and inserts an
impermeable wall whenever the the molecule is too fast or lets it pass into another part of the box
when it is slow. As time progresses, this would lead to a sorting of hot and cold molecules, and
the temperature difference could be exploited to perform work.

This is nothing but a feedback (closed-loop) control scheme: The demon performs a mea-
surement (is the molecule slow or fast) and then uses the information to perform an appropriate
control action on the system (inserting a wall or not). Classically, the insertion of a wall requires
in the idealized case no work, such that only information is used to create a temperature gradient.
However, the Landauer principle states that with each bit of information erased, heat of at least
kBT ln(2) is dissipated into the environment. To remain functionable, the demon must at some
point start to delete the information, which leads to the dissipation of heat. The dissipated heat
will exceed the energy obtainable from the thermal gradient.

6.2.1 Phenomenology of an electronic setup

An analog of a Maxwell demon may be implemented in an electronic context: There, an experi-
mentalist takes the role of the demon. The box is replaced by the SET (including the contacts),
on which by a nearby QPC a measurement of the dot state (simply empty or filled) is performed.
Depending on the measurement outcome, the tunneling rates are modified in time in a piecewise
constant manner: When there is no electron on the dot, the left tunneling rate ΓL is increased
(low barrier) and the right tunneling rate ΓR is decreased (high barrier). The opposite is done
when there is an electron on the dot, see Fig. 6.1. Thus, the only difference in comparison to the
previous chapter is that now information of the system state is used to modify the tun-
neling rates. Very simple considerations already demonstrate that with this scheme, it will be
possible to transport electrons against an existing bias only with time-dependent tunneling rates.
When one junction is completely decoupled Γmin

L/R → 0, this will completely rectify the transport

from left to right also against the bias (if the bias is finite). In the following, we will address the
statistics of this device.

The first step is to identify an effective evolution equation for the density matrix accounting for
measurement and control. A measurement of a low QPC current will imply – compare Eq. (4.71)
– that the system is most likely filled, whereas a large QPC current indicates an empty SET dot.
In the idealized limit of no measurement errors, this simply corresponds to a projection

ME = |0〉 〈0| , MF = |1〉 〈1| (6.28)
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Figure 6.1: Sketch of the feedback scheme: For a filled dot (low QPC current), the left tunneling
rate is minimal and the right tunneling rate is maximal and vice-versa for an empty dot. The dot
level itself is not changed.

onto the empty and filled SET dot states, respectively. In the full space (ordering the density
matrix as (ρ00, ρ11, ρ01, ρ10)T these have superoperator representations (definingMσρ=̂MσρM

†
σ) as

ME =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , MF =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , (6.29)

and we see that ME +MF 6= 1. Similarly, the dissipators for the SET exhibit the same block
structure separating the evolution of coherences and populations

LE/F =

(
L̄E/F 0

0 Lcoh
E/F

)
. (6.30)

Therefore, due to the common block structure of the individual dissipators and the measurement
superoperators we can reduce the dynamics to the populations only, where with

M̄E =

(
1 0
0 0

)
, M̄F =

(
0 0
0 1

)
(6.31)

we indeed have M̄E + M̄F = 1. Therefore, for a continuous measurement and feedback control
loop, the effective population Liouvillian under feedback control becomes

Leff = L̄(E)M̄E + L̄(F )M̄F (6.32)

Note that this can be performed with and without counting fields. Taking into account the diagonal
structure of the projection superoperators, this simply implies that the effective Liouvillian under
feedback has the first column from the Liouvillian conditioned on an empty dot and the second
column from the Liouvillian conditioned on the filled dot

Leff(χL, χR) =

(
−ΓELfL − ΓERfR +ΓFL(1− fL)e+iχL + ΓFR(1− fR)e+iχR

+ΓELfLe
−iχL + ΓERfRe

−iχR −ΓFL(1− fL)− ΓFR(1− fR)

)
. (6.33)
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Evidently, it still obeys trace conservation but now the tunneling rates in the two columns are
different ones.

Exercise 43 (Current at zero bias). (1 points)
Calculate the feedback-current at zero bias fL = fR = f in dependence on f . What happens at zero
temperatures, where f → {0, 1}?

The effective Liouvillian describes the average evolution of trajectories under continuous mon-
itoring and feedback. The validity of the effective description can be easily checked by calculating
Monte-Carlo solutions as follows:

Starting e.g. with a filled dot, the probability to jump out e.g. to the right lead during the
small time interval ∆t reads P

(F )
out,R = ΓFR(1−fR)∆t. Similarly, we can write down the probabilities

to jump out to the left lead and also the probabilities to jump onto an empty dot from either the
left or right contact

P
(F )
out,R = ΓFR(1− fR)∆t , P

(F )
out,L = ΓFL(1− fL)∆t ,

P
(E)
in,R = ΓERfR∆t , P

(E)
in,L = ΓELfL∆t . (6.34)

Naturally, these jump probabilities also uniquely determine the change of the particle number on
either contact. The remaining probability is simply the one that no jump occurs during ∆t. A
Monte-Carlo simulation is obtained by drawing a random number and choosing one out of three
possible outcomes for empty (jumping in from left contact, from right contact, or remaining empty)
and for a filled (jumping out to left contact, to right contact, or remaining filled) dot. Repeating
the procedure several times yields a single trajectory for n(t), nL(t), and nR(t). The ensemble
average of many such trajectories agrees perfectly with the solution of the effective feedback master
equation

〈n〉t = Tr
{
d†deLeff(0,0)tρ0

}
,

〈nL〉t = (−i∂χ) Tr
{
eLeff(χ,0)tρ0

}∣∣
χ=0

,

〈nR〉t = (−i∂χ) Tr
{
eLeff(0,χ)tρ0

}∣∣
χ=0

, (6.35)

see Fig. 6.2. To compare with the case without feedback, we parametrize the change of tunneling
rates by dimensionless constants

ΓEL = eδ
E
LΓL , ΓER = eδ

E
RΓR , ΓFL = eδ

F
LΓL , ΓFR = eδ

F
RΓR , (6.36)

where δβα → 0 reproduces the case without feedback and δβα > 0(< 0) increases (decreases) the
tunneling rate to contact α conditioned on dot state β. The general current can directly be
calculated as

I =
fL(1− fR)ΓELΓFR − (1− fL)fRΓFLΓER

ΓELfL + ΓFL(1− fL) + ΓERfR + ΓFR(1− fR)
, (6.37)

which reduces to the conventional current (3.38) without feedback when Γβα → Γα. For finite
feedback strength however, this will generally induce a non-vanishing current at zero bias, see
Fig. 6.3. In our idealized setup, this current is only generated by the information on whether the
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Figure 6.2: Comparison of a single (thin red curve with jumps, same realization in all panels) and
the average of 100 (medium thickness, green) and 10000 (bold smooth curve, turquoise) trajectories
with the solution from the effective feedback master equation (thin black) for the dot occupation
(top), the number of particles on the left (middle), and the number of particles on the right
(bottom). The average of the trajectories converges to the effective feedback master equation
result. The reference curve without feedback (dashed orange) may be obtained by using vanishing
feedback parameters and demonstrates that the direction of the current may actually be reversed
via sufficiently strong feedback. Parameters: ΓL = ΓR ≡ Γ, fL = 0.45, fR = 0.55, δEL = δFR = 1.0,
δER = δFL = −10.0, and Γ∆t = 0.01.

dot is occupied or empty – hence the interpretation as a Maxwell demon. When the contacts are
held at equal temperatures βL = βR = β, this raises the question for the maximum power

P = −IV (6.38)

generated by the device.

In what follows, we will consider symmetric feedback characterized by a single parameter

δEL = δFR = −δFL = −δER = +δ , (6.39)

where δ > 0 favors transport from left to right and δ < 0 transport from right to left and also
symmetric bare tunneling rates Γ = ΓL = ΓR. With these assumptions, it is easy to see that for
large feedback strengths δ � 1, the current simply becomes

I → Γeδ
fL(1− fR)

fL + (1− fR)
. (6.40)

To determine the maximum power, we would have to maximize with respect to left and right
chemical potentials µL and µR, the lead temperature β and the dot level ε. However, as these



124 CHAPTER 6. FEEDBACK CONTROL

-4 -3 -2 -1 0 1 2 3 4

dimensionless bias voltage β V

cu
rr

en
t 

I 
[Γ

]

no feedback
piecewise constant feedback

Figure 6.3: Current voltage characteristics
for finite feedback strength δ = 1 (red curve)
and without feedback δ = 0 (black curve).
For finite feedback, the current may point
in the other direction than the voltage lead-
ing to a positive power P = −IV (shaded
region) generated by the device.

parameters only enter implicitly in the Fermi functions, it is more favorable to use that for equal
temperatures

β(µL − µR) = βV = ln

[
fL(1− fR)

(1− fL)fR

]
, (6.41)

such that we can equally maximize

P = −IV =
1

β
(−IβV )→ Γeδ

β

[
− fL(1− fR)

fL + (1− fR)
ln

(
fL(1− fR)

(1− fL)fR

)]
. (6.42)

The term in square brackets can now be maximized numerically with respect to the parameters
fL and fR in the range 0 ≤ fL/R ≤ 1, such that one obtains for the maximum power at strong
feedback

P ≤ kBTΓeδ0.2785 at fL = 0.2178 fR = 0.7822 . (6.43)

The average work extracted from the SET circuit between two QPC measurement points at t and
t+ ∆t is therefore given by

〈W 〉 ≤ kBTΓeδ∆t0.2785 . (6.44)

We can contrast this with the heat dissipated in the QPC circuit to perform the measurement.
Naively, to perform feedback efficiently, it is required that the QPC sampling rate is fast enough
that all state changes of the SET are faithfully detected (no tunneling charges are missed). This
requires that Γeδ∆t < 1. Therefore, we can refine the upper bound for the average work

W ≤ kBT0.2785 . (6.45)

This has to be contrasted with the Landauer principle, which states that for each deleted bit in
the demons brain (each QPC data point enconding high current or low current) heat of

Q ≥ kBT ln(2) ≈ kBT0.6931 (6.46)

is dissipated. These rough estimates indicate that the second law does not appear to be violated.
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Finally, we use our knowledge of Full Counting Statistics to investigate the fluctuation theorem.
The conventional fluctuation theorem for the SET at equal temperatures

P+n(t)

P−n(t)
= enβV (6.47)

is modified in presence of feedback. Since the Liouvillian still contains the counting fields in the
conventional way, simply the factor in the exponential, but not the dependence on the number
of tunneled electrons n is changed. To evaluate the FT, we identify symmetries in the cumulant-
generating function (or alternatively the eigenvalues of the Liouvillian)

λ(−χ) = λ

(
+χ+ i ln

[
ΓELΓFR
ΓFLΓER

fL(1− fR)

(1− fL)fR

])
= λ

(
+χ+ i ln

[
e+4δ fL(1− fR)

(1− fL)fR

])
= λ

(
+χ+ i ln

[
e+4δeβV

])
= λ(+χ+ i(4δ + βV )) . (6.48)

Exercise 44 (Fluctuation theorem under feedback). Show the validity of this equation.

From this symmetry of the cumulant-generating function we obtain for the fluctuation theorem
under feedback

lim
t→∞

P+n(t)

P−n(t)
= en(βV+4δ) = enβ(V−V ∗) , (6.49)

where V ∗ = −4δ/β denotes the voltage at which the current (under feedback) vanishes.
If our previous investigations we had found that the fluctuation theorems are related to the

entropy production. Now, in addition to the expected entropy production ∆iS = nβV we find
an additional contribution, which one could – lacking a microscopic description of the feedback
mechanism – interpret as an information term modifying the entropy balance of the system in
presence of feedback.

Exercise 45 (Vanishing feedback current). (1 points)
Show for equal temperatures that the feedback current vanishes when V = V ∗ = −4δ/β.

The fact that the estimates concerning the second law are rather vague result from the missing
physical implementation of the control loop. In our model, it could be anything, even represented
by a human being pressing a button whenever the QPC current changes. The entropy produced
by such a humanoid implementation of the control loop would by far exceed the local entropy
reduction manifested by a current running against the bias. Below, we will therefore investigate
these questions in greater detail.

6.2.2 Conventional entropy production in rate equations

In this section, we will mathematically treat rate equations of the form

Ṗa =
∑
ν

∑
b

W
(ν)
ab Pb , (6.50)
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where W
(ν)
ab is the transition rate from state b to state a and ν denotes a reservoir which triggers

the particular transition. Naturally, conservation of probabilities implies that
∑

aW
(ν)
ab = 0 for all

a and for each reservoir ν, such that the diagonal elements are fixed via

W (ν)
aa = −

∑
b 6=a

W
(ν)
ba . (6.51)

Having in mind that each reservoir is kept at a certain equilibrium, we also postulate the
existence of a local detailed balance condition for each reservoir. This implies that the ratio of
forward and backward transition rates between states i and j that are triggered by reservoir ν
obey

W
(ν)
ji

W
(ν)
ij

= e−βν [(Ej−Ei)−µν(Nj−Ni)] , (6.52)

where βν and µν denote inverse temperature and chemical potential of the corresponding reservoir,
and Ei and Ni denote energy and particle number of the state i, respectively. The above relation
follows naturally from the extension of the KMS condition to systems with chemical potentials and
is – as we have seen – automatically fulfilled for a large number of microscopically derived models.

Then, the Shannon entropy of the system

S = −
∑
i

Pi(t) lnPi(t) (6.53)

obeys the balance equation

Ṡ = − d

dt

∑
i

Pi lnPi = −
∑
i

Ṗi lnPi

= −
∑
ij

∑
ν

W
(ν)
ij Pj ln

(
Pi

W
(ν)
ji

PjW
(ν)
ij

PjW
(ν)
ij

W
(ν)
ji

)

= +
∑
ij

∑
ν

W
(ν)
ij Pj ln

(
W

(ν)
ij Pj

W
(ν)
ji Pi

)
+
∑
ij

∑
ν

W
(ν)
ij Pj ln

(
W

(ν)
ji

W
(ν)
ij

1

Pj

)

= +
∑
ij

∑
ν

W
(ν)
ij Pj ln

(
W

(ν)
ij Pj

W
(ν)
ji Pi

)
︸ ︷︷ ︸

≥0

+
∑
ij

∑
ν

W
(ν)
ij Pj ln

(
W

(ν)
ji

W
(ν)
ij

)
︸ ︷︷ ︸

−βν [(Ej−Ei)−µν(Nj−Ni)]

. (6.54)

In the above lines, we have simply used trace conservation
∑

iW
(ν)
ij = 0 and finally the local

detailed balance property (6.52). This property enables us to identify in the long-term limit the
second term as energy and matter currents. When multiplied by the inverse temperature of the
corresponding reservoir, they would combine to an entropy flow, which motivates the definition
below.
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Def. 21 (Entropy Flow). For a rate equation satisfying detailed balance, the entropy flow from
reservoir ν is defined as

Ṡ(ν)
e =

∑
ij

W
(ν)
ij Pj ln

W
(ν)
ji

W
(ν)
ij

= +
∑
ij

W
(ν)
ij Pj [−βν [(Ej − Ei)− µν(Nj −Ni)]]

= βν

(
I

(ν)
E − µνI

(ν)
M

)
, (6.55)

where energy currents I
(ν)
E and matter currents I

(ν)
M associated to reservoir ν count positive when

entering the system.

The remaining contribution corresponds to a production term [17]. We note that it is always
positive, which can be deduced from the formal similarity to the Kullback-Leibler divergence of
two probability distributions or – more directly – using the Logarithmic Sum Inequality.

Exercise 46 (Logarithmic Sum Inequality). Show that for non-negative ai and bi

n∑
i=1

ai ln
ai
bi
≥ a ln

a

b

with a =
∑

i ai and b =
∑

i bi.

Its positivity is perfectly consistent with the second law of thermodynamics, and we therefore
identify the remaining contribution as entropy production.

Def. 22 (Entropy Production). For a rate equation, the average entropy production is defined as

Ṡi =
∑
ij

∑
ν

W
(ν)
ij Pj ln

(
W

(ν)
ij Pj

W
(ν)
ji Pi

)
≥ 0 . (6.55)

It is always positive and at steady state balanced by the entropy flow.

When the dimension of the system’s Hilbert space is finite and the rate equation approaches
a stationary state, its Shannon entropy will also approach a constant value Ṡ = 0. Therefore, at
steady state the entropy production in the system must be balanced by the entropy flow through
its terminals

Ṡi = −Ṡe = −
∑
ν

βν

(
I

(ν)
E − µνI

(ν)
M

)
. (6.56)

The above formula conveniently relates the entropy production to energy and matter currents
from the terminals into the system. Evidently, the entropy production is thus related to heat
currents Q̇(ν) = I

(ν)
E − µνI

(ν)
M , which can be determined from a master equation by means of the

Full Counting Statistics.
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Below, we will show that the above definitions are consistent with what we had before when
the Liouville superoperators L(ν) have a block structure separating the evolution of coherences and
populations, i.e., when in the energy eigenbasis we have

H |i〉 = Ei |i〉 , N |i〉 = Ni |i〉 , 〈i| L(ν)ρ |i〉 =
∑
j

W
(ν)
ij 〈j| ρ |j〉 . (6.57)

For this, it is helpful to note that the trace of a product of two matrices can be written as terms
only arising from products of the diagonal terms and terms composed of products from off-diagonal
terms

Tr {AB} =
∑
i,j

AijBji =
∑
i

AiiBii +
∑
i 6=j

AijBji , (6.58)

which also implies that traces of products of a diagonal matrix A and an off-diagonal matrix B
will always vanish.

For a full Lindblad master equation we defined the energy current entering the system in
Eq. (3.11). It can be written as (we drop for simplicity all time dependencies)

I
(ν)
E = Tr

{
H(L(ν)ρ)

}
=
∑
i

Ei(L(ν)ρ)ii =
∑
ij

EiW
(ν)
ij ρjj

=
∑
i 6=j

EiW
(ν)
ij ρjj −

∑
i 6=j

EiW
(ν)
ji ρii =

∑
ij

(Ei − Ej)W (ν)
ij ρjj , (6.59)

which is the same as the energy current based on the rate equation when we identify Pj = ρjj. In
complete analogy, we find for the matter current defined in Eq. (3.13)

I
(ν)
M = Tr

{
N(L(ν)ρ)

}
=
∑
ij

(Ni −Nj)W
(ν)
ij ρjj . (6.60)

This proves that the definitions for the currents based on the rate equation and on the master equa-
tion coincide when the master equation assumes block form separating coherences and populations
in the system energy eigenbasis.

Now, we consider the entropy production rate defined in Eq. (3.25)

ṠSp
i = −

∑
ν

Tr
{

[L(ν))ρ][ln ρ− ln ρ̄(ν)]
}

=
∑
ν

ṠSp,ν
i . (6.61)

For simplicity of notation, we introduce the projection to the diagonal elements of the matrix A
in the system energy eigenbasis as a superoperator

PA =
∑
i

|i〉 〈i|A |i〉 〈i| . (6.62)

From this, we can conclude that an individual reservoir-specific term in the Spohn entropy pro-
duction rate ṠSp

i ≥ 0 can be written as

ṠSp,ν
i = −Tr

{
(PL(ν)ρ)P [ln ρ− ln ρ̄(ν)]

}
− Tr

{
((1− P)L(ν)ρ)(1− P)[ln ρ− ln ρ̄(ν)]

}
= −Tr

{
(PL(ν)ρ)P [ln ρ− ln ρ̄(ν)]

}
− Tr

{
((1− P)L(ν)ρ)(1− P) ln ρ

}
= −Tr

{
(PL(ν)ρ)P [lnPρ− ln ρ̄(ν)]

}
− Tr

{
((1− P)L(ν)ρ)(1− P) ln ρ

}
+Tr

{
(PL(ν)ρ)P [lnPρ− ln ρ]

}
= −Tr

{
(PL(ν)ρ)P [lnPρ− ln ρ̄(ν)]

}
+Tr

{
((1− P)L(ν)ρ)(1− P)[lnPρ− ln ρ]

}
+ Tr

{
(PL(ν)ρ)P [lnPρ− ln ρ]

}
= −Tr

{
(L(ν)Pρ)[lnPρ− ln ρ̄(ν)]

}
− Tr

{
(L(ν)ρ)[ln ρ− lnPρ]

}
, (6.63)
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where in the second step we have used that ρ̄(ν) (and its logarithm) is diagonal in the energy
eigenbasis in which we evaluate the trace. In the last step, we have used again the previous
decomposition into diagonal and off-diagonal contributions. Furthermore, we also used that PL =
LP (block form of the Liouvillian). Therefore, we see that the entropy production additively
splits into a part arising from the dynamics of the populations and another part coming from the
dynamics of the coherences.

The first term for the populations can be written as

Ṡ1,ν
i = −Tr

{
(L(ν)Pρ)[lnPρ− ln ρ̄(ν)]

}
= −

∑
ij

W
(ν)
ij Pj

[
lnPi − ln P̄

(ν)
i

]
= −

∑
ij

W
(ν)
ij Pj lnPi +

∑
ij

W
(ν)
ij Pj ln P̄

(ν)
i = +

∑
ij

W
(ν)
ij Pj ln

Pj
Pi

+
∑
ij

W
(ν)
ij Pj ln

P̄
(ν)
i

P̄
(ν)
j

=
∑
ij

W
(ν)
ij Pj ln

Pj
Pi

P̄
(ν)
i

P̄
(ν)
j

=
∑
ij

W
(ν)
ij Pj ln

PjW
(ν)
ij

PiW
(ν)
ji

, (6.64)

where we have used that
∑

iW
(ν)
ij = 0 and eventually that

P̄
(ν)
i

P̄
(ν)
j

=
W

(ν)
ij

W
(ν)
ji

. We see that it exactly

reproduces the entropy production rate for rate equation in Def. 22.
Finally, we discuss the coherences. From the contractivity of completely positive trace-preserving

maps [7] we can show that

D(eL∆tρ(t)|eL∆tPρ(t)) ≤ D(ρ(t)|Pρ(t)) (6.65)

that one can as ∆t→ 0 obtain an inequality of the form

Ṡ2,ν
i = −Tr

{
(L(ν)ρ(t))[ln ρ(t)− lnPρ(t)]

}
≥ 0 . (6.66)

Exercise 47 (Entropy production of coherent decay). Show that under the assumptions dis-
cussed in this section, the above inequality holds. You may want to use that (why)
Tr
{

(eL∆tρ) ln eL∆tPρ
}

= Tr
{

(eL∆tPρ) ln eL∆tPρ
}

.

This proves that for the standard quantum-optical master equation, the total master equation

entropy production ṠSp
i =

∑
ν

[
Ṡ1,ν

i + Ṡ2,ν
i

]
decomposes into two separately positive terms, one

describing the evolution of the populations only – with the usual entropy production for rate
equations remaining in general finite at large times – and another transient term containing the
entropic contributions stemming from the decay of the coherences.

6.2.3 Entropic analysis of rate equations with feedback

We will in this section discuss the necessary modifications in the entropy production rate in rate
equations that are subject to feedback control actions. The control actions will be allowed to
change both the tunneling rates [18] and the energies of the system [19].

We now consider a feedback conditioned on the system being in state j. Physically, this means
that some external controller monitors the state of the system, and upon detecting the system in
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state j, it immediately changes the system properties accordingly: The energies of all levels i are
without delay changed to E

(j)
i and also the transition rates due to reservoir ν from j to other

states are changed to W
(j,ν)
ij . Then, the rate equation under feedback becomes

Ṗi =
∑
α

∑
j

W
(j,α)
ij Pj . (6.67)

As we will see, one can distinguish between changes of bare tunneling rates and changes of the
energy levels. Whereas the first type leaves the energetics of the system invariant but changes the
entropy and is for this reason also called Maxwell demon feedback [18], changing the energy levels
modifies both the energetic and entropic balances. It can therefore also not be considered a simple
work source.

During a jump j → i (where the system particle number changes according to ∆Nij = Ni−Nj),

the energy balance of the system becomes ∆Eij = (E
(j)
i − E

(j)
j ) + (E

(i)
i − E

(j)
i ), where the first

contribution is exchanged with the reservoir and contributes to the heat via ∆Qij = (E
(j)
i −E

(j)
j )−

µ(Ni−Nj), and the second describes feedback energy ∆Efb injected into the system from the control
action following immediately thereafter, see also Fig. 6.4 for an illustration. This enables us to

Figure 6.4: Sketch of the energetic balance for the transition from from state j → i (left) and
from state i → j (right) subject to feedback control applied immediately thereafter. The initial
transition (blue to hollow circles) leads to the exchange of heat between system and reservoir
(vertical terms). Immediately thereafter, the control action changes the energy levels (hollow to
filled red circes), thereby injecting energy into the system if the level is occupied.

write the energy and particle currents entering the system from reservoir ν as

I
(ν)
E =

∑
ij

(E
(j)
i − E

(j)
j )W

(j,ν)
ij Pj ,

I
(ν)
M =

∑
ij

(Ni −Nj)W
(j,ν)
ij Pj . (6.68)

The energy injected in the system with the feedback actions can be similarly computed

I fb
E =

∑
ν

∑
ij

(E
(i)
i − E

(j)
i )W

(j,ν)
ij Pj , (6.69)
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and together we find for the total change of the system energy E =
∑

iE
(i)
i Pi

Ė =
∑
ij

∑
ν

E
(i)
i W

(j,ν)
ij Pj

=
∑
ν

∑
i 6=j

E
(i)
i W

(j,ν)
ij Pj −

∑
ν

∑
i 6=j

E
(i)
i W

(i,ν)
ji Pi

=
∑
ν

∑
i,j

(E
(i)
i − E

(j)
j )W

(j,ν)
ij Pj =

(∑
ν

I
(ν)
E

)
+ I fb

E

=
∑
ν

µνI
(ν)
M + I fb

E +
∑
ν

(I
(ν)
E − µνI

(ν)
M ) . (6.70)

This is the first law of thermodynamics, where in the last line we can identify the chemical work
done on the system, the energy injected from the feedback, and the heat currents entering from
the reservoirs.

We can also consider the evolution of the systems Shannon entropy S = −
∑

i Pi lnPi, where
we get from algebraic manipulations [2]

Ṡ = −
∑
i

Ṗi lnPi = Ṡi + Ṡe ,

Ṡi =
∑
ν

∑
ij

W
(j,ν)
ij Pj ln

(
W

(j,ν)
ij Pj

W
(i,ν)
ji Pi

)
≥ 0 ,

Ṡe =
∑
ν

∑
ij

W
(j,ν)
ij Pj ln

(
W

(i,ν)
ji

W
(j,ν)
ij

)
. (6.71)

Here, the positivity of the entropy production rate Ṡi follows from mathematical terms (it has the
form of a relative entropy), and the second term Ṡe can from the conventional detailed balance
relation (6.52) in absence of feedback be identified as the negative entropy change in the reservoirs.
However, the feedback changes the detailed balance relation in a way which we phenomenologically
parametrize as

W
(i,ν)
ji

W
(j,ν)
ij

= eβν [(E
(j)
i −E

(j)
j )−µν(Ni−Nj)]e−∆

(ν)
ij e−σ

(ν)
ij . (6.72)

Here, the first term is associated with the entropy change of the reservoirs, indeed we can recover
the heat flow from the reservoirs into the system from it. The second term ∆

(ν)
ij parametrizes

changes of the transition rates that are not associated with energetic changes in the system.
Consequently, it must not depend on the reservoir temperatures. Finally, the term σ

(ν)
ij gathers all

remaining influences of the feedback. By distinguishing between ∆
(ν)
ij and σ

(ν)
ij we have presupposed

that an unambiguous discrimination between these feedback effects is possible. Inserting this
decomposition into the “entropy flow” term we obtain

Ṡe =
∑
ν

βνQ̇
(ν) − I1 − I2 ,

I1 =
∑
ν

∑
ij

W
(j,ν)
ij Pj∆

(ν)
ij ,

I2 =
∑
ν

∑
ij

W
(j,ν)
ij Pjσ

(ν)
ij . (6.73)
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Solving for the entropy production, we can express it as

Ṡi = Ṡ −
∑
ν

βνQ̇
(ν) + I1 + I2 ≥ 0 . (6.74)

This is the second law of thermodynamics in presence of a non-equilibrium environment and
feedback control.

At steady state, Ṡ → 0, and the usual inequality for the currents −
∑

ν βνQ̇
(ν) ≥ 0 is modified

by two effective currents. The first one I1 is associated with feedback actions that have no direct
impact on the energetics, whereas the second one takes the energetic feedback actions into account.
We note here that these information currents are just an effective description (for example, they
can become negative), since we have not made the implementation of the feedback loop explicit in
our treatment but remain at a phenomenologic level. If that is done for a microscopic treatment
of the detector [20], it is possible to link the effective information current with the time-derivative
of the mutual information between controlled system and detector device [21, 22].

Depending on the regime, one may identify contributions to the total entropy production
rate (6.74) which are negative. These always need to be compensated by the other, positive
contributions, which enables one to define information-theoretic efficiencies that are upper-bounded
by one.

6.2.4 Our example: Maxwell’s demon

For error-free feedback the average feedback rate matrix becomes (for simplicity without counting
fields)

Lfb =
∑
ν

(
−ΓEν f

E
ν +ΓFν [1− fFν ]

+ΓEν f
E
ν −ΓFν [1− fFν ]

)
. (6.75)

Here, the piecewise-constant driving leads to two possible values of the SET tunneling rates Γν →
Γ
E/F
ν and also of the system Hamiltonian (ε→ εE/F ). Since the dot parameters in the description

only enter implicitly, we described the latter by conditional Fermi functions fν → f
E/F
ν . With

such a feedback scheme, one will in general inject both energy and information into the system,
which can be consistently treated on the local level.

Assuming the conditioned dot Hamiltonian as HS = εE/Fd
†d, the empty dot has energies

E
(0)
0 = 0 and E

(0)
1 = εE, and when filled, the system has energies E

(1)
0 = 0 and E

(1)
1 = εF .

Therefore, we can identify the heat entering the system from reservoir ν during a jump out of
the system as ∆Q

(ν)
out = E

(1)
0 − E

(1)
1 − µν(N0 − N1) = −εF + µ and for a jump into the system as

∆Q
(ν)
in = E

(0)
1 − E

(0)
0 − µν(N1 −N0) = +εE − µ, leading to an overall heat current of

Q̇(ν) = −(εF − µν)L01,ν
fb P1 + (εE − µν)L10,ν

fb P0

= I
(ν)
E − µνI

(ν)
M , (6.76)

which also defines energy I
(ν)
E and matter I

(ν)
M currents entering the system from reservoir ν

I
(ν)
E = εEL10,ν

fb P0 − εFL01,ν
fb P1 = εEΓEν f

E
ν P0 − εFΓFν (1− fFν )P1 ,

I
(ν)
M = L10,ν

fb P0 − L01,ν
fb P1 = ΓEν f

E
ν P0 − ΓFν (1− fFν )P1 , (6.77)

and we see that they are no longer tightly coupled. A similar result holds if also the energy of
the empty state is changed by the feedback. We can show that the energy change of the system is
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balanced by the energy currents entering the system from both reservoirs and the energy current
injected by the feedback

I fb
E = (εF − εE)

∑
ν

L10,ν
fb P0 . (6.78)

To discuss the entropic balance, we can with Eq. (6.75) write the ratio of backward- and forward
rates for each reservoir as

L01,ν
fb

L10,ν
fb

=
ΓFν
ΓEν

1− fFν
fEν

=

(
1− fEν
fEν

)[
ΓFν
ΓEν

]{
1− fFν
1− fEν

}
,

L10,ν
fb

L01,ν
fb

=
ΓEν
ΓFν

fEν
1− fFν

=

(
fFν

1− fFν

)[
ΓEν
ΓFν

]{
fEν
fFν

}
, (6.79)

where we see from (1 − fEν )/fEν = e+βν(εE−µν) and fFν /(1 − fFν ) = e−βν(εF−µν) that the terms in
round parentheses (. . .) will when inserted in the “entropy flow” term

Ṡ(ν)
e =

∑
ij

W
(j,ν)
ij Pj ln

W
(i,ν)
ji

W
(j,ν)
ij

(6.80)

compose the entropy change in the reservoirs −βνQ̇(ν), compare Eq. (6.76). The terms in square
brackets [. . .] are a pure Maxwell-demon contribution [18] in the sense that they only affect the
entropic balance directly, and the terms in curly brackets {. . .} describe the influence on the
feedback energy injection on the entropic balance. We therefore define the feedback parameters

∆
(ν)
01 = ln

ΓFν
ΓEν

, ∆
(ν)
10 = ln

ΓEν
ΓFν

,

σ
(ν)
01 = ln

fFν
fEν

, σ
(ν)
10 = ln

1− fEν
1− fFν

, (6.81)

compare also Eq. (6.72). We see that the information contribution of the feedback obeys ∆
(ν)
01 =

−∆
(ν)
10 and the energetic contribution obeys σ

(ν)
01 σ

(ν)
10 = βν(εE − εF ). With these, the “entropy flow”

term becomes modified by information currents Ṡe =
∑

ν βνQ̇
(ν)−I1−I2, of which the first reads

explicitly

I1 =
∑
ν

[
L01,ν

fb P1 − L10,ν
fb P0

]
ln

ΓFν
ΓEν

= −
∑
ν

ln
ΓFν
ΓEν

I
(ν)
M

→
(

ln
ΓFR
ΓER
− ln

ΓFL
ΓEL

)
IM = IM ln

[
ΓELΓFR
ΓFLΓER

]
. (6.82)

Above, it is visible that the individual contributions to the information current I1 are tightly
coupled to the matter current. At steady state, we have conservation of the matter currents
IM = I

(L)
M = −I(R)

M , such that also the total information current is tightly coupled to the matter
current.

Looking at the second information current we see that

I2 =
∑
ν

[
L01,ν

fb P1 ln
fFν
fEν

+ L10,ν
fb P0 ln

1− fEν
1− fFν

]
. (6.83)
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and from the first law also conservation of the individual energy currents and the feedback
energy current I

(L)
E + I

(R)
E + I fb

E = 0.
Inserting these in the steady-state entropy production rate Ṡi = −Ṡe we find that at equal

temperatures β = βL = βR the second law reads

Ṡi → β(µL − µR)IM + I1 + βI fb
E + I2 ≥ 0 . (6.84)

Here, the first term contains the produced electric power P = −(µL − µR)IM , which without
feedback would always be negative. The second term contains the purely informational contribution
of the feedback to the entropic balance. The third term quantifies how the difference of left and
right energy currents I

(L)
E + I

(R)
E = −I fb

E affects the heat exchanged with the reservoirs. If the
feedback does not affect the energy levels (εE = εF ), this term will naturally vanish. Finally, the
last term describes the effect of the feedback level driving on the entropic balance. Since the level
driving also enters the entropic balance, we cannot interpret this simply as work on the system.

For simplicity, we can parametrize the tunneling rates using only a single parameter

ΓFL = Γe+δ , ΓFR = Γe−δ ,

ΓEL = Γe−δ , ΓER = Γe+δ , (6.85)

which will for δ > 0 favor transport from right to left. This will not change the energetics, but
the entropic balance is affected by the information current I1. When we similarly parametrize the
changes of the dot level as

εF = εe+∆ , εE = εe−∆ , (6.86)

this will for ∆ 6= 0 inject energy into the system via feedback operations. This secondary type of
feedback will not only modify the energy balance (first law), visible in an imbalance between left

and right energy currents I
(L)
E 6= −I(R)

E . In addition, it also affects the entropic balance via both
a modification of the heat flow and the information current I2. These effects are illustrated in
Fig. 6.5.

It is clearly visible that neglecting the feedback completely, one may observe an apparent
violation of the second law (dashed and solid red curves). The unconscious injection of energy
may lead to a significant increase of the overall produced power (solid red curve) but also implies
an apparent violation of the second law under Maxwell-demon feedback (solid green curve). By
contrast, the full entropy production rate (6.84) is always positive as expected (black curves).

Finally, we turn to the integral fluctuation theorem for entropy production. Formally, we get a
fluctuation theorem for the probabilities of transferred particles from left to right, since the when
we equip Eq. (6.75) with counting fields, we get

Lfb(χ) =

(
−ΓELf

E
L +ΓFL [1− fFL ]e−iχ

+ΓELf
E
L e

+iχ −ΓFL [1− fFL ]

)
+

(
−ΓERf

E
R +ΓFR[1− fFR ]

+ΓERf
E
R −ΓFR[1− fFR ]

)
. (6.87)

In the long-term cumulant-generating function we obtain the symmetry

C (−χ, t) = C (+χ+ iα, t) , α = ln
fEL (1− fFR )ΓELΓFR
(1− fFL )fERΓFLΓER

, (6.88)

which leads to a fluctuation theorem of the form

lim
t→∞

P+n(t)

P−n(t)
= e+nα . (6.89)
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Figure 6.5: Plot of the matter current from left to right (top) and contributions to the total entropy
production rate (6.84) (bottom) for situations without feedback δ = ∆ = 0 (dotted), with Maxwell-
demon feedback δ = +1.0, ∆ = 0 (dashed), and with energy-injecting feedback δ = ∆ = +1.0
(solid). With feedback active (dashed and solid), we see that the matter current at equilibrium
V = 0 becomes negative and remains negative for a small region 0 < V < V ∗, where the device
produces positive power P = −V IM either using only information (∆ = 0) or information and
energy injection (∆ 6= 0). Red thin curves of similar style denote the naive entropy production
rate β(µL − µR)IM = −βP that one would conjecture in ignorance of any feedback actions taken.
Green thin curves of similar style denote the naive entropy production rate −β(µL − µR)IM + I1

that one would conjecture when assuming that the feedback does not affect the energy levels. The
black curves denote the true entropy production rate, which is positive in all parameter regimes.
Dash-dotted lines just serve for orientation. Other parameters: βε = 1.

When fEν = fFν , we indeed recover our previous fluctuation theorem (6.49). In this case, we have
indeed the total entropy production in the exponent. However, when the feedback injects energy
into the system fEν 6= fFν , we have already found that the average entropy production is no longer
tightly coupled to the matter current and can therefore not be simply proportional to the total
number of particles travelling through the system. The observed symmetry is then just a purely
mathematical one – actually a fluctuation theorem is observed for any fluctuating two-level system,
regardless of any detailed balance relation.

6.3 Coherent/Autonomous feedback

In contrast to external feedback loops, we can augment a quantum system by replacing the mea-
surement, signal processing, and control actions by a single auxiliary system, which we add to the
original quantum system. The controller and the original quantum systems are then treated in an
all-inclusive fashion. Typically, such setups are less flexible, since the control protocoll cannot just
be changed by altering classical parts of the feedback loop. However, they offer more understanding
on the thermodynamics as the complete feedback loop can be treated as part of the system.
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6.3.1 An autonomous version of a Maxwell demon

Consider a single-electron transistor as before now capacitively interacting with another quantum
dot, which is coupled to its own reservoir as depicted in Fig. 6.6. The system Hamiltonian of this

]

Figure 6.6: Sketch of an SET (bottom cir-
cuit) that is capacitively coupled via the
Coulomb interaction U to another quantum
dot. The additional quantum dot is tunnel-
coupled to its own reservoir with Fermi func-
tion fD. Since the associated stationary
matter current vanishes, only energy can be
transferred across this junction (dotted line).

three-terminal system reads

HS = εdc
†
dcd + εsc

†
scs + Uc†dcdc

†
scs , (6.90)

where εs and εd denote the on-site energies of the SET dot and the demon dot, respectively, whereas
U denotes the Coulomb interaction between the two dots. The system dot is tunnel-coupled to
left and right leads, whereas the demon dot is tunnel-coupled to its junction only

HI =
∑
k

(
tkLcsc

†
kL + t∗kLckLc

†
s

)
+
∑
k

(
tkRcsc

†
kR + t∗kRckRc

†
s

)
+
∑
k

(
tkdcdc

†
kd + t∗kdckLc

†
d

)
. (6.91)

Furthermore, all the junctions are modeled as non-interacting fermions

HB =
∑

ν∈{L,R,d}

∑
k

εkνc
†
kνckν . (6.92)

Treating the tunneling amplitudes perturbatively and fixing the reservoirs at thermal equi-
librium states we derive the standard quantum-optical master equation, compare also Def. 7.
Importantly, we do not apply the popular wide-band limit here (which would mean to approxi-
mate Γν(ω) ≈ Γν). In the energy eigenbasis of HS – further-on denoted by |ρσ〉 where ρ ∈ {E,F}
describes the systems dot state and σ ∈ {0, 1} denotes the state of the demon dot (both either
empty or filled, respectively) – the populations obey a simple rate equation defined by Eq. (2.52).
Denoting the populations by pρσ = 〈ρσ| ρ |ρσ〉, the rate equation Ṗ = LP in the ordered ba-
sis P = (p0E, p1E, p0F , p1F )T decomposes into the contributions due to the different reservoirs
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L = LD + LL + LR, which read

LD =


−ΓDfD +ΓD(1− fD) 0 0
+ΓDfD −ΓD(1− fD) 0 0

0 0 −ΓUDf
U
D +ΓUD(1− fUD )

0 0 +ΓUDf
U
D −ΓUD(1− fUD )

 ,

Lα =


−Γαfα 0 +Γα(1− fα) 0

0 −ΓUαf
U
α 0 +ΓUα (1− fUα )

+Γαfα 0 −Γα(1− fα) 0
0 +ΓUαf

U
α 0 −ΓUα (1− fUα )

 , α ∈ {L,R} , (6.93)

where we have used the abbreviations Γα = Γα(εs) and ΓUα = Γα(εs + U) for α ∈ {L,R} and
ΓD = ΓD(εd) and ΓUD = ΓD(εd + U) for the tunneling rates and similarly for the Fermi functions
fα = fα(εs), f

U
α = fα(εs + U), fD = fD(εd), and fUD = fD(εd + U), respectively. We note that

all contributions separately obey local-detailed balance relations. Closer inspection of the rates in
Eq. (6.93) reveals that these rates could have been guessed without any microscopic derivation.
For example, the transition rate from state |1E〉 to state |0E〉 is just given by the bare tunneling
rate for the demon junction ΓD multiplied by the probability to find a free space in the terminal at
transition frequency εd. Similarly, the transition rate from state |1F 〉 to state |0F 〉 corresponds to
an electron jumping out of the demon dot to its junction, this time, however, transporting energy
of εd +U . We have ordered our basis such that the upper left block of LD describes the dynamics
of the demon dot conditioned on an empty system dot, whereas the lower block accounts for the
dynamics conditioned on a filled system.

As a whole, the system respects the second law of thermodynamics. We demonstrate this by
analyzing the entropy production by means of the Full Counting Statistics. In order to avoid
having to trace six counting fields, we note that the system obeys three conservation laws, since
the two dots may only exchange energy but not matter

I
(L)
M + I

(R)
M = 0 , I

(D)
M = 0 , I

(L)
E + I

(R)
E + I

(D)
E = 0 , (6.94)

where I
(ν)
E and I

(ν)
M denote energy and matter currents to terminal ν, respectively. Therefore, three

counting fields should in general suffice to completely track the full entropy production in the
long-term limit. For simplicity however, we compute the entropy production for the more realistic
case of equal temperatures at the left and right SET junction β = βL = βR. Technically, this is
conveniently performed by balancing with the entropy flow and using the conservation laws

Ṡi = −Ṡe = −
∑
ν

β(ν)(I
(ν)
E − µ

(ν)I
(ν)
M )

= −β(I
(L)
E − µLI(L)

M + I
(R)
E − µRI(R)

M )− βDI(D)
E

= (β − βD)I
(D)
E − β(µL − µR)I

(R)
M . (6.95)

Thus, we conclude that for equal temperatures left and right it should even suffice to track e.g.
only the energy transferred to the demon junction and the particles to the right lead. Therefore,
we introduce counting fields for the demon (ξ) and for the particles transferred to the left junctions
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(χ), and the counting-field dependent rate equation becomes

LD(ξ) =


−ΓDfD +ΓD(1− fD)e+iξεd 0 0

+ΓDfDe
−iξεd −ΓD(1− fD) 0 0

0 0 −ΓUDf
U
D +ΓUD(1− fUD )e+iξ(εd+U)

0 0 +ΓUDf
U
De
−iξ(εd+U) −ΓUD(1− fUD )

 ,

LR(χ) =


−ΓRfR 0 +ΓR(1− fR)e+iχ 0

0 −ΓURf
U
R 0 +ΓUR(1− fUR )e+iχ

+ΓRfRe
−iχ 0 −ΓR(1− fR) 0

0 +ΓURf
U
R e
−iχ 0 −ΓUR(1− fUR )

 . (6.96)

These counting fields can now be used to reconstruct the statistics of energy and matter transfer.
The currents can be obtained by performing suitable derivatives of the rate matrix. For example,

the energy current to the demon is given by I
(D)
E = −iTr

{
∂ξL(ξ, 0)|ξ=0 ρ̄

}
, where ρ̄ is the steady

state L(0, 0)ρ̄ = 0.
To test the fluctuation theorem, we calculate the characteristic polynomial

D(ξ, χ) = |L(ξ, χ)− λ1|
= (L11 − λ)(L22 − λ)(L33 − λ)(L44 − λ)

−(L11 − λ)(L22 − λ)L34(ξ)L43(ξ)− (L11 − λ)(L33 − λ)L24(χ)L42(χ)

−(L22 − λ)(L44 − λ)L13(χ)L31(χ)− (L33 − λ)(L44 − λ)L12(ξ)L21(ξ)

+L12(ξ)L21(ξ)L34(ξ)L43(ξ) + L13(χ)L31(χ)L24(χ)L42(χ)

−L12(ξ)L24(χ)L31(χ)L43(ξ)− L13(χ)L21(ξ)L34(ξ)L42(χ)

= (L11 − λ)(L22 − λ)(L33 − λ)(L44 − λ)

−(L11 − λ)(L22 − λ)L34(0)L43(0)− (L11 − λ)(L33 − λ)L24(χ)L42(χ)

−(L22 − λ)(L44 − λ)L13(χ)L31(χ)− (L33 − λ)(L44 − λ)L12(0)L21(0)

+L12(0)L21(0)L34(0)L43(0) + L13(χ)L31(χ)L24(χ)L42(χ)

−L12(ξ)L24(χ)L31(χ)L43(ξ)− L13(χ)L21(ξ)L34(ξ)L42(χ) , (6.97)

where Lij simply denote the matrix elements of the rate matrix L. We note the symmetries

L13(−χ) =
1− fL
fL

L31

(
+χ+ i ln

fL(1− fR)

(1− fL)fR

)
=

1− fL
fL

L31 (+χ+ iβ(µL − µR)) ,

L24(−χ) =
1− fUL
fUL

L42

(
+χ+ i ln

fUL (1− fUR )

(1− fUL )fUR

)
=

1− fUL
fUL

L42 (+χ+ iβ(µL − µR)) ,

L12(−ξ) = L21

(
+ξ +

i

εd
ln

1− fD
fD

)
= L21

(
+ξ +

i

εd
βD(εd − µD)

)
,

L34(−ξ) = L43

(
+ξ +

i

εd + U
ln

1− fUD
fUD

)
= L43

(
+ξ +

i

εd + U
βD(εd + U − µD)

)
, (6.98)

which can be used to show that the full characteristic polynomial obeys the symmetry

D(−ξ,−χ) = D(ξ + i(βD − β)/U, χ+ iβ(µL − µR)) . (6.99)

This symmetry implies – when monitoring the energy current to the demon eD and the number of
electrons transferred to the right junction nR – for the corresponding probability distribution the
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fluctuation theorem

lim
t→∞

P+∆nS ,+∆eD

P−∆nS ,−∆eD

= e(βD−β)∆eD+β(µL−µR)∆nS . (6.100)

Instead of determining the continuous energy emission distribution, we could alternatively have
counted the discrete number of electrons entering the demon dot at energy εD and leaving it at
energy εD+U . Since this process leads to a net energy extraction of energy U from the system, the
corresponding matter current is tightly coupled to the energy current across the demon junction,
i.e., their number would be related to the energy via ∆eD = nDU . Comparing the value in the
exponent of Eq. (6.100) with the average expectation value of the entropy production in Eq. (6.95),
we can also – roughly speaking – interpret the fluctuation theorem as the ratio of probabilities for
trajectories with a positive and negative entropy production.

In addition, we identify P = (µL − µR)I
(R)
M = −(µL − µR)I

(L)
M as the power generated by the

device, which – when the current flows against the bias – may yield a negative contribution βP
to the overall entropy production. In these parameter regimes however, the negative contribution
β(µL − µR)I

(R)
M must be over-balanced by the second term (β − βD)I

(D)
E , which clearly requires –

when the demon reservoir is colder than the SET reservoirs βD > βS – that the energy current
flows out of the demon I

(D)
E < 0. As a whole, the system therefore just converts a thermal

gradient between the two subsystems into power: A fraction of the heat coming from the hot SET
leads is converted into power, and the remaining fraction is dissipated as heat at the cold demon
junction. The corresponding efficiency for this conversion can be constructed from the output
power P = −(µL − µR)I

(L)
M and the input heat Q̇L + Q̇R = −I(D)

E − (µL − µR)I
(L)
M = Q̇diss + P ,

where Q̇diss = −I(D)
E is the heat dissipated into the demon reservoir. Using that Ṡi ≥ 0 we find

that the efficiency – which of course is only useful in parameter regimes where the power is positive
β(µL − µR)I

(R)
M > 0 – is upper-bounded by Carnot efficiency

η =
P

Q̇diss + P
≤ 1− TD

T
= ηCar . (6.101)

For practical applications a large efficiency is not always sufficient. For example, a maximum
efficiency at zero power output would be quite useless. Therefore, it has become common standard
to first maximize the power output of the device and then compute the corresponding efficiency
at maximum power. Due to the nonlinearity of the underlying equations, this may be a difficult
numerical optimization problem. To reduce the number of parameters, we assume that fUD = 1−fD
(which is the case when εD = µD − U/2) and fUL = 1 − fR as well as fUR = 1 − fL (which for
βL = βR = β is satisfied when εS = 1/2(µL + µR) − U/2), see also the left panel of Fig. 6.7.
Furthermore, we parametrize the modification of the tunneling rates by a single parameter via

ΓL = Γ
e+δ

cosh(δ)
, ΓUL = Γ

e−δ

cosh(δ)

ΓR = Γ
e−δ

cosh(δ)
, ΓUR = Γ

e+δ

cosh(δ)
(6.102)

to favor transport in a particular direction. We have inserted the normalization by cosh(δ) to keep
the tunneling rates finite as the feedback strength δ is increased. Trivially, at δ = 0 we recover
symmetric unperturbed tunneling rates and when δ → ∞, transport will be completely rectified.
The matter current from left to right in the limit where the demon dot is much faster than the
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SET (ΓD →∞ and ΓUD →∞) becomes

I
(L)
M =

Γ

2
[fL − fR + tanh(δ) (fL + fR − 2fD)] . (6.103)

Similarly, we obtain for the energy current to the demon

I
(D)
E =

ΓU

2
[fL + fR − 2fD + (fL − fR) tanh(δ)] , (6.104)

which determines the dissipated heat. These can be converted into an efficiency solely expressed
by Fermi functions when we use that

β(µL − µR) = ln

(
fL(1− fR)

(1− fL)fR

)
,

βU = ln

(
fR(1− fUR )

(1− fR)fUR

)
→ ln

(
fRfL

(1− fR)(1− fL)

)
, (6.105)

which can be used to write the efficiency of heat to power conversion as

η =
P

Q̇diss + P
=

1

1 + βQ̇diss

βP

=
1

1 +
ln
(

fRfL
(1−fR)(1−fL)

)
(fL+fR−2fD+(fL−fR) tanh(δ))

ln
(
fL(1−fR)

(1−fL)fR

)
(fL−fR+(fL+fR−2fD) tanh(δ))

, (6.106)

which is also illustrated in Fig. 6.7.
Beyond these average considerations, the qualitative action of the device may also be under-

stood at the level of single trajectories, see Fig. 6.8. It should be noted that at the trajectory level,
all possible trajectories are still allowed, even though ones with positive total entropy production
must on average dominate. As a whole, the system thereby merely converts a temperature gradient
(cold demon, hot system) into useful power (current times voltage).

6.3.2 Local View: A Feedback-Controlled Device

An experimentalist having access only to the SET circuit would measure a positive generated
power, conserved particle currents I

(L)
M + I

(R)
M = 0, but possibly a slight mismatch of left and

right energy currents I
(L)
E + I

(R)
E = −I(D)

E 6= 0. This mismatch could not fully account for the

generated power, since for any efficiency η > 1/2 in Fig. 6.8 we have
∣∣∣I(D)
E

∣∣∣ < P . Therefore, the

experimentalist would conclude that his description of the system by energy and matter flows is
not complete and he might suspect Maxwell’s demon at work. Here, we will make the reduced
dynamics of the SET dot alone more explicit by deriving a reduced rate equation.

We can evidently write the rate equation defined by Eqs. (6.93) as Ṗα = Lαα′Pα′ . Here,
α ∈ {E0, E1, F0, F1} labels the energy eigenstates of the total system composed by the single
dot and the demon dot. Resolving these two degrees of freedom α = (ij), where i ∈ {E,F} and
j ∈ {0, 1}, we can equivalently write Ṗij = Lij,i′j′Pi′j′ , where i and j label the system (i) and
detector/demon (j) degrees of freedom, respectively. If we discard the dynamics of the demon
dot by tracing over its degrees of freedom Pi =

∑
j Pij, we formally arrive at a non-Markovian

evolution equation for the populations of the SET dot.

Ṗi =
∑
i′

∑
jj′

Lij,i′j′Pi′j′ =
∑
i′

[∑
jj′

Lij,i′j′
Pi′j′

Pi′

]
Pi′ =Wii′(t)Pi′ . (6.107)
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Figure 6.7:
Left: Sketch of the assumed configurations of chemical potentials, which imply at βL = βR
relations between the Fermi functions.
Right: Plot of current (solid black, in units of Γ), dimensionless power βV I (dashed red, in
units of Γ), and efficiency η (dash-dotted blue) versus dimensionless bias voltage. At equilibrated
bias (origin), the efficiency vanishes by construction, whereas it reaches Carnot efficiency (dotted
green) at the new equilibrium, i.e., at zero power. At maximum power however, the efficiency still
closely approaches the Carnot efficiency. Parameters: δ = 100, tunneling rates parametrized as
in Eq. (6.102), fD = 0.9 = 1 − fUD , βεS = −0.05 = −β(εS + U), such that the Carnot efficiency
becomes ηCarnot = 1− (βU)/(βDU) ≈ 0.977244.
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Figure 6.8: Level sketch of the setup. Shaded
yellow regions represent occupied levels in the
leads with chemical potentials and temperatures
indicated. Central horizontal lines represent
transition energies of system and demon dot,
respectively. When the other dot is occupied,
the bare transition frequency of every system
is shifted by the Coulomb interaction U . The
shown trajectory then becomes likely in the sug-
gested Maxwell-demon mode: Initially, the SET
is empty and the demon dot is filled. When
ΓUR � ΓUL , the SET dot is most likely first filled
from the left lead, which shifts the transition fre-
quency of the demon (1). When the bare tun-
neling rates of the demon are much larger than
that of the SET, the demon dot will rapidly equi-
librate by expelling the electron to its associated
reservoir (2) before a further electronic jump at
the SET may occur. At the new transition fre-
quency, the SET electron is more likely to escape
first to the left than to the right when ΓL � ΓR
(3). Now, the demon dot will equilibrate again
by filling with an electron (4) thus restoring the
initial state. In essence, an electron is trans-
ferred against the bias through the SET circuit
while in the demon system an electron enters at
energy εd and leaves at energy εd + U leading
to a net transfer of U from the demon into its
reservoir.
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This equation is non-Markovian, since to solve for the time-dependent ratesWii′ we would need to
integrate over the solution of the full rate equation, which implies that they depend on the values

of the system of the past. However, we may identify
Pi′j′

Pi′
as the conditional probability of the

demon being in state j′ provided the system is in state i′.

Direct inspection of the rates suggests that when we assume the limit where the bare rates of the
demon system are much larger than the SET tunneling rates, these conditional probabilities will
assume their conditioned stationary values much faster than the SET dynamics. In this limit, the
dynamics is mainly dominated by transitions between just two mesostates instead of the original
four states. These mesostates are associated to either a filled or an empty system quantum dot,
respectively. We may hence arrive again at a Markovian description by approximating

Pj′|i =
Pi′j′

Pi′
→ P̄i′j′

P̄i′
, (6.108)

which yields the coarse-grained rate matrix

Wii′ =
∑
jj′

Lij,i′j′
P̄i′j′

P̄i′
. (6.109)

For the model at hand, the stationary conditional probabilities become in the limit where
Γ

(U)
D � Γ

(U)
L/R

P0|E =
P̄E0

P̄E
= 1− fD , P1|E =

P̄E1

P̄E
= fD ,

P0|F =
P̄F0

P̄F
= 1− fUD , P1|F =

P̄F1

P̄F
= fUD , (6.110)

and just describe the fact that – due to the time-scale separation – the demon dot immediately
reaches a thermal stationary state that depends on the occupation of the SET dot. The temper-
ature and chemical potential of the demon reservoir determine if and how well the demon dot –
which can be envisaged as the demon’s memory capable of storing just one bit – captures the actual
state of the system dot. For example, for high demon temperatures it will be roughly independent
on the system dots occupation as fD ≈ fUD ≈ 1/2. At very low demon temperatures however, and
if the chemical potential of the demon dot is adjusted such that εd− µD < 0 and εd +U − µD > 0,
the demon dot will nearly accurately (more formally when βDU � 1) track the system occupation,
since fD → 1 and fUD → 0. Then, the demon dot will immediately fill when the SET dot is emptied
and its electron will leave when the SET dot is filled. It thereby faithfully detects the state of
the SET. In the presented model, the demon temperature thereby acts as a source of error in the
demon’s measurement of the system’s state. In addition, the model at hand allows to investigate
the detector backaction on the probed system, which is often neglected. Here, this backaction is
essential, and we will now investigate it by analyzing the reduced dynamics in detail.

The coarse-grained probabilities PE and PF of finding the SET dot empty or filled, respectively,
obey the rate equation dynamics

L =

(
−LFE +LEF
+LFE −LEF

)
(6.111)



144 CHAPTER 6. FEEDBACK CONTROL

with the coarse-grained rates

LEF = LE0,F0
P̄F0

P̄F
+ LE1,F1

P̄F1

P̄F
= [ΓL(1− fL) + ΓR(1− fR)] (1− fUD ) +

[
ΓUL(1− fUL ) + ΓUR(1− fUR )

]
fUD ,

LFE = LF0,E0
P̄E0

P̄E
+ LF1,E1

P̄E1

P̄E
= [ΓLfL + ΓRfR] (1− fD) +

[
ΓULf

U
L + ΓURf

U
R

]
fD . (6.112)

We note that a naive experimenter – not aware of the demon interacting with the SET circuit –
would attribute the rates in the coarse-grained dynamics to just two reservoirs: L = LL +LR with
the rates L(α)

EF = (1− fUD )Γα(1− fα) + fUDΓUα (1− fUα ) and L(α)
FE = (1− fD)Γαfα + fDΓUαf

U
α . Thus,

when the SET is not sensitive to the demon state ΓUL/R ≈ ΓL/R and fUL/R ≈ fL/R, local detailed
balance is restored, and we recover the conventional SET rate equation.

We note that the matter current

I
(ν)
M = L

(ν)
EF P̄F − L

(ν)
FEP̄E (6.113)

is conserved I
(L)
M = −I(R)

M , such that the entropy production becomes

Ṡi =
∑

ν∈{L,R}

L
(ν)
EF P̄F ln

(
L(ν)
EF P̄F

L(ν)
FEP̄E

)
+ L(ν)

FEP̄E ln

(
L(ν)
FEP̄E

L(ν)
EF P̄F

)

=
∑

ν∈{L,R}

(
L

(ν)
EF P̄F − L

(ν)
FEP̄E

)
ln

(
L(ν)
EF P̄F

L(ν)
FEP̄E

)

= I
(L)
M ln

(
L(L)
EFL

(R)
FE

L(L)
FEL

(R)
EF

)
= I

(L)
M A , (6.114)

and is thus representable in a simple flux-affinity form. Similarly, we note that if we would count
particle transfers from the left to the right reservoir, the following fluctuation theorem would hold

P+n

P−n
= enA , (6.115)

and the fact that these fluctuations could in principle be resolved demonstrates that the affinity
in the entropy production is a meaningful and measurable quantity. Without the demon dot, the
conventional affinity of the SET would simply be given by

A0 = ln

(
(1− fL)fR
fL(1− fR)

)
= βL(ε− µL)− βR(ε− µR) , (6.116)

and ignoring the physical implementation of the demon, we can interpret the modification of the
entropy production due to the demon as an additional information current that is tightly coupled
to the particle current

Ṡi = I
(L)
M A0 + I

(L)
M (A−A0) = Ṡ

(0)
i + I . (6.117)
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When the demon temperature is lowered such that βDU � 1 and its chemical potential is
adjusted such that fD → 1 and fUD → 0, the affinity becomes

A = ln

(
ΓL(1− fL)ΓURf

U
R

ΓULf
U
L ΓR(1− fR)

)
= ln

(
ΓLΓUR
ΓULΓR

)
+ ln

(
fLf

U
R

fUL fR

)
+A0 . (6.118)

The last term on the right-hand side is simply the affinity without the demon dot. The first two
terms quantify the modification of the affinity. The pure limit of a Maxwell demon is reached,
when the energetic backaction of the demon on the SET is negligible, i.e., when fUL ≈ fL and
fUR ≈ fR, which requires comparably large SET temperatures βL/RU � 1. Of course, to obtain
any nontrivial effect, it is still necessary to keep non-flat tunneling rates ΓUL/R 6= ΓL/R, and in this

case one recovers the case discussed in the previous section – identifying ΓEα with Γα and ΓFα with
ΓUα .

6.4 Further feedback applications

6.4.1 Suppression of Noise

The simplest model to study the suppression of noise in counting statistics [23] is that of a single
junction. Such a junction could be physically implemented by a QPC

H =
∑
k

εkLc
†
kLckL +

∑
k

εkRc
†
kRckR +

∑
kk′

[
tkk′ckLc

†
k′R + t∗kk′ck′Rc

†
kL

]
, (6.119)

where ckα are fermionic annihilation operators for electrons in mode k and lead α. The tunneling
process from an electron of the left lead in mode k to the mode k′ of the right lead is described by
the term tkk′ckLc

†
k′R, whereas the inverse process is described by the hermitian conjugate term. We

have treated this model before – as a detector measuring the charge of a single electron transistor,
compare Sec. 4.2.2. We can therefore simply consider the limit where the single-electron transistor
is empty throughout, such that the QPC dynamics is not affected by it. Then, one as in the small
tunneling limit the equation

Ṗn = +γPn−1(t) + γ̄Pn+1 − [γ + γ̄]Pn(t) , (6.120)

where Pn(t) denotes the probability to have n particles passed the junction after time t. Here, the
forward and backward tunneling rates are microscopically linked to the QPC parameters, compare
Eq. (4.66)

γ = t
V

1− e−βV
, γ̄ = t

V

e+βV − 1
, (6.121)

where t denotes the bare transition function of the QPC, β its inverse temperature, and V the
bias voltage applied accross the QPC. We see that for V > 0, we have transport from left to right,
whereas for V < 0 the current is reversed. Thereby, all the microscopic information contained
in the tunneling amplitudes tkk′ and the lead occupations fα(ω) is compressed only in the two
tunneling rates γ and γ̄, see Fig. 6.9. Thus, one may be changing the bias voltage modify these
tunneling rates.
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Figure 6.9: Sketch of a single junction be-
tween two reservoirs, characterized by their
Fermi functions fα and tunneling amplitudes
tkk′ . The time-dependent microscopic pa-
rameters just enter into the time-dependent
left-to-right and right-to-left tunneling rates
γ(t) and γ̄(t), respectively. The piecewise-
constant time-dependence may either follow
a predefined protocol (open-loop control) or
can be conditioned on a measurement result
(feedback control). The system in this case
is given by a virtual detector that counts the
net number of particles transferred from left
to right.

Dynamics in absence of control

First let us consider the time-independent case. After Fourier transformation P (χ, t) =
∑

n Pn(t)e+inχ,
the n-resolved equation becomes

Ṗ (χ, t) =
[
γ(e+iχ − 1) + γ̄(e−iχ − 1)

]
P (χ, t) . (6.122)

This is thus in perfect agreement with what we had for the QPC statistics in Eq. (4.65). With the
initial condition P (χ, 0) = 1 it is solved by

P (χ, t) = exp
{[
γ(e+iχ − 1) + γ̄(e−iχ − 1)

]
t
}
. (6.123)

Exercise 48 (Cumulants). Show that the cumulants of the probability distribution Pn(t) are given
by 〈〈

nk
〉〉

=
[
γ + (−1)kγ̄

]
t ,

and can thus be understood as two counter-propagating Poissonian distributions.

This initial condition is chosen because we assume that at time t = 0, no particle has crossed
the junction Pn(0) = δn,0. The probability to count n particles after time t can be obtained from
the inverse Fourier transform

Pn(t) =
1

2π

+π∫
−π

exp
{[
γ(e+iχ − 1) + γ̄(e−iχ − 1)

]
t
}
e−inχdχ . (6.123)

This probability can for this one-dimensional model be calculated analytically even in the case of
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bidirectional transport

Pn(t) = e−(γ+γ̄)t

∞∑
a,b=0

(γt)a

a!

(γ̄t)b

b!

1

2π

+π∫
−π

e+i(a−b−n)χdχ

= e−(γ+γ̄)t

∞∑
a,b=0

(γt)a

a!

(γ̄t)b

b!
δa−b,n

= e−(γ+γ̄)t


∞∑
a=n

(γt)a

a!
(γ̄t)a−n

(a−n)!
: n ≥ 0

∞∑
a=0

(γt)a

a!
(γ̄t)a−n

(a−n)!
: n < 0

= e−(γ+γ̄)t

(
γ

γ̄

)n/2
Jn(2

√
γγ̄t) , (6.124)

where Jn(x) denotes a modified Bessel function of the first kind – defined as the solution of
z2J ′′n (z) + zJ ′n(z) − (z2 + n2)Jn(z) = 0. In the unidirectional transport limit, this reduces to a
normal Poissonian distribution

lim
γ̄→0

Pn(t) =

{
e−γt (γt)n

n!
: n ≥ 0

0 : n < 0
. (6.125)

Exercise 49 (Poissonian limit). Show that a Poissonian distribution arises in the unidirectional
transport limit.

We further note that the moment-generating function just trivially given by M(χ, t) = P (χ, t),
and correspondingly the cumulant-generating function assumes the simple form

C(χ, t) = γt(e+iχ − 1) + γ̄t(e−iχ − 1) , (6.126)

which now also holds for finite times and not only for large times. We see that this is just the
independent superposition of two counter-propagating Poissonian processes with cumulants γt and
γ̄t.

In the following, we will – mainly for simplicity – consider only the unidirectional transport
limit by demanding that the bias voltage is always large enough such that the reverse tunneling
process is negligible γ̄ → 0.

Open-Loop Control

Now we consider the case of a time-dependent rate γ → γ(t) with a piecewise-constant time
dependence. Just for simplicity, we will constrain ourselves to unidirectional transport γ̄ = 0 as
shown in Fig. 6.10, where the time-dependence of γ(t) is well approximated by a piecewise-constant
protocol. We assume that the parameter γ is changed at regular time intervals ∆t, such that the
control protocol is fully characterized by the sequence {γ1, γ2, . . .}. The fact that the model is
scalar (has no internal structure) implies that the system has no internal memory, and the initial
state for each interval is therefore just that no particle has crossed the junction. Consequently, the
probability distribution of measuring particles in the α-th time interval is completely independent
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Figure 6.10: Time-dependent tunneling rate
which is (nearly) piecewise constant during
the intervals ∆t. In the model, we neglect
the switching time τswitch completely.

from the outcome of the interval α − 1. If we denote the cumulant during the interval ∆t in the
α-th interval by

〈〈
nk
〉〉

α
, we find for the average over all time intervals

¯〈〈nk〉〉 =
1

N

N∑
α=1

〈〈
nk
〉〉

α
=

1

N

N∑
α=1

γα∆t = 〈γ〉∆t , (6.127)

i.e., all average cumulants are simply described by the time-averaged tunneling rate Regardless
of the actual form of the protocol, one therefore always obtains a Poissonian distribution. In
conclusion, piecewise-constant open loop control applied to a single junction will not substantially
alter its dynamics.

Closed-Loop control

For simplicity, we again consider here the unidirectional transport limit, which is described by

Ṗn = γPn−1 − γPn . (6.128)

The parameter γ describes the speed at which the resulting Poissonian distribution

Pn(∆t) =

{
e−γ∆t (γ∆t)n

n!
: n ≥ 0

0 : n < 0
(6.129)

moves towards larger n. This however, also goes along with a spread of the distribution: Its

width σ =
√
C2 =

√
〈n2〉 − 〈n〉2 increases as σ ∝ t1/2. When we arrange the probabilities in an

infinite-dimensional vector, the rate matrix appears band-diagonal

d

dt


...

Pn−1

Pn
...

 =


. . .
. . . −γ

+γ −γ
. . . . . .




...
Pn−1

Pn
...

 = LP . (6.130)

For the initial state Pn(0) = δn,0 we have written the solution to the above equation explicitly in
terms of a Poissonian distribution (6.129). Using the translational invariance in n and linearity of
the equations, we can therefore write the general solution explicitly as

P0(t+ ∆t)
P1(t+ ∆t)
P2(t+ ∆t)

...
Pn(t+ ∆t)

...


= e−γ∆t



1
γ∆t 1

(γ∆t)2

2
γ∆t 1

...
...

. . . . . .
(γ∆t)n

n!
(γ∆t)n−1

(n−1)!
. . . . . .

...
...





P0(t)
P1(t)
P2(t)

...
Pn(t)

...


= eL∆tP (t) , (6.131)
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which takes the form P (t+∆t) = P(∆t)P (t) = eL∆tP (t) with the infinite-dimensional propagation
matrix P(∆t).

Exercise 50 (Probability conservation). Show that the above introduced propagator
P(∆t)preserves the sum of all probabilities, i.e., that

∑
n Pn(t+ ∆t) =

∑
n Pn(t).

We have found previously that an open-loop control scheme does not drastically modify the
probability distribution of tunneled particles. We do now consider regular measurements of the
number of tunneled particles being performed at time intervals ∆t. The major difference to our
previous considerations is now that we modify the tunneling rate γ dependent on the measured
number of tunneled particles. Measurement of n tunneled particles can be described by a projec-
tive measurement of the density matrix. In super-operator notation, the matrix elements of the
corresponding projector just read

(Mn)ij = δi,nδj,n . (6.132)

Conditioning the following propagator on the measurement result P(∆t)→ Pn(∆t) via switching
the tunneling rate dependent on the measurement outcome, the effective propagator under feedback
control becomes

Pfb(∆t) =
∑
n

Pn(∆t)Mn . (6.133)

Making everything explicit, the propagation matrix becomes

Pfb(∆t) =



e−γ0∆t

e−γ0∆t(γ0∆t) e−γ1∆t

e−γ0∆t (γ0∆t)2

2
e−γ1∆t(γ1∆t) e−γ2∆t

...
...

...
. . .

e−γ0∆t (γ0∆t)n

n!
e−γ1∆t (γ1∆t)n−1

(n−1)!
e−γ2∆t (γ2∆t)n−2

(n−2)!
. . .

...
...

...
. . .


. (6.134)

The vector of probabilities under feedback evolves according to the iteration scheme P (t+ ∆t) =
Pfb(∆t)P (t). Formally, every column thus corresponds to a different Poissonian process with
tunneling rate γn.

Exercise 51 (Effective Feedback Propagator). Show the validity of Eq. (6.134).

One could now calculate even the full dynamics of cumulants for very large measurement
intervals ∆t [2]. However, here we will mainly only discuss the continuous feedback limit as
∆t→ 0. Using that

∑
nMn = 1, we get the effective feedback Liouvillian

Lfb =
∞∑
n=0

LnMn =


−γ0

+γ0 −γ1

+γ1 −γ2

. . . . . .

 , (6.135)
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which can also be written in the form

Ṗn = +γn−1Pn−1 − γnPn . (6.136)

We see that translational invariance is broken, such that simply using a discrete Fourier transform
P (χ, t) =

∑
n Pn(t)e+inχ will not lead to a simple generalized master equation as in absence

of feedback. Instead, it will lead to partial differential equations that can only be solved with
significant effort.

The feedback protocol is now defined when one decides what action to perform in response to
measuring a certain number of particles at time t, i.e., in allowing for time and particle-resolved
tunneling rates γn(t). We first define the time-dependent first two cumulants

C1(t) =
∑
n

nPn(t) , C2(t) =
∑
n

n2Pn(t)− C2
1(t) , (6.137)

which yields for the first cumulant the differential equation

Ċ1 =
∑
n

n [γn−1Pn−1 − γnPn] =
∑
n

[(n+ 1)γnPn − nγnPn] =
∑
n

γnPn = 〈γn〉t . (6.138)

From a similar calculation, we get the time derivative of the second cumulant

Ċ2 =
∑
n

n2 [γn−1Pn−1 − γnPn]− 2C1(t)Ċ1 =
∑
n

(2n+ 1) γnPn − 2C1(t)Ċ1

= 〈γn〉t [1− 2C1(t)] + 2 〈nγn〉t . (6.139)

Below, we discuss different feedback realizations.

Linear Feedback

Linear feedback of the form

γn(t) = γ [1− g(n− γt)] (6.140)

with the feedback parameters g > 0 and γ > 0 is much simpler to evaluate analytically. It can be
thought of an approximation of a general feedback scheme. Of course, the above scheme formally
allows for negative rates when n � γ0t. In reality however, the probability for such a process is
exponentially suppressed for sufficiently large times, since for large times the width of a Poissonian
process is sufficiently smaller than its mean value σ/µ = 1/

√
γt. The objective of the feedback

is to increase the tunneling rate when the number of particles is below γt and to decrease the
tunneling rate when it is above γt. Thereby, slow trajectories are sped up, and fast trajectories
are slowed down.

The linear feedback scheme has the advantage that the equations for the cumulant evolutions
close. In particular, the first cumulant evolves according to

Ċ1 = γ [1 + gγt]− gγC1(t) , (6.141)

which for the initial condition C1(0) = 0 has the particularly simple solution C1(t) = γt. Inserting
this in the evolution equation of the second cumulant, we get

Ċ2 = γ[1− 2γt] + 2 〈nγn〉t = γ[1− 2γt] + 2
[
〈n〉 γ(1 + gγt)− gγ

〈
n2
〉]

= γ[1− 2γt] + 2
[
γt(1 + gγt)γ − gγ(C2(t) + (γt)2)

]
= γ[1− 2gC2(t)] . (6.142)
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This coupled set of differential equations admits for the initial conditions C1(0) = 0 and C2(0) = 0
the simple solution [23]

C1(t) = γt , C2(t) =
1− e−2gγt

2g
, (6.143)

which shows a continuous evolution towards a constant width of σ̄ =
√

lim
t→∞

C2(t) = 1√
2g

.

Freezing the second cumulant of otherwise stochastic processes has many interesting applica-
tions. For example, many processes with a stochastic fluctuating work load might profit from a
smoothed evolution if control may be applied. In an electronic context, a stabilized width of the
electronic counting statistics could help to improve the standard of the electric current [24].

Exponential Feedback

The linear feedback is simple to treat but has the disadvantage that negative rates may in principle
occur. Next, we consider an exponential feedback scheme

γn(t) = γeα(γt−n) . (6.144)

This for α > 0 also tends to slow down fast trajectories (n > γt) and to speed up slow trajectories
(n < γt) by decreasing or increasing the tunneling rate. However, we see that in contrast to the
previous scheme the rate is always positive. We cannot solve the general dynamics anymore, but
we can start from a Gaussian distribution

Pn(t) =
1√
2πσ

e−
(n−µ)2

2σ2 (6.145)

and then look how the feedback affects the distribution. We stress that at present, µ and σ are
unknown. When γt� σ, we can replace the summation over n by an integral over x = n, where we
see immediately that the distribution is properly normalized. Evaluating everything by integrals,
we get

Ċ1 = 〈γn〉 ≈
∫
γeα(γt−x) 1√

2πσ
e−

(x−µ)2

2σ2 dx = γ exp
{α

2

(
ασ2 + 2γt− 2µ

)}
. (6.146)

Therefore, demanding that the first cumulant grows linearly with Ċ1 = γ we obtain the constraint

µ = γt+ σ2α/2 . (6.147)

The solution for the first cumulant could with the appropriate initial condition then be C1(t) =
µ = γt+ σ2α/2. We can insert this in the evolution equation for the second cumulant

Ċ2 = Ċ1 [1− 2C1(t)] + 2 〈nγn〉t = γ [1− 2C1(t)] + 2

∫
γxeα(γt−x) 1√

2πσ
e−

(x−µ)2

2σ2 dx

= γ [1− 2C1(t)] + 2γ2t− γασ2 = γ[1− ασ2] . (6.148)

Therefore, in order to stabilize a Gaussian with width σ, we need to adjust the feedback protocol
parameter as

α =
1

2σ2
. (6.149)
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6.4.2 Qubit stabilization

Qubits – any quantum-mechanical two-level system that can be prepared in a superposition of its
two states |0〉 and |1〉 – are at the heart of quantum computers with great technological promises.
The major obstacle to be overcome to build a quantum computer is decoherence: Qubits prepared
in pure superposition states (as required for performing quantum computation) tend to decay into
a statistical mixture when coupled to a destabilizing reservoir (of which there is an abundance in
the real world). Here, we will approach the decoherence with a quantum master equation and use
feedback control to act against the decay of coherences.

The system is described by

HS =
Ω

2
σz , H(1)

B =
∑
k

ωk1b
†
k1bk1 , H(2)

B =
∑
k

ωk2b
†
k2bk2

H(1)
I = σz ⊗

∑
k

[
hk1bk1 + h∗k1b

†
k1

]
, H(2)

I = σx ⊗
∑
k

[
hk2bk2 + h∗k2b

†
k2

]
, (6.150)

where σα represent the Pauli matrices and bk bosonic annihilation operators. We assume that
the two bosonic baths are independent, such that we can calculate the dissipators separately. We
have already calculated the Fourier-transform of the bath correlation function for such coupling
operators. When we analytically continue the spectral coupling density to negative frequencies as
J(−ω) = −J(+ω), it can also be written as

γ(ω) = J(ω) [1 + n(ω)] . (6.151)

Since it obeys the KMS condition we may expect thermalization of the qubits density matrix with
the bath temperature. Note that due to the divergence of n(ω) at ω → 0, it is favorable to use an
Ohmic spectral density such as e.g.

J(ω) = J0ωe
−ω/ωc , (6.152)

which grants an existing limit γ(0). For the two interaction Hamiltonians chosen, we can make
the corresponding coefficients explicit

coefficient A: pure dephasing A = σz B: dissipation A = σx

γ00,00 +γ(0) 0
γ00,11 −γ(0) 0
γ11,00 −γ(0) 0
γ11,11 +γ(0) 0
γ01,01 0 γ(+Ω)
γ10,10 0 γ(−Ω)

σ00
σ(0)
2i

σ(−Ω)
2i

σ11
σ(0)
2i

σ(+Ω)
2i

and rewrite the corresponding Liouvillian in the ordering ρ00, ρ11, ρ01, ρ10 as a superoperator (fur-
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ther abbreviating γ0/± = γ(0/± Ω), Σ = σ00 − σ11)

LA =


0 0 0 0
0 0 0 0
0 0 −2γ0 − iΩ 0
0 0 0 −2γ0 + iΩ



LB =


−γ− +γ+ 0 0
+γ− −γ+ 0 0

0 0 −γ−+γ+

2
− i(Ω + Σ) 0

0 0 0 −γ−+γ+

2
+ i(Ω + Σ)

 . (6.153)

Both Liouvillians lead to a decay of coherences with a rate (we assume Ω > 0)

γA = 2γ0 = 2 lim
ω→0

J(ω) [1 + n(ω)] = 2
J0

β
= 2J0kBT ,

γB =
γ− + γ+

2
=

1

2
[J(Ω)[1 + n(Ω)] + J(−Ω)[1 + n(−Ω)]] =

1

2
[J(Ω)[1 + n(Ω)] + J(Ω)n(Ω)]

=
1

2
J(Ω) coth

[
Ω

2kBT

]
, (6.154)

which both scale proportional to T for large bath temperatures. Therefore, the application of
either Liouvillian or a superposition of both will in the high-temperature limit simply lead to
rapid decoherence. The same can be expected from a turnstyle (open-loop control), where the
Liouvillians act one at a time following a pre-defined protocol.

The situation changes however, when measurement results are used to determine which Liou-
villian is acting. We choose to act with Liouvillian LA throughout and to turn on Liouvillian LB in
addition – multiplied by a dimensionless feedback parameter α ≥ 0 – when a certain measurement
result is obtained. Given a measurement with just two outcomes, the effective propagator is then
given by

P(∆t) = eLA∆tM1 + e(LA+αLB)∆tM2 , (6.155)

whereMi are the superoperators corresponding to the action of the measurement operators MiρM
†
i

on the density matrix. First, to obtain any nontrivial effect (coupling between coherences and
populations), the measurement superoperators should not have the same block structure as the
Liouvillians. Therefore, we consider a projective measurement of the σx expectation value

M1 =
1

2
[1 + σx] , M2 =

1

2
[1− σx] . (6.156)

These projection operators obviously fulfil the completeness relation M †
1M1 + M †

2M2 = 1. The
superoperators corresponding to MiρM

†
i are also orthogonal projectors

M1 =
1

4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 , M2 =
1

4


1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

 . (6.157)
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Exercise 52 (Measurement superoperators). (1 points)
Show the correspondence between Mi and Mi in the above equations.

However, they are not complete in this higher-dimensional space M1 +M2 6= 1. Since the
measurement superoperators do not have the same block structure as the Liouvillians, we cannot
expect a simple rate equation description to hold anymore.

Without feedback (α = 0), it is easy to see that the measurements still have an effect in contrast
to an evolution without measurements

1

2


1 1 0 0
1 1 0 0
0 0 e−(2γ0+iΩ)∆t e−(2γ0+iΩ)∆t

0 0 e−(2γ0−iΩ)∆t e−(2γ0−iΩ)∆t

 = eLA∆t (M1 +M2) 6=

eLA∆t =


1 0 0 0
0 1 0 0
0 0 e−(2γ0+iΩ)∆t 0
0 0 0 e−(2γ0−iΩ)∆t

 . (6.158)

This may have significant consequences – even without dissipation (γ0 = 0) and without feedback
(α = 0): The repeated application of the propagator for measurement without feedback (γ0 = 0
and α = 0) yields

[
eLA∆t (M1 +M2)

]n
=

1

2


1 1 0 0
1 1 0 0
0 0 e−iΩ∆t cosn−1(Ω∆t) e−iΩ∆t cosn−1(Ω∆t)
0 0 e+iΩ∆t cosn−1(Ω∆t) e+iΩ∆t cosn−1(Ω∆t)

 . (6.159)

Exercise 53 (Repeated measurements). (1 points)
Show the validity of the above equation.

In contrast, without the measurements we have for repeated application of the propagator
simply [

eLA∆t
]n

= eLAn∆t . (6.160)

When we now consider the limit n → ∞ and ∆t → 0 but n∆t = t remaining finite, it becomes
obvious that the no-measurement propagator for γ0 = 0 simply describes coherent evolution. In
contrast, when the measurement frequency becomes large enough, the measurement propagator in
Eq. (6.158) approaches

[
eLA∆t (M1 +M2)

]n
=

1

2


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 (6.161)
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and thereby freezes the eigenstates of the measurement superoperators, e.g. ρ̄ = 1
2

[|0〉+ |1〉] [〈0|+ 〈1|].
This effect is known as Quantum-Zeno effect (a watched pot never boils) and occurs when measure-
ment operators and system Hamiltonian do not commute and the evolution between measurements
is unitary (here γ0 = 0). When the evolution between measurements is an open one (γ0 > 0), the
Quantum-Zeno effect cannot be used to stabilize the coherences, which becomes evident from the
propagator in Eq. (6.158).

With feedback (α > 0) however, the effective propagator P(∆t) does not have the Block
structure anymore. It can be used to obtain a fixed-point iteration for the density matrix

ρ(t+ ∆t) = P(∆t)ρ(t) . (6.162)

Here, we cannot even for small ∆t approximate the evolution by another effective Liouvillian, since
lim

∆t→0
W(∆t) 6= 1. Instead, one can analyze the eigenvector of W(∆t) with eigenvalue 1 as the (in

a stroboscopic sense) stationary state. It is more convenient however to consider the expectation
values of 〈σi〉t that fully characterize the density matrix via

ρ00 =
1 + 〈σz〉

2
, ρ11 =

1− 〈σz〉
2

, ρ01 =
〈σx〉 − i 〈σy〉

2
, ρ10 =

〈σx〉+ i 〈σy〉
2

. (6.163)

Note that decoherence therefore implies vanishing expectation values of 〈σx〉 → 0 and 〈σy〉 → 0 in
our setup. Converting the iteration equation for the density matrix into an iteration equation for
the expectation values of Pauli matrices we obtain

〈σx〉t+∆t =
e−2γ0∆t

2

{
(1 + 〈σx〉t) cos (Ω∆t)− (1− 〈σx〉t) e

−(γ−+γ+)α∆t/2 cos [(Ω + α(Ω + Σ)) ∆t]
}

〈σy〉t+∆t =
e−2γ0∆t

2

{
(1 + 〈σx〉t) sin (Ω∆t)− (1− 〈σx〉t) e

−(γ−+γ+)α∆t/2 sin [(Ω + α(Ω + Σ)) ∆t]
}

〈σz〉t+∆t =
(γ+ − γ−) (1− 〈σx〉t)

2(γ− + γ+)

(
1− e−(γ−+γ+)α∆t

)
, (6.164)

which (surprisingly) follow just the expectation values 〈σx〉t on the r.h.s. The first of the above
equations can be expanded for small ∆t to yield

〈σx〉t+∆t − 〈σx〉t
∆t

= −1

4
[8γ0 + α (γ− + γ+)] 〈σx〉t +

1

4
α (γ− + γ+) +O{∆t} . (6.165)

When ∆t→ 0, this becomes a differential equation with the stationary state

〈σ̄x〉 =
α(γ− + γ+)

8γ0 + α(γ− + γ+)
, (6.166)

which approaches 1 for large values of α. Taking into account the large-temperature expansions
for the dampening coefficients

γ0 = J0kBT , γ− + γ+ ≈ 2J0e
−Ω/ωckBT , (6.167)

we see that this stabilization effect also holds at large temperatures – a sufficiently strong (and
perfect) feedback provided. An initially coherent superposition is thus not only stabilized, but
also emerges when the scheme is initialized in a completely mixed state. Also for finite ∆t, the
fixed-point iteration yields sensible evolution for the expectation values of the Pauli matrices, see
Fig. 6.11.
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Figure 6.11: Expectation values of the Pauli matrices for finite feedback strength α = 10 and finite
stepsize ∆t (spacing given by symbols). For large ∆t, the fixed point is nearly completely mixed.
For small ∆t, the curve for 〈σx〉t approaches the differential equation limit (solid line), but the
curve for 〈σy〉t approaches 0. For γ− = γ+, the iteration for 〈σz〉t vanishes throughout. Thin dotted
lines only serve to guide the eye, i.e., the expectation values between measurements (symbols) may
be different. Parameters: γ− = γ+ = γ0 = Γ, Ω∆t =∈ {1, 0.1}, and Σ∆t ∈ {0.5, 0.05}.

6.5 Feedback as back-action: Relaxation Dynamics

So far, control has only affected the interaction (e.g. tunneling rates) or the system (projective
measurements or time-dependent system parameters). A direct change of the reservoir parameters
would normally be hard to describe (and to achieve experimentally), since here fast changes would
usually drive the reservoir out of equilibrium. A third possibility that is usually not explored is to
force the reservoirs into a maximum entropy state subject to the side constraint of varying energy
and matter content. In our master equation, this would simply mean that the reservoir inverse
temperature βν and chemical potential µν are allowed to be time-dependent

ρ̄B =
⊗
ν

e
−βν(t)

[
H

(ν)
B −µν(t)N

(ν)
B

]

Tr

{
e
−βν(t)

[
H

(ν)
B −µν(t)N

(ν)
B

]} . (6.168)

To determine the value of the inverse temperature βν and the chemical potential µν , one can
determine these consistently from calculating the energy and matter currents between system and
reservoir ν. We will call such reservoirs that are actually influenced by the presence of the system
meso-reservoirs to stress that they are not supposed to be infinitely large.
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For a thermal reservoir state, the total particle number in the reservoir ν is represented as

Nν =
∑
k

〈
c†kνckν

〉
=
∑
k

f(ωkν) =
1

2π

∫
Dν(ω)fν(ω)dω , (6.169)

where fν(ω) (depending implicitly on inverse temperature βν and chemical potential µν) can be a
Fermi or Bose distribution – depending on the type of the reservoir. Here, the quantity

Dν(ω) = 2π
∑
k

δ(ω − ωkν) (6.170)

is the spectral density of the reservoir, it should not be confused with the spectral coupling density
Γν(ω) = 2π

∑
k |tkν |δ(ω−ωkν), as the latter is also influenced determined by the coupling between

system and reservoir, whereas the former is a pure reservoir property and remains well-defined
in absence of any coupling. In an analogous fashion we can obtain the energy contained in the
reservoir

Eν =
1

2π

∫
Dν(ω)ωfν(ω)dω . (6.171)

Total conservation of charge and energy implies that given charge and energy currents into the
reservoir

Ṅν = −I(ν)
M =

∂Nν

∂µν
µ̇ν +

∂Nν

∂βν

dβν
dTν

Ṫν ,

Ėν = −I(ν)
E =

∂Eν
∂µν

µ̇ν +
∂Eν
∂βν

dβν
dTν

Ṫν , (6.172)

one can calculate the change of reservoir charge and energy. Here however, we will be interested in
the change of reservoir temperature and chemical potential, for which we can obtain a differential
equation by solving the above equations for µ̇ν and Ṫν . For example, in case of fermions, we can
first solve for

∂Nν

∂µν
=

1

2π

∫
Dν(ω)fν(ω)[1− fν(ω)]dωβν = I1βν ,

∂Nν

∂βν
= − 1

2π

∫
Dν(ω)fν(ω)[1− fν(ω)](ω − µν)dω = −I2 ,

∂Eν
∂µν

=
1

2π

∫
Dν(ω)ωfν(ω)[1− fν(ω)]dωβν = (I2 + µνI1)βν ,

∂Eν
∂βν

= − 1

2π

∫
Dν(ω)ωfν(ω)[1− fν(ω)](ω − µν)dω = −I3 − µνI2 . (6.173)

Here, we have defined three integrals

I1 =
1

2π

∫
Dν(ω)f(ω)[1− fν(ω)]dω , I2 =

1

2π

∫
Dν(ω)(ω − µν)fν(ω)[1− fν(ω)]dω ,

I3 =
1

2π

∫
Dν(ω)(ω − µν)2fν(ω)[1− fν(ω)]dω , (6.174)

which in the wide-band limit Dν(ω) = 2πDν can be solved exactly

I1 =
Dν

βν
= DνTν , I2 = 0 , I3 =

π2

3

Dν

β3
ν

=
π2

3
DνT

3
ν . (6.175)
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Exercise 54 (Fermi integrals). Show validity of Eq. (6.175). You might want to use that∫ ∞
0

ln2(x)

(x+ 1)2
=
π2

3
. (6.176)

From these, we obtain a simple relation between currents and thermodynamic parameters(
−I(ν)

M

−I(ν)
E

)
= Dν

(
1 0

µ π2

3
Tν

)(
µ̇ν
Ṫν

)
. (6.177)

We can directly invert the matrix containing the heat and charge capacities to solve for the first
derivatives (

µ̇ν
Ṫν

)
=

1

Dν

(
1 0

− 3
π2

µν
Tν

3
π2

1
Tν

)(
−I(ν)

M

−I(ν)
E

)
. (6.178)

Although we have represented this using a matrix, we stress that the resulting ODE is highly
nonlinear, since the currents may themselves depend in a highly nonlinear fashion on the reservoir
temperature. Any reasonable two-terminal setup should realistically obey particle conservation
IRM + ILM = 0 and also energy conservation IRE + ILE = 0. This will in general lead to conserved
quantities respected by the system of coupled differential equations.

A useful example is the single-electron transistor that has been treated previously. Here, we
have two reservoirs with temperatures TL, TR and chemical potentials µL and µR, respecively.
When these are connected via a single quantum dot, the current (counting positive if directed
from left to right) reads

JM = γ [fL(ε)− fR(ε)] , JE = εJM , (6.179)

where γ encodes details of the coupling strength to the respective reservoirs into a single factor
and where ε was the on-site energy of the quantum dot. The so-called tight-coupling property
JE = εJM follows from the fact that a single quantum dot only has a single transition frequency ε.
This can be compared with a more complicated structure, e.g. two quantum dots connecting the
two reservoirs in parallel without direct interaction. Then, the currents have the structure

JM = γ1 [fL(ε1)− fR(ε1)] + γ2 [fL(ε2)− fR(ε2)] ,

JE = ε1γ1 [fL(ε1)− fR(ε1)] + ε2γ2 [fL(ε2)− fR(ε2)] . (6.180)

These do not exhibit the tight-coupling property JE 6= εJM – unless the εi are equal. Nevertheless,
also here global equilibrium µL = µR and βL = βR will evidently lead to vanishing currents and
therefore to fixed points. Now, by initializing the system e.g. with a temperature gradient in the
absence of a charge gradient it is possible to generate (at least temporally) a voltage, i.e., to extract
work. The temporal evolution of such a system is depicted in Fig. 6.12. It is visible that in the tight-
coupling limit, it is possible to convert e.g. an initial temperature gradient into work (a persistent
voltage). However, it should realistically be kept in mind that the tight-coupling property is never
exactly fulfilled and relaxation into final equilibrium may thus be expected. Nevertheless, even
these more realistic systems show a distinct timescale separation between initial charge separation
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Figure 6.12: Temporal evolution of the bias volt-
age V (t) (black) and the temperature difference
TL−TR (red) for different ratios of channel ener-
gies ε2 = αε = ε1 (solid, dashed, and dash-dotted,
respectively). After an initial evolution phase the
system reaches a pseudo-equilibrium that is per-
sistent only for ε1 = ε2 (solid curves). Whenever
the channel energies are different, the pseudo-
equilibrium eventually relaxes to thermal equilib-
rium. During the pseudo-equilibrium phase (in-
termediate plateaus), part of the initial tempera-
ture gradient has been converted into a voltage.
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and discharging of the system. It should be noted that the proposed equilibration dynamics for
a meso-reservoir would at steady state be similar to a Büttiker probe [25]. There however, such
probe reservoirs are attached to systems to enforce dephasing behaviour, with temperatures and
potentials fixed to yield vanishing local energy and matter currents. They would correspond to
the steady-state dynamics of the meso-reservoir presented here.

Clearly, such equilibration processes are observed in many classical objects of finite size: A cold
and a hot object (possibly also differently charged) will – when being put into contact – after some
time assume a common temperature and common potential, i.e., the behaviour predicted by these
phenomenologic equations is not unreasonable. One may therefore ask what kind of microscopic
processes could actually induce the situation enforced by postulating Eq. (6.168). One possibility
could be the existence of a super-bath enforcing the time-dependent equilibrium state on the meso-
reservoir. However, such a coupling would have to be comparably strong and should be strange in
the sense that it must not exchange energy and matter with the meso-reservoir – otherwise it would
lead to additional terms in our balance equations. An interaction type that would not change the
energy- and matter balance for the meso-reservoir would be a pure-dephasing interaction. This
would safely remove all off-diagonal elements from the meso-reservoir density matrix. However,
it remains questionable then how the proper Boltzmann distribution can be generated along the
diagonals, as slight perturbations induced by the system would immediately be damped away from
the super-reservoir.

Alternatively, we could imagine the reservoir to be given by an interacting Hamiltonian HI
B. In

computing correlation functions, we could then approximate the true dynamics as e−iHI
Btρ0

Be
+iHI

Bt ≈
e−βHB
ZB

, which means that the dynamics of the interacting system could be approximately interpreted
as thermal, similar to principles of canonical typicality [26].
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Chapter 7

Non-equilibrium beyond leading order

To understand the limit within which master equations are valid, it is quite instructive to compare
the master equation results against exactly solvable models. Unfortunately, such models are quite
rare. With a formal exact solution, one can study non-equilibrium setups and transport in a regime
where the coupling between system and reservoir becomes strong and/or non-Markovian. They
are therefore quite useful to define the limits of our perturbative appraoches.

In the lecture, we have already treated an exactly solvable variant of the spin-boson model:
The pure dephasing limit, cf. Sec. 4.4.2. However, to obtain a pure non-equilibrium setting at
steady state, it is necessary to go beyond pure-dephasing limits.

In this chapter, we will discuss representatives of exactly solvable models: First, we consider a
non-interacting fermionic transport model, where the Hamiltonian can be written as a quadratic
form of fermionic annihilation and creation operators. We note that when the fermionic operators
are replaced by bosonic ones, we again end up with a bosonic transport model that also allows for
a non-perturbative solution of a nonequilibrium steady state [27].

7.1 Quantum Dot coupled to two fermionic leads

As one of the simplest fermionic models, we consider a single electron transistor (SET): The system,
bath, and interaction Hamiltonians are given by

HS = εd†d , HB =
∑
k

εkLc
†
kLckL +

∑
k

εkRc
†
kRckR ,

HI =
∑
k

(
tkLdc

†
kL + t∗kLckLd

†
)

+
∑
k

(
tkRdc

†
kR + t∗kRckRd

†
)
, (7.1)

where d is a fermionic annihilation operator on the dot and ckν are fermionic annihilation operators
of an electron in the k-th mode of lead ν. Obviously, this corresponds to a quadratic fermionic
Hamiltonian, which can in principle be solved exactly by various methods such as e.g. non-
equilibrium Greens functions [28] or even the equation-of-motion approach [29]. Such quadratic
models are useful to study exact transport properties [30] or exact master equations [31].

7.1.1 Heisenberg Picture Dynamics

To be as self-contained as possible, we here simply compute the Heisenberg equations of motion
for the system and bath annihilation operators (we denote operators in the Heisenberg picture by

161
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boldface symbols)

ḋ = −iεd+ i
∑
k

[t∗kLckL + t∗kRckR] ,

˙ckL = −iεkLckL + itkLd , ˙ckR = −iεkRckR + itkRd . (7.2)

Surprisingly, this system is already closed and we obtain its solution by performing a Laplace
transform [32]

zd̃(z)− d = −iεd̃(z) + i
∑
k

[t∗kLc̃kL(z) + t∗kRc̃kR(z)] ,

zc̃kL(z)− ckL = −iεkLc̃kL(z) + itkLd̃(z) , zc̃kR(z)− ckR = −iεkRc̃kR(z) + itkRd̃(z) . (7.3)

In the above equations, we can eliminate the operators c̃kL(z) and c̃kR(z). This yields for the dot
annihilation operator

d̃(z) =
d+ i

∑
k

(
t∗kLckL
z+iεkL

+
t∗kRckR
z+iεkR

)
z + iε+

∑
k

(
|tkL|2
z+iεkL

+ |tkR|2
z+iεkR

) ≡ f̃(z)d+
∑
k

(g̃kL(z)ckL + g̃kR(z)ckR) , (7.4)

where we have introduced the functions g̃kν(z) and f̃(z). This expression also yields the solution
for the operators of the right lead modes

c̃kν(z) =
1

z + iεkν
ckν +

itkν
z + iεkν

d̃(z) . (7.5)

Inverting the Laplace transform may now be achieved by identifying the poles and applying the
residue theorem. In the wide-band limit discussed below, this becomes particularly simple.

7.1.2 Stationary Occupation

The time-dependent occupation n(t) =
〈
d†(t)d(t)

〉
is found by inverting the Laplace transform.

For the moment we do it formally and already perform the expectation value

n(t) =

〈[
f ∗(t)d† +

∑
k

(
g∗kL(t)c†kL + g∗kR(t)c†kR

)][
f(t)d+

∑
k

(gkL(t)ckL + gkR(t)ckR)

]〉
= |f(t)|2n0 +

∑
k

(
|gkL(t)|2fL(εkL) + |gkR(t)|2fR(εkR)

)
, (7.6)

where we have used a product state as an initial one

ρ0 = ρ0
S

e−βL(HL−µLNL)

ZL

e−βR(HR−µRNR)

ZR
(7.7)

with the lead Hamiltonians Hν =
∑

k εkνc
†
kνckν and the lead particle numbers Nν =

∑
k c
†
kνckν .

These eventually yield the only non-vanishing expectation values n0 =
〈
d†d
〉

and fν(εkν) =〈
c†kνckν

〉
. Inverse lead temperatures βν and chemical potentials µν thereby only enter implicitly in
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the Fermi functions. Therefore, to find the exact solution for the time-dependent dot occupation,
we have to find the inverse Laplace transform of

f̃(z) =
1

z + iε+
∑

k

(
|tkL|2
z+iεkL

+ |tkR|2
z+iεkR

) ,
g̃kν(z) =

it∗kν

[z + iεkν ]
[
z + iε+

∑
k

(
|tkL|2
z+iεkL

+ |tkR|2
z+iεkR

)] , (7.8)

which heavily depends on the number of modes and their distribution in the reservoir. Any system
with a finite number of reservoir modes, for example, will exhibit recurrences to the initial state.

Only systems with a continuous spectrum of reservoir modes can be expected to yield a sta-
tionary system state. To obtain that limit, we for simplicity assume N + 1 modes in each reservoir
−N/2 ≤ k ≤ +N/2. These are distributed over the energies as εkν = kΩ/

√
N and assumed to

couple weaker to the dot as their momentum increases

|tkν |2 =
Ω

2π
√
N

Γνδ
2
ν

(kΩ/
√
N)2 + δ2

ν

. (7.9)

Letting the number of reservoir modes N go to infinity, we can replace the summation in the
denominators by a continuous integral

f̃(z) ≈ 1

z + iε+
∫

1
2π

(
ΓLδ

2
L

ω2+δ2
L

+
ΓRδ

2
R

ω2+δ2
R

)
1

z+iω
dω

=
1

z + iε+ 1
2

(
ΓLδL
z+δL

+ ΓRδR
z+δR

) ,
g̃kν(z) ≈ it∗kν

(z + iεkν)
[
z + iε+

∫
1

2π

(
ΓLδ

2
L

ω2+δ2
L

+
ΓRδ

2
R

ω2+δ2
R

)
1

z+iω
dω
]

=
1

[z + iεkν ]
[
z + iε+ 1

2

(
ΓLδL
z+δL

+ ΓRδR
z+δR

)] . (7.10)

We note that this transfer from a discrete to a continuous spectrum of reservoir modes is commonly
performed formally by introducing the energy-dependent tunneling rates

Γν(ω) = 2π
∑
k

|tkν |2δ(ω − εkν) . (7.11)

Here, we have thereby assumed a Lorentzian-shaped tunneling rate [33]

Γν(ω) =
Γνδ

2
ν

ω2 + δ2
ν

. (7.12)

The simple pole structure of such tunneling rates renders analytic calculations simple. Superpo-
sitions of many Lorentzian shapes with shifted centers may approximate quite general tunneling
rates [34].

To obtain sufficiently simple results, we assume the wide-band limit δν →∞ (within which the
tunneling rates are flat), where one obtains the simple expression

f̃(z) → 1

z + iε+ (ΓL + ΓR)/2
,

g̃kν(z) → it∗kν
(z + iεkν) [z + iε+ (ΓL + ΓR)/2]

. (7.13)
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Inserting the inverse Laplace transforms of these expressions

f(t) → e−iεte−Γt/2 ,

gkν(t) →
t∗kν
(
e−iεte−Γt/2 − e−iεkνt

)
εkν − ε+ iΓ/2

(7.14)

(with Γ ≡ ΓL + ΓR) into Eq. (7.6) we obtain by switching to a continuum representation

n(t) = e−Γtn0 +
∑
k

∑
ν

|tkν |2fν(εkν)4
1− 2e−Γt/2 cos[(εkν − ε)t] + e−Γt

Γ2 + 4(εkν − ε)2

= e−Γtn0 +
∑
ν

∫
dωΓνfν(ω)

4

2π

1− 2e−Γt/2 cos[(ω − ε)t] + e−Γt

Γ2 + 4(ω − ε)2
. (7.15)

The long-term limit can – due to Γ ≥ 0 – be read off easily, and the stationary occupation becomes

n̄ =
∑
ν

∫
dωΓνfν(ω)

2

π

1

Γ2 + 4(ω − ε)2
. (7.16)

With the above formula for the stationary occupation valid for the wide-band limit, one can easily
demonstrate the following:

At infinite bias fL(ω) = 1 and fR(ω) = 0, the stationary occupation approaches n̄→ ΓL/(ΓL +
ΓR), regardless of the coupling strength. A similar result is of course obtained for reverse infinite
bias where n̄→ ΓR/(ΓL + ΓR).

When the quantum dot is coupled weakly to a single bath only (e.g. ΓR(ω) = 0), the stationary
occupation approaches the Fermi distribution of the coupled lead, evaluated at the dot energy (e.g.
n̄ = fL(ε) +O{ΓL}). This implies that for weak coupling to an equilibrium reservoir, the system
will equilibrate with the temperature and chemical potential of the reservoir, consistent with what
one expects from a master equation approach.

When the dot is coupled weakly to both reservoirs, the stationary state approaches

n̄→ ΓLfL(ε) + ΓRfR(ε)

ΓL + ΓR
, (7.17)

which is also obtained within a master equation approach, compare Sec. 3.5.

Exercise 55 (Weak Coupling Limit). Show that Eq. (7.16) reduces in the weak coupling limit to
Eq. (7.17 by using a representation of the Dirac-Delta distribution

δ(x) = lim
ε→0

1

π

ε

x2 + ε2
.

In contrast, for the strong-coupling limit, the stationary occupation will be suppressed n̄→ 0,
as the exact solution for the stationary state is no longer localized on the dot.
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7.1.3 Stationary Current

The stationary current from left to right through the SET can be defined as the long-term limit
of the change of particle numbers at the right lead

I = lim
t→∞

d

dt

〈∑
k

c†kRckR

〉
, (7.17)

which we can evaluate in the Heisenberg picture as we did for the stationary occupation. Using
Eq. (7.5), the right lead modes can be written as

c̃kR(z) =
itkR

(z + iεkR)(z + iε+ Γ/2)
d+

1

z + iεkR
ckR

−
∑
q

tkRt
∗
qL

(z + iεkR)(z + iεqL)(z + iε+ Γ/2)
cqL

−
∑
q

tkRt
∗
qR

(z + iεkR)(z + iεqR)(z + iε+ Γ/2)
cqR . (7.18)

Now, performing the inverse Laplace transform and neglecting all transient dynamics, we obtain
the asymptotic evolution of the annihilation operators in the Heisenberg picture

ckR(t) →
(
− tkRe

−iεkRt

εkR − ε+ iΓ/2

)
d+ e−iεkRtckR

+
∑
q

tkRt
∗
qL

εkR − εqL

(
e−iεqLt

εqL − ε+ iΓ/2
− e−iεkRt

εkR − ε+ iΓ/2

)
cqL

+
∑
q

tkRt
∗
qR

εkR − εqR

(
e−iεqRt

εqR − ε+ iΓ/2
− e−iεkRt

εkR − ε+ iΓ/2

)
cqR . (7.19)

The occupation of the right lead therefore becomes

NR →
∑
k

|tkR|2

(εkR − ε)2 + Γ2/4
n0 +N0

R

−
∑
kq

[
tkRt

∗
qR

εkR − εqR
e+iεkRt

(
e−iεqRt

εqR − ε+ iΓ/2
− e−iεkRt

εkR − ε+ iΓ/2

)
δkqfR(εkR) + h.c.

]

+
∑
kq

|tkR|2|tqL|2

(εkR − εqL)2

(
e+iεqLt

εqL − ε− iΓ/2
− e+iεkRt

εkR − ε− iΓ/2

)
×
(

e−iεqLt

εqL − ε+ iΓ/2
− e−iεkRt

εkR − ε+ iΓ/2

)
fL(εqL)

+
∑
kq

|tkR|2|tqR|2

(εkR − εqR)2

(
e+iεqRt

εqR − ε− iΓ/2
− e+iεkRt

εkR − ε− iΓ/2

)
×
(

e−iεqRt

εqR − ε+ iΓ/2
− e−iεkRt

εkR − ε+ iΓ/2

)
fR(εqR) . (7.20)

The first term is just triggered by the initial occupation of the dot, and the second term corresponds
to the initial occupation of the right lead. These terms are just constant and cannot contribute to
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the current, which however is different for all other terms. Introducing the tunneling rates in the
wide-band limit Γν ≈ Γν(ω) =

∑
k |tkν |

2δ(ω − εkν), we can represent the right lead occupation by
integrals

NR → 1

2π

∫
dω

ΓR
(ω − ε)2 + Γ2/4

n0 +N0
R −

1

2π

∫
dωΓRfR(ω)

[
4 + 4iωt− 2t(Γ + 2iε)

(2ω + iΓ− 2ε)2
+ h.c.

]
+

1

4π2

∫
dωdω′

(
ΓLΓRfL(ω′) + Γ2

RfR(ω′)
) 1

(ω − ω′)2

∣∣∣∣ e−iω′t

ω′ − ε+ iΓ/2
− e−iωt

ω − ε+ iΓ/2

∣∣∣∣2 .(7.21)

Whereas the first two terms are constant and do not contribute to the current, all other terms
yield a non-vanishing contribution. The long-term limit of the time-derivative of the very last term
is a bit involved to determine. It can be found, for example, by using properties of the Laplace
transform. To evaluate the current, we therefore consider the limit

F (ω′) ≡ lim
t→∞

d

dt

∫
dω

1

(ω − ω′)2

∣∣∣∣ e−iω′t

ω′ − ε+ iΓ/2
− e−iωt

ω − ε+ iΓ/2

∣∣∣∣2
= lim

z→0
z

∫ ∞
0

dte−z t
d

dt

∫
dω

1

(ω − ω′)2

∣∣∣∣ e−iω′t

ω′ − ε+ iΓ/2
− e−iωt

ω − ε+ iΓ/2

∣∣∣∣2
=

8π

Γ2 + 4(ω′ − ε)2
, (7.22)

which with its Lorentzian shape converges for small Γ towards a Dirac-Delta distribution. The
current becomes

I = − 1

π

∫
dωΓRfR(ω)

Γ/2

(ω − ε)2 + (Γ/2)2
+

1

πΓ

∫
dω
(
ΓLΓRfL(ω) + Γ2

RfR(ω)
) Γ/2

(ω − ε)2 + (Γ/2)2

=
ΓLΓR

ΓL + ΓR

∫
dω [fL(ω)− fR(ω)]

1

π

Γ/2

(ω − ε)2 + (Γ/2)2
. (7.23)

Alternatively, this expression can also be derived by evaluating the expectation value of the current

operator directly I = i
∑

k tkR

〈
c†kR(t)d(t)

〉
+ h.c.. The integrals in the above expression can be

solved analytically by analysis in the complex plane, but here we will be content with the above
integral representation, which can also be found using non-equilibrium Greens functions [28]. For
consistency, we note that the current is antisymmetric under exchange of left and right leads as
expected.

In the weak-coupling limit Γ→ 0, the current reduces to

I =
ΓLΓR

ΓL + ΓR
[fL(ε)− fR(ε)] , (7.24)

which at equal temperatures left and right implies that the current always flows from the lead with
larger chemical potential to the one with lower chemical potential.

Exercise 56 (Weak-Coupling Limit). Show that Eq. (7.24) follows from Eq. (7.23) when Γ→ 0.

Finally, we note further that, in the infinite bias limit (fL(ω)→ 1 and fR(ω)→ 0), the current
becomes I = ΓLΓR/(ΓL + ΓR), which is independent of the coupling strength and also consistent
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with Eq. (7.24). We have already seen that the master equation approach applied to the same
problem reproduces Eq. (7.24) and therefore coincides with the exact result in the infinite bias
limit.

Fig. 7.1 demonstrates the effect of increasing but symmetric coupling strengths ΓL = ΓR = γ
on the current. Whereas the weak-coupling result is well approximated when βγ � 1, one may
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Figure 7.1: Plot of the electronic matter current (in units of γ = ΓL = ΓR = Γ/2) versus the
bias voltage for symmetric tunneling rates and equal electronic temperatures βL = βR = β and
dot level βε = 5. For small coupling strength, exact (black solid) and master equation solution
(brown bold) coincide for all bias voltages. For stronger couplings (red dashed and green dotted,
respectively), the determination of the dot level ε from the current is no longer possible.

observe significant deviations for strong couplings. In the shown example, spectroscopy of the dot
level ε via detecting steps in the I−V characteristics is therefore only possible in the weak-coupling
limit.

7.2 Quantum point contact

We have treated the point contact model

H =
∑
k

εkLc
†
kLckL +

∑
k

εkRc
†
kRckR +

∑
kk′

(
tkk′ckLc

†
k′R + t∗kk′ck′Rc

†
kL

)
(7.25)
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before, see Sec. 4.2.2, where we used the tunneling rate

T (ω, ω′) = 2π
∑
kk′

|tkk′|2δ(ω − εkL)δ(ω′ − εk′R) . (7.26)

Since the total Hamiltonian is a quadratic function of fermionic annihilation and creation operators,
we can use in principle the very same methods as before to solve this model exactly. The Heisenberg
equations of motion for the full system become

ċkL = −iεkLckL + i
∑
k′

t∗kk′ck′R ,

ċkR = −iεkRckR + i
∑
k′

tk′kck′L . (7.27)

However, the general solution will be quite involved, and we therefore just sketch the approach to
highlight the difficulties. To see what we are aiming for, we write down the time derivative of the
particle number in the left reservoir

ṄL =
∑
k

[
ċ†kLckL + c†kLċkL

]
=
∑
kk′

[
it∗kk′c

†
kLck′R − itkk′c

†
k′RckL

]
. (7.28)

As the expectation value of this operator yields the current, it is also called current operator.

Low-dimensional toy model

We simplify the QPC Hamiltonian by assuming homogeneous energies and factorizing tunneling
rates

εkν = εν , tkk′ = tktk′ . (7.29)

With these assumptions, we can define the operators

CL =
∑
k

tkckL , CR =
∑
k

t∗kckR . (7.30)

We get that the Heisenberg equations (7.27) close in these operators

ĊL = −iεLCL + i

(∑
k

|tk|2
)
CR , ĊR = −iεRCR + i

(∑
k

|tk|2
)
CL . (7.31)

That is, simply exponentiating the matrix we obtain a solution for these operators(
CL
CR

)
= exp

{(
−iεL i

(∑
k |tk|

2)
i
(∑

k |tk|
2) −iεR

)
t

}(
C0
L

C0
R

)
=

(
gLL(t)C0

L + gLR(t)C0
R

gRL(t)C0
L + gRR(t)C0

R

)
,(7.32)

where the initial non-vanishing expectation values are〈
C0†
L C

0
L

〉
=
∑
k

|tk|2fL(εkL) ,
〈
C0†
R C

0
R

〉
=
∑
k

|tk|2fR(εkR) . (7.33)
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Furthermore, we can express the current in these operators as well〈
ṄL

〉
= i

〈
C†LCR

〉
− i
〈
C†RCL

〉
= ig∗LL(t)gRL(t)

∑
k

|tk|2fL(εkL) + ig∗LR(t)gRR(t)
∑
k

|tk|2fR(εkR) + h.c.

= [igLL(−t)gRL(t)− igLL(t)gRL(−t)]
∑
k

|tk|2fL(εkL)

+ [igLR(−t)gRR(t)− igLR(t)gRR(−t)]
∑
k

|tk|2fR(εkR)

= 2T
sin
(
t
√

(εL − εR)2 + 4T 2
)

√
(εL − εR)2 + 4T 2

∑
k

|tk|2 [fR(εkR)− fL(εkR)] , (7.34)

where we have used T =
∑

k |tk|
2. This quantity will oscillate back and forth between the reservoirs,

since we have essentially reduced our model to the interaction of just two modes, which will of
course just display the coherent evolution.

Heisenberg Equations of Motion

Laplace-transforming the Heisenberg equations, we get (we adopt the convention that when we
omit the Laplace transform variable, the operators correspond to the initial condition and are
therefore just the normal Schrödinger picture operators)

(s+ iεkL)ckL(s) = ckL + i
∑
k′

t∗kk′ck′R(s) ,

(s+ iεkR)ckR(s) = ckR + i
∑
k′

tk′kck′L(s) . (7.35)

The algebraic structure of these equations would allow one to eliminate e.g. the right modes.
However, this would not help much as after their elimination, the left modes would couple among
themselves. Therefore, we write the above equation as an algebraic matrix problem

G(s)



...
ckL(s)

...

...
ckR(s)

...


=



...
ckL
...
...
ckR

...


,

G(s) =



. . . 0 0
...

0 s+ iεkL 0 . . . −it∗kk′ . . .

0 0
. . .

...
...

. . . 0 0
. . . −itk′k . . . 0 s+ iεkR 0

... 0 0
. . .


=

(
G0L(s) −iT †

−iT G0R(s)

)
. ,(7.36)
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We we can solve by inverting the matrix G(s)

c(s) = G−1(s)c , (7.37)

or in the time-domain by exponentiating the matrix c(t) = e−G(0)tc. While this can be easily done
numerically for a finite number of reservoir modes, it becomes more challenging for a continuum
of modes.

However, we can perturbatively expand the inverse of the full propagator in the tunneling
matrix elements to any desired order

G−1(s) = G−1
0 (s) +G−1

0 (s)G1G
−1
0 (s) +G−1

0 (s)G1G
−1
0 (s)G1G

−1
0 (s) + . . .

=

(
G−1

0L(s) 0
0 G−1

0R(s)

)
+

(
G−1

0L(s) 0
0 G−1

0R(s)

)(
0 −iT †

−iT 0

)(
G−1

0L(s) 0
0 G−1

0R(s)

)
+ . . .

=

(
G−1

0L(s) 0
0 G−1

0R(s)

)
+

(
0 −iG−1

0L(s)T †G−1
0R(s)

−iG−1
0R(s)TG−1

0L(s) 0

)
+ . . . (7.38)

This implies for the fermionic operators

ckL(s) =
ckL

s+ iεkL
− i
∑
k′

t∗kk′

(s+ iεkL)(s+ iεk′R)
ck′R + . . . ,

ckR(s) =
ckR

s+ iεkR
− i
∑
k′

tk′k
(s+ iεkR)(s+ iεk′L)

ck′L + . . . ,

(7.39)

and for the inverse Laplace transforms

ckL(t) = e−iεkLtckL +
∑
k′

t∗kk′
(
e−iεkLt − e−iεk′Rt

)
εkL − εk′R

ck′R + . . . ,

ckR(t) = e−iεkRtckR +
∑
k′

tk′k
(
e−iεkRt − e−iεk′Lt

)
εkR − εk′L

ck′L + . . . (7.40)

Eventually inserting this in the expression for the current we get

I = −i
∑
kk′

|tkk′ |2
e+i(εkL−εk′R)t − 1

εk′R − εkL
[fL(εkL)− fR(εk′R)] + h.c.

= −2
∑
kk′

|tkk′|2
sin [(εkL − εk′R)t]

εkL − εk′R
[fL(εkL)− fR(εk′R)]

= − 1

π

∫
dωdω′T (ω, ω′)

sin [(ω − ω′)t]
ω − ω′

[fL(ω)− fR(ω′)]

t→∞→ −
∫
T (ω, ω) [fL(ω)− fR(ω)] dω = −

∫
T (ω) [fL(ω)− fR(ω)] dω , (7.41)

where we have used that

lim
t→∞

sin [(ω − ω′)t]
ω − ω′

= πδ(ω − ω′) . (7.42)
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Up to the sign originating from the consideration of the left junction, this is identical with the
perturbative treatment that we had before: According to Eq. (4.65), the current from left to right
for a stand-alone QPC becomes

I = γ21(0)− γ12(0) =

∫
[C21(τ)− C12(τ)] dτ

=

∫
dωdω′T (ω, ω′) [fL(ω)[1− fR(ω′)]− [1− fL(ω)]fR(ω′)] δ(ω − ω′)

=

∫
dωT (ω, ω) [fL(ω)− fR(ω)] . (7.43)

However, we could now in principle go beyond this leading order by systematically going to higher
order in our expansion (7.38). This however would only lead to higher-order corrections to the
transmission function of the QPC T (ω) = T (ω, ω) + . . . but would not change the way in which
the Fermi functions enter. The fact that the matter current (and similar the energy current) can
be expressed as a frequency integral over a difference of lead occupations times a transmission
function is well-known as Landauer formula [35]. It demonstrates that beyond the leading order
master equation, the system does not only transmit at a specific frequency but admits tunneling at
all frequencies. For the considered example of the QPC there is already at the lowest perturbative
order tunneling at all frequencies because in this model there is no actual system.

Last, we state that the most general expression for the fermionic operators for a non-interacting
system obeying conservation of the total particle number would be

ckL(t) =
∑
k′

gLLkk′(t)ck′L +
∑
k′

gLRkk′ (t)ck′R , ckR(t) =
∑
k′

gRLkk′ (t)ck′L +
∑
k′

gRRkk′ (t)ck′R , (7.44)

where gαβkk′(t) are functions that can be determined in each case separately. Their Laplace trans-
forms are given by the components of the Greens function

G−1(s) =

(
gLL(s) gLR(s)
gRL(s) gRR(s)

)
, (7.45)

which can be determined e.g. perturbatively (this section) or exactly (last section). With this,
one can express arbitrary expectation values in terms of components of the Greens function.

7.3 Phonon-Coupled Single electron transistor

As before, we consider a quantum dot model that is additionally coupled to phonons. To keep the
analysis simple however, we follow Ref. [36] by considering an SET that is coupled to one, many,
or even a continuum of phonon modes as depicted in Fig. 7.2.

7.3.1 Model

The SET Hamiltonian is as before given by

HSET = εd†d+
∑

ν∈{L,R}

∑
k

[
εkνc

†
kνckν + tkνdc

†
kν + t∗kνckνd

†
]
. (7.46)
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Figure 7.2: Sketch of a single-electron tran-
sistor that is capacitively coupled to a
phonon reservoir. The interaction in the
original Hamiltonian is of the pure dephas-
ing type, i.e., the system energy will not be
changed. A conventional master equation
treatment would therefore yield no effect on
the SET dynamics due to the phonon reser-
voir.

In addition however, the central dot of the SET now interacts

HI = d†d⊗
Q∑
q=1

[
hqaq + h∗qa

†
q

]
(7.47)

with a phonon reservoir Hph
B =

∑
q ωqa

†
qaq containing Q phonon modes. Obviously, the interaction

commutes with the central dot part of the SET Hamiltonian. Therefore, if one would conventionally
derive a master equation for the population dynamics of the central quantum dot, the additional
phonon bath would not affect the populations of the central dot at all – the interaction is of
pure-dephasing type.

In general however, this cannot be true: The interaction does not commute with the total SET
Hamiltonian, and therefore one must expect the phonons to have some effect. Indeed, extensive
calculations with only a single phonon mode whose dynamics is completely taken into account
have revealed a strong suppression of the electronic current when strongly-coupled phonons are
present. This phenomenon has been termed Franck-Condon blockade [37].

To treat such cases within a master equation approach, we apply a transformation to the full
Hamiltonian H ′ = UHU † with the unitary operator

U = exp

{
d†d
∑
q

(
h∗q
ωq
a†q −

hq
ωq
aq

)}
≡ ed

†dA . (7.48)

The above transformation is known as polaron or Lang-Firzov transformation [38, 39]. Obviously,
the electronic leads are unaffected by the transformation, since UckνU

† = ckν , and also the central
dot part is inert Ud†dU † = d†d. There are multiple ways of proving the following relations

UdU † = de−A , Ud†U † = d†e+A ,

UaqU
† = aq −

h∗q
ωq
d†d , Ua†qU

† = a†q −
hq
ωq
d†d . (7.49)

Exercise 57 (Polaron transformation). Show the validity of Eqs. (7.49).

These immediately also imply the relation

Ua†qaqU
† = a†qaq −

d†d

ωq

(
hqaq + h∗qa

†
q

)
+
|hq|2

ω2
q

d†d . (7.50)
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After the polaron transformation, the Hamiltonian therefore reads

H ′ =

(
ε−

∑
q

|hq|2

ωq

)
d†d+

∑
kν

εkνc
†
kνckν +

∑
q

ωqa
†
qaq

+
∑
kν

(
tkνdc

†
kνe
−A + t∗kνckνd

†e+A
)
, (7.51)

and thereby admits a new decomposition into system and bath Hamiltonians, see also Fig. 7.3.

Most obvious, we observe a shift of the electronic level ε→ ε′ = ε−
∑

q
|hq |2
ωq

. Second, the electronic

Figure 7.3: After the polaron transforma-
tion, direct coupling between the central
quantum dot and the phonons in Fig. 7.2
is transformed to the electronic tunnel cou-
plings. The electron-phonon coupling may
be treated non-perturbatively (dash-dotted
lines) when the electronic tunnel couplings
are treated perturbatively (dashed lines).

tunneling terms between central dot and the adjacent leads now become dressed by exponential
operators

H′I =
∑
kν

[
tkνdc

†
kνe
−
∑
q

(
h∗q
ωq
a†q−

hq
ωq
aq

)
+ t∗kνckνd

†e
+
∑
q

(
h∗q
ωq
a†q−

hq
ωq
aq

)]
, (7.52)

which demonstrates that every single electronic jump from the central dot to the leads may now
trigger multiple phonon emissions or absorptions. This implies that a perturbative treatment in tkν
still enables for a non-perturbative treatment of the phonon absorption and emission amplitudes
hq. Furthermore, this leads to the somewhat non-standard situation that already in the interaction
Hamiltonian one has now operators from different reservoirs occurring in a product, which implies
interesting properties for the correlation functions.

7.3.2 Reservoir equilibrium in the polaron picture

Before we proceed further by deriving a master equation in the displaced polaron frame, we remark
that the solution from the displaced frame has to be transformed back to the original picture. A
rate equation in the displaced frame implies that the full density matrix in the polaron frame is
given by a product state of system and reservoir, where the phonon reservoir density matrix is

given by the thermal equilibrium state ρ′(t) = ρ′S(t)ρ̄
(L)
B ρ̄

(R)
B

e
−βphH

′
B

Z′ph
. The transformation back to

the initial frame is given by the inverse polaron transformation

ρ(t) = U †ρ′(t)U = U †ρ′S(t)ρ̄
(L)
B ρ̄

(R)
B UU †

e−βphH′B

Z ′ph

U

= U †ρ′S(t)Uρ̄
(L)
B ρ̄

(R)
B

e−βphU
†H′BU

Z ′ph

, (7.53)
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where we have used that the polaron transformation (7.48) leaves the electronic reservoirs un-
touched. When the system density matrix does not exhibit coherences ρ′S(t) = PE(t)dd†+PF (t)d†d,
the unitary transformation will leave it untouched, such that only the reservoir part will be mod-
ified. With H′B =

∑
q ωqa

†
qaq we can with the inverse transformations of Eq. (7.49)

U †H′BU =
∑
q

ωqa
†
qaq + d†d⊗

∑
q

(
hqaq + h∗qa

†
q

)
+
∑
q

|hq|2

ωq
d†d

= d†d⊗
∑
q

(
ωqa

†
qaq + hqaq + h∗qa

†
q +
|hq|2

ωq
1

)
+ dd† ⊗

∑
q

ωqa
†
qaq (7.54)

represent the operator in the exponential as a sum of commuting operators. Since for all operators
AB = BA = 0 we have eA+B = eAeB we conclude

e−βphU
†H′BU = e−βphd

†d⊗
∑
q ωq(a

†
q+hq/ωq)(aq+h

∗
q/ωq)e−βphdd

†⊗
∑
q ωqa

†
qaq

=
[
1 + d†d

(
e−βph

∑
q ωq(a

†
q+hq/ωq)(aq+h

∗
q/ωq) − 1

)] [
1 + dd†

(
e−βph

∑
q ωqa

†
qaq − 1

)]
= d†de−βph

∑
q ωq(a

†
q+hq/ωq)(aq+h

∗
q/ωq) + dd†e−βph

∑
q ωqa

†
qaq . (7.55)

Comparing with the initial Hamiltonian, the phonon part of the first term in the last line is nothing
but the thermal phonon state under the side constraint that the SET dot is filled. Formally, this
can be seen by replacing d†d → 1 in Eq. (7.47). Similarly, the other term is the thermalized
phonon state when the SET dot is empty. Therefore, preparing the reservoir in a thermal state in
the polaron-transformed frame implies that in the original frame, the reservoir state is conditioned
on the state of the system. Inserting the assumption that there are no coherences in the system
ρ′S(t) = PE(t)dd† + PF (t)d†d, the full density matrix in the original frame becomes

ρ(t) = PE(t)dd†ρ̄
(L)
B ρ̄

(R)
B ⊗ e−βph

∑
q ωqa

†
qaq

Z ′ph

+ PF (t)d†dρ̄
(L)
B ρ̄

(R)
B ⊗ e−βph

∑
q ωq(a

†
q+hq/ωq)(aq+h

∗
q/ωq)

Z ′ph

.(7.56)

Therefore, when the SET dot is occupied, the phonon state is given by a displaced thermal state,
whereas when the SET dot is empty, it is just given by the thermal state corresponding to the
original phonon Hamiltonian. The phonon dynamics thereby follows the system state immediately,
which goes beyond the conventional Born approximation.

7.3.3 Polaron Rate Equation for discrete phonon modes

In the transformed frame, we do now proceed to derive a rate equation for the SET dot populations.
We choose to count the phonons emitted into the phonon bath, to test the applicability of the
counting field formalism. Here, we will use Nph =

∑
q a
†
qaq as the reservoir observable of interest.

Identifying the bath coupling operators in the interaction Hamiltonian (7.52) as

B1ν =
∑
k

tkνc
†
kνe
−A , B2ν =

∑
k

t∗kνckνe
+A (7.57)

it becomes quite obvious that the reservoir correlation functions will now simultaneously contain
contributions from electronic and phonon reservoirs. Recalling the definition 14 of the generalized
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correlation function, we obtain a simple product form between electronic and phononic contribu-
tions

Cν,χ
12 (τ) = 〈B1ν(τ)B2ν〉 = Cν

12,el(τ)Cχ
12,ph(τ) ,

Cν,χ
21 (τ) = 〈B2ν(τ)B1ν〉 = Cν

21,el(τ)Cχ
21,ph(τ) . (7.58)

Here, the electronic contributions are just the conventional ones known from the SET

Cν
12,el(τ) =

∑
k

|tkν |2fν(εkν)e+iεkντ =
1

2π

∫
Γν(−ω)fν(−ω)e−iωτdω ,

Cν
21,el(τ) =

∑
k

|tkν |2[1− fν(εkν)]e−iεkντ =
1

2π

∫
Γν(ω)[1− fν(ω)]e−iωτdω . (7.59)

In contrast, the phonon contributions are given by

Cχ
12,ph(τ) =

〈
e−iNphχe−A(τ)e+iNphχe+A

〉
, Cχ

21,ph(τ) =
〈
e−iNphχe+A(τ)e+iNphχe−A

〉
, (7.60)

with the phonon operator in the interaction picture

A(τ) =
∑
q

(
h∗q
ωq
a†qe

+iωqτ − hq
ωq
aqe
−iωqτ

)
. (7.61)

We note that by hq → −hq, we transform Cχ
12,ph(τ) → Cχ

21,ph(τ), such that we actually only need
to calculate one correlation function. To calculate phonon contribution to the correlation function,
we can exploit that (with Aχ(τ) = e−iNphχA(τ)e+iNphχ)

[Aχ(τ), A] = 2i
∑
q

|hq|2

ω2
q

sin(ωqτ − χ) (7.62)

is just a number, which implies – using the Baker-Campbell-Hausdorff relation

e−A
χ

(τ)e+A = eA−A
χ

(τ)−1/2[Aχ
(τ),A]

= e
∑
q

(
h∗q
ωq
a†q(1−e+i(ωqτ−χ))− hq

ωq
aq(1−e−i(ωqτ−χ))

)
e
−i
∑
q
|hq |2
ω2
q

sin(ωqτ−χ)
. (7.63)

For a thermal reservoir, the phonon correlation function can be written as a product of single-mode

correlation functions Cχ
12,ph(τ) =

Q∏
q=1

Cχ,q
12,ph(τ), where the single mode contributions read

Cχ,q
ph (τ) =

〈
e
h∗q
ωq
a†q(1−e+i(ωqτ−χ))− hq

ωq
aq(1−e−i(ωqτ−χ))

e
−i
|hq |2
ω2
q

sin(ωqτ−χ)

〉

=

〈
e
h∗q
ωq
a†q(1−e+i(ωqτ−χ))

e
− hq
ωq
aq(1−e−i(ωqτ−χ))

〉
e
−|hq |

2

ω2
q

(1−e−i(ωqτ−χ))
. (7.64)

By expanding the exponentials, we can evaluate the expectation value for thermal states, where
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the probability of having n quanta in the mode q is given by Pn = (1− e−βphωq)e−nβphωq as〈
eα
∗
qa
†
qe−αqaq

〉
=

∞∑
n,m=0

(α∗q)
n

n!

(−αq)m

m!

∞∑
`=0

P` 〈`| (a†q)n(aq)
m |`〉

=
∞∑
n=0

(−1)n|αq|2n

(n!)2

∞∑
`=0

P` 〈`| (a†q)n(aq)
n |`〉 =

∞∑
`=0

P`
∑̀
n=0

(−1)n|αq|2n

(n!)2

`!

(`− n)!

=
∞∑
`=0

P`L`(|αq|2) = e−|αq |
2nqB (7.65)

with the Bose distribution nqB = [eβphωq−1]−1 and Legendre polynomials, defined by the Rodriguez
formula [40]

Ln(x) =
1

2nn!

dn

dxn
[
x2 − 1

]n
. (7.66)

The single-mode contributions thus become with αq = hq
ωq

(1− e−i(ωqτ−χ))

Cχ,q
ph (τ) = exp

{
|hq|2

ω2
q

[
e−i(ωqτ−χ) (1 + nqB) + e+i(ωqτ−χ)nqB − (1 + 2nqB)

]}
, (7.67)

such that finally, we obtain for the phonon correlation function

Cχ
12,ph(τ) = exp

{∑
q

|hq|2

ω2
q

[
e−i(ωqτ−χ)(1 + nqB) + e+i(ωqτ−χ)nqB − (1 + 2nqB)

]}
. (7.68)

The fact that the transformation hq → −hq leaves this result invariant implies that the phonon
contribution is always the same in Eq. (7.58), such that we can drop the indices 12 and 21.
Furthermore, we see that the phonon counting field occurs at the positions where one might have
intuitively expected them. We note that the phonon correlation function obeys the KMS condition.

Exercise 58 (KMS condition). Show that the phonon correlation function (7.68) obeys the KMS
condition C(τ) = C(−τ − iβph)

The observation that in the phonon correlation function (7.67) the terms proportional to
(1 + nqB) correspond to the emission of a phonon into the phonon reservoir and terms propor-
tional to nqB alone are responsible for the absorption of a phonon from the reservoir enables one
to derive the full phonon counting statistics from the model. Formally expanding the single mode
correlation function into multiple emission (m′) and absorption (m) events we would obtain a
decomposition in the net number of phonon absorbtions by the phonon bath n = m′ −m, where
Cχ,q

ph (τ) =
∑+∞

n=−∞C
q,n
ph (τ)einχ, and Cq,n

ph (τ) = 1
2π

∫ +π

−π C
χ,q
ph (τ)e−inχdχ can be determined by the

inverse Fourier transform. In particular, using that

Cq
ph(τ) = e

−|hq |
2

ω2
q

(1+2nqB)
∞∑

m,m′=0

(
|hq|2

ω2
q

)m+m′

(nqB)m(1 + nqB)m
′

m!m′!
e+i(m−m′)ωqτ (7.69)
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one can show that by introducing the net number of phonon absorptions by the phonon bath
n = m′ − m, the correlation function can be represented as (below, we drop the counting field
χ→ 0, since we have an interpretation for each term)

Cq
ph(τ) =

+∞∑
n=−∞

e−inωqτe
−|hq |

2

ω2
q

(1+2nqB)
(

1 + nqB
nqB

)n
2

Jn

(
2
|hq|2

ω2
q

√
nqB(1 + nqB)

)
, (7.70)

where Jn(x) denotes the modified Bessel function of the first kind [40] – defined by the solution of
the differential equation z2J ′′n (z) + zJ ′n(z)− (z2 + n2)Jn(z) = 0. Introducing for multiple modes
the notation n = (n1, . . . , nQ), ω = (ω1, . . . , ωQ), we therefore have for the full multi-mode phonon
correlation function the representation

Cph(τ) =
∑
n
e−in·ωτ

Q∏
q=1

[
e
−|hq |

2

ω2
q

(1+2nqB)
(

1 + nqB
nqB

)nq
2

Jnq

(
2
|hq|2

ω2
q

√
nqB(1 + nqB)

)]
=

∑
n
e−in·ωτCnph , (7.71)

where the simple exponential prefactor enables to calculate the Fourier transform of the full cor-
relation function. In particular if only a single phonon mode is present, this enables a simple
calculation of the Fourier transform of the complete electron-phonon correlation function

γν12(ω) =
∑
nν

γν12,el(ω − nν · ω)Cnνph =
∑
nν

γν12,nν (ω) ,

γν21(ω) =
∑
nν

γν21,el(ω − nν · ω)Cnνph =
∑
nν

γν21,nν (ω) . (7.72)

Here, the terms γν12,nν are interpreted as the emission of nν phonons into the phonon reservoir
whilst an electron jumps from lead ν onto the SET dot, whereas γν21,nν accounts for the emission
of nν when an electron is emitted to lead ν. Now, the bosonic KMS relation

C−nνph = e−βphnν ·ωC+nν
ph (7.73)

together with properties of the Fermi functions implies a KMS-type relation for the full correlation
function

γν12,+nν (−ω) = e−βν(ω−µν+nν ·ω)e+βphnν ·ωγν21,−nν (+ω) , (7.74)

which now involves both the electronic and phononic temperatures.

Exercise 59 (KMS condition). Show the validity of relation (7.74).

However, we note that when these temperatures are equal, the usual local detailed balance
relations are reproduced. Deriving a secular-type rate equation for the dot occupation is now
straightforward, the probabilities for finding the dot empty or filled are governed by the rate
matrix

L =
∑

ν∈{L,R}

∑
nν

(
−γν12,nν (−ε′) +γν21,−nν (+ε′)
+γν12,nν (−ε′) −γν21,−nν (+ε′)

)
,
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where γν12,nν (−ε′) denotes the rate for an electron jumping onto the SET dot from lead ν whilst
simultaneously emitting nν phonons of the various modes into the phonon reservoir. Correspond-
ingly, γν21,−nν (+ε′) denotes the rate for the inverse process. Having identified the rates for the
various involved processes, we can proceed by introducing counting fields. For a three-terminal
system with the phononic junction only allowing for energy exchange and with conservation laws
on the total energy and particle number we can expect three counting fields to be sufficient for
tracking the full entropy production. These can – for example – be the matter transfer from left
to right and the energy emitted to the phonon bath counted separately for electronic jumps, such
that we have the counting-field dependent version

L(χ, ξL, ξR) =

(
−γL12,nL(−ε′) +γL21,−nL(+ε′)e−inL·ΩξL

+γL12,nL(−ε′)e+inL·ΩξL −γL21,−nL(+ε′)

)
+

(
−γR12,nR(−ε′) +γR21,−nR(+ε′)e+iχe−inR·ΩξR

+γR12,nR(−ε′)e−iχe+inR·ΩξR −γL21,−nR(+ε′)

)
,

which enables one to reconstruct all energy and matter currents and thus the full entropy flow.
Here, we will first investigate the impact of the phonon presence on the electronic matter

current. If one is only interested in the electronic current, we may set ξL = ξR = 0. The transition
rates in the above Liouvillian become particularly simple in the case of a single phonon mode

γν12,+n(−ε′) = Γν(ε
′ + nΩ)fν(ε

′ + nΩ)e−Λ(1+2nB)

(
1 + nB
nB

)n
2

Jn
(

2Λ
√
nB(1 + nB)

)
,

γν21,−n(+ε′) = Γν(ε
′ + nΩ)[1− fν(ε′ + nΩ)]e−Λ(1+2nB)

(
nB

1 + nB

)n
2

Jn
(

2Λ
√
nB(1 + nB)

)
,(7.75)

where Λ = |h|2
Ω2
q

denotes the dimensionless coupling strength to the single phonon mode which is

occupied according to nB = [eβphΩ − 1]−1. The resulting electronic matter current is depicted in
Fig. 7.4. Surprisingly, the simple 2 × 2 rate matrix predicts many signatures in the electronic
current. For example, in the electronic matter current one can read off the renormalized dot level
at sufficiently low electronic temperatures. In addition however, low temperatures also allow to
determine the phonon frequency from the width of the multiple plateaus.

7.3.4 Thermodynamic interpretation

The present rate equation does not directly fit the scheme in Sec. 6.2.2, since the contribution
of the three reservoirs to the rates is not additive. Nevertheless, an interpretation in terms of
stochastic thermodynamics is possible.

The strong modification of the electronic current is due to the fact that the phonons allow for
processes that would normally be forbidden, see Fig. 7.5 In the trajectory in the figure, first an
electron jumps in from the left lead to the initially empty SET whilst absorbing two phonons.
The change of the system energy by ∆E = +ε′ = ∆EL + ∆Eph is supplied by both the left lead
∆EL = ε′ − 2Ω and the phonon bath ∆Eph = +2Ω. In the second step, the electron leaves the
dot towards the right lead whilst again absorbing three phonons. Again, the change of the system
energy by −ε′ is supplied by the right lead ∆ER = −(ε′+3Ω) and the phonon both ∆Ermph = +3Ω.
These energy and matter transfers can be used to construct the total heat exchanged between the
reservoirs and thereby also the total entropy production in the steady state.
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Figure 7.4: Electronic matter current versus bias voltage applied to the SET for vanishing (bold
black) and increasing (dashed red, dash-dotted blue, and dotted green, respectively) coupling
strengths Λ = |h|2/Ω2 = J0 to a single phonon mode of frequency Ω (bold curves) or to a continuum
of phonon modes distributed according to an ohmic model (thin solid curves in background). The
Franck-Condon blockade can within this model be understood in terms of a renormalization of the
effective dot level ε′ = ε−ΛΩ, which – when ΛΩ� ε will lead to current suppression. Furthermore,
the steps in the electronic current observed for sufficiently low temperatures (solid green) admit for
the transport spectroscopy of the phonon frequency Ω. In the multi-mode case (thin solid curves,
for ωc = Ω and J0 = Λ), current suppression due to the level renormalization is also observed but
the steps in the current are no longer visible. Other parameters: ΓL = ΓR = Γ, βL = βR = βph = β,
βΩ = 10 (except the thin green curve), ε = 5Ω, J0 = Λ, ωc = Ω.
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Figure 7.5: Sketch of the energetics of the
problem for a single phonon mode, slightly
adapted from Ref. [36]. For sufficiently low
electronic temperatures, the dot level has to
be between µL and µR to allow for transport,
such that an electronic transfer from left to
right would be extremely unlikely for the
depicted situation. With phonons at suffi-
ciently large temperature however, it is pos-
sible to realize trajectories where the miss-
ing energy is supplied by the phonon bath.
The indicated heat transfers from reservoirs
into the system allow for a complete recon-
struction of the entropy flows even for single
trajectories.

To relate the thermodynamic interpretation more to the modified local detailed balance relation,
let us now for simplicity restrict ourselves to the case of a single phonon mode (the generalization
to multiple modes is also possible). Formally, the rates corresponding to emission or absorption
of different phonon numbers enter additively in Eq. (7.75). This enables one to see the phonon
reservoir as a whole collection of infinitely many virtual phonon reservoirs that admit only for
the emission or absorption of a certain number of phonons with the same frequency each time an
electron is transferred across the SET junctions. This view enables one to adopt the definition 21
of the entropy flow, where the index ν labeling the reservoir may now assume infinitely many
values ν → (ν, n), where ν ∈ {L,R} denotes the junction across which an electron is transferred
and n denotes the virtual phonon reservoir from or to which only n phonons may be absorbed or
emitted at once. Recalling that L(ν,n)

EF denotes the rate for an electron to leave the dot towards

lead ν whilst absorbing n phonons from the reservoir and L(ν,n)
FE the rate of the inverse process,

i.e., for an electron to enter the dot from lead ν whilst emitting n phonons into the reservoir, the
local detailed balance relation becomes – with the rates in Eq. (7.75)

ln

(
L(ν,n)
FE

L(ν,n)
EF

)
= ln

(
γ12,+n(−ε′)
γ21,−n(+ε′)

)
= ln

[
fν(ε

′ + nΩ)

1− fν(ε′ + nΩ)

(
1 + nB
nB

)n]
= ln

[
e−βν(ε′+nΩ−µν)e+nβphΩ

]
= −βν(ε′ + nΩ− µν) + βphnΩ , (7.76)

such that the entropy flow from the virtual reservoir (recall that ν → (ν, n)) becomes

Ṡ(ν,n)
e = L(ν,n)

EF P̄F ln

(
L(ν,n)
FE

L(ν,n)
EF

)
+ L(ν,n)

FE P̄E ln

(
L(ν,n)
EF

L(ν,n)
FE

)

=
[
L(ν,n)
EF P̄F − L(ν,n)

FE P̄E

]
ln

(
L(ν,n)
FE

L(ν,n)
EF

)
= βν(I

(ν,n)
E − µνI(ν,n)

M ) + βphI
(n,ν,ph)
E = Ṡ

(ν,n)
e,el + Ṡ

(ν,n)
e,ph , (7.77)

which is additive in electronic and phononic contributions. Here, we have introduced the energy
flows corresponding to the emission or absorption of n phonons. The total energy flows are given
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by

IνE =
∑
n

I
(ν,n)
E =

∑
n

[
γ12,+n(−ε′)P̄E − γ21,−n(+ε′)P̄F

]
(ε′ + nΩ) ,

Iph
E =

∑
n

[
I

(n,L,ph)
E + I

(n,R,ph)
E

]
=
∑
n

∑
ν

[
γ21,−n(+ε′)P̄F − γ12,+n(−ε′)P̄R

]
nΩ , (7.78)

whereas the total electronic matter current from lead ν is given by

IνM =
∑
n

I
(ν,n)
E =

∑
n

[
γ12,+n(−ε′)P̄E − γ21,−n(+ε′)P̄F

]
. (7.79)

Similarly, the total entropy flow from the electronic leads is obtained by summing over all differ-
ent n, and the total entropy flow from the phonon reservoirs is obtained by summing over the
contributions from different n and different ν

Ṡ(ν)
e =

∑
n

Ṡ
(ν,n)
e,el

Ṡph
e =

∑
n

(
Ṡ

(L,n)
e,ph + Ṡ

(R,n)
e,ph

)
. (7.80)

Altogether, the system obeys the laws of thermodynamics, which results in an overall positive
entropy production. Consequently, we just note here that it is possible to verify a fluctuation
theorem for entropy production, i.e., for Pn,eLph,e

R
ph

(t) denoting the probability for trajectories with

n electrons having traversed the SET from left to right and having emitted energy eLph = nL ·ω to
the phonon reservoir during electronic jumps over the left and energy eRph = nR · ω during jumps
over the right barrier. In detail, it reads [36]

lim
t→∞

P+n,+eLph,+e
R
ph

(t)

P−n,−eLph,−e
R
ph

(t)
= e[(βR−βL)ε′+(βLµL−βRµR)]n+(βph−βL)eLph+(βph−βR)eRph , (7.81)

and it is straightforward to see that it reduces to the conventional fluctuation theorem when all
temperatures are equal.

Disregarding the phonon counting statistics, we note that the system also obeys a fluctuation
theorem involving the electronic transfer statistics only

lim
t→∞

P+n(t)

P−n(t)
= enAeff , (7.82)

where the effective affinity Aeff is however not related to the entropy production, it does, for
example, depend on the details of the coupling.

7.3.5 Polaron Rate Equation for continuum phonon modes

Also for a continuum of phonon modes it is possible to obtain a master equation representation.
Here, we directly represent the phonon correlation function (7.68), taking a counting field for the
energy of the phonon reservoir into account. This then yields

Cξ
ph(τ) = exp

{∫ ∞
0

dω
J(ω)

ω2

[
e−iω(τ−ξ)(1 + nB(ω)) + e+iω(τ−ξ)nB(ω)− (1 + 2nB(ω))

]}
, (7.83)
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where we have introduced the spectral density J(ω) =
∑

q |hq|
2δ(ω − ωq), and ξ is a counting

field responsible for the energy of the phonon reservoir. When we choose the common ohmic
parametrization J(ω) = J0ωe

−ω/ωc with dimensionless coupling strength J0 and cutoff frequency
ωc, the integral can be solved exactly. Writing the Bose-Einstein distributions as a geometric series
and resumming all separate integral contribution, we finally obtain for the phonon correlation
function

Cξ
ph(τ) =

Γ
(

1+βphωc+i(τ−ξ)ωc

βphωc

)
Γ
(

1+βphωc−i(τ−ξ)ωc

βphωc

)
Γ2
(

1+βphωc

βphωc

)
(1 + i(τ − ξ)ωc)

J0

, (7.84)

where Γ(x) =
∞∫
0

tx−1e−tdt denotes the Γ-function. The observation that Cξ
ph(τ) = Cph(τ − ξ)

(generally true for energy counting and an initial state that is diagonal in the energy eigenbasis)
leads to the relation

γξph(ω) = e+iωξγph(ω) . (7.85)

We note from Eq. (7.83) that for particular parametrizations of the spectral coupling density one
can expect that for large times the phonon correlation functions may remain finite limt→∞Cph(τ) 6=
0. However, the total correlation function is given by a product of electronic (which decay) and
phonon correlation functions. Its Fourier transform (that enters the rates) can be calculated
numerically from a convolution integral

γν,ξν12 (−ε′) =
1

2π

∫
dωΓν(−ω)fν(−ω)γph(−ε′ − ω)e−i(ε′+ω)ξν ,

γν,ξν21 (+ε′) =
1

2π

∫
dωΓν(+ω)[1− fν(+ω)]γph(+ε′ − ω)e+i(ε′−ω)ξν , (7.86)

and enters in this case a rate matrix of the form

L(χ, ξL, ξR) =

(
−γL12(−ε′) +γL,ξL21 (+ε′)

+γL,ξL12 (−ε′) −γL21(+ε′)

)
+

(
−γR12(−ε′) +γR,ξR21 (+ε′)e+iχ

+γR,ξR12 (−ε′)e−iχ −γR21(+ε′)

)
, (7.87)

from which the electronic matter current can be directly deduced. With the choices J0 = |h|2
Ω2 and

ωc = Ω the electronic current is for high temperatures quite similar as if one would have only a
single phonon mode. Also the symmetries are similar to that of Eq. (7.75), and a similar fluctuation
theorem arises from that. The crucial difference however is that at low temperatures, the phonon
plateaus are no longer visible – compare the thin solid versus the bold curves in Fig. 7.4. Since for
the continuum model many different phonon frequencies contribute, this is expected. Interestingly
however, the current suppression due to the presence of the phonons (Franck-Condon blockade) is
also visible for a continuum of phonon modes.

7.4 P (E) theory

Under the widely used secular approximation, energy exchanged between system and reservoir
tends to be conserved individually. With the previously discussed example, we have a model where
a part of the energy of an electron entering from an electronic lead is unrecoverably dissipated as
heat into the phonon reservoir, such that only a fraction of that energy will actually arrive in the
system. Here, we will provide general arguments to show that under specific conditions, a total
fluctuation theorem will exist.
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7.4.1 Conventional transition rates

We denote the energy levels of the system under consideration by Ei and their corresponding par-
ticle numbers by Ni. Here, i runs over all states of the system Hilbert space. Phenomenologically,
we find that the reservoir-triggered conventional transition rate from system state j to system
state i

Rij = ΓijQ(Ei − Ej) (7.88)

is given by a product of a bare tunneling rate Γij and the probability Q(Ei−Ej) that the reservoir
allows for such a jump.

In particular, for fermionic jumps one has

Q(Ei − Ej) = δNi−Nj ,+1f(Ei − Ej) + δNi−Nj ,−1[1− f(Ej − Ei)] (7.89)

with Fermi functions

f(ω) =
1

eβ(ω−µ) + 1
(7.90)

described by reservoir temperature β and chemical potential µ. The first term in Eq. (7.89)
describes the probability that to jump in, one first has to have a particle at resonant energy
Ei − Ej in the reservoir. To jump out, the energy slot at Ej − Ei must be free (note the sign
difference).

On the other hand, for bosonic jumps one would have

Q(Ei − Ej) = δNi−Nj ,+1n(Ei − Ej) + δNi−Nj ,−1[1 + n(Ej − Ei)] (7.91)

with Bose function

n(ω) =
1

eβ(ω−µ) − 1
, (7.92)

where we have to obey the side constraint µ < ω.
In either case, these examples just demonstrate that a detailed balance condition is obeyed by

the reservoir

Q(Ei − Ej)
Q(Ej − Ei)

= e−β(Ei−Ej−µ) , (7.93)

which in the following we will assume to be generally fulfilled. We note that with Γij = Γji this
transfers to the rate as

Rij

Rji

= e−β(Ei−Ej−µ) . (7.94)

7.4.2 Hidden Reservoir

To generalize this, we imagine an unspecified hidden reservoir able to inject energy into the system
with each transfer between system and visible reservoir. This would mean that the transition
between reservoir and system can be seen as an inelastic scattering event, where the hidden reservoir
contributes energy E. Let the probability distribution for this energy contribution be denoted by
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P (E) ≥ 0 with
∫
P (E)dE = 1. Furthermore, we postulate the detailed balance property for the

hidden reservoirs [41]

P (+E)

P (−E)
= eβHE (7.95)

with some inverse temperature βH of the hidden reservoir. Assuming independence of the processes,
the transition rate for this particular process would then be given by

R+E
ij = ΓijQ(Ei − Ej + E)P (+E) , (7.96)

and the rate for the inverse process would become

R−Eji = ΓjiQ(Ej − Ei − E)P (−E) . (7.97)

We note that for the energy-resolved rates we have the generalized relation

R+E
ij

R−Eji
= e−β(Ei−Ej+E−µ)e+βHE , (7.98)

which recovers the original detailed balance relation (7.94) when βH = β.
However, the total rates would be given by an integral

Rij = Γij

∫
Q(Ei − Ej + E)P (+E)dE , (7.99)

and they will not obey detailed balance relations.

7.4.3 Currents

The rate (7.96) has the interpretation that to induce an energy change Ei−Ej in the system, the
conventional reservoir contributes energy Ei−Ej+E, where the fraction −E is however absorbed in
the hidden reservoir. We now allow for the possibility of multiple reservoirs (to support stationary

currents) by replacing Rij → R
(ν)
ij . As the hidden reservoir does not absorb or emit any particles,

the steady-state matter current entering the system from reservoir ν is defined as usual

I
(ν)
M =

∑
ij

(Ni −Nj)R
(ν)
ij P̄j , (7.100)

where P̄j denotes the system steady-state population in state j. However, the energy current into
the system

I
(ν)
E =

∑
ij

(Ei − Ej)R(ν)
ij P̄j (7.101)

now splits into two contributions I
(ν)
E = I

(ν),R
E + I

(ν),H
E , where

I
(ν),R
E =

∑
ij

∫
(Ei − Ej + E)R

(ν),+E
ij dEP̄j , I

(ν),H
E =

∑
ij

∫
(−E)R

(ν)+E
ij dEP̄j (7.102)

denote the fractions entering the system from the original reservoir and the hidden reservoir,
respectively. Naively, we may also guess that the entropy production rate now in the long-term
limit is again balanced by the matter and energy currents. Now for multiple real and hidden
reservoirs ν, the entropy production rate would become at steady state (hypothesis)

Ṡi → −
∑
ν

βν

(
Iν,RE − µνIνM

)
−
∑
ν

βH,νI
ν,H
E ≥ 0 . (7.103)
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7.4.4 Entropic Balance

We start from a rate equation of the form

Ṗi =
∑
ν

∑
j

R
(ν)
ij Pj (7.104)

with energy-resolved rates specific to tunneling processes between system and

R
(ν)
ij =

∫
R

(ν)
ij,+EdE (7.105)

describing a transition j → i in the system while the hidden reservoir absorbs energy E. We note
that the hidden reservoir can be different for each tunnel junction. In what follows, we will just
require probability conservation ∑

i

R
(ν)
ij = 0 (7.106)

and a generalized local detailed balance condition

R
(ν)
ij,+E

R
(ν)
ji,−E

= e−βν [Ei−Ej+E−µν(Ni−Nj)]e+βHν E (7.107)

to hold. Here, βν and µν denote inverse temperature and chemical potential of reservoir ν, and
βHν is the inverse temperature of the hidden reservoir associated to junction ν. Taking the time
derivative of the systems Shannon entropy S = −

∑
i Pi lnPi we get

Ṡ = −
∑
i

Ṗi lnPi = −
∑
ij

∑
ν

∫
dER

(ν)
ij,+EPj ln

(
R

(ν)
ji,−EPi

R
(ν)
ij,+EPj

R
(ν)
ij,+EPj

R
(ν)
ji,−E

)

= +
∑
ij

∑
ν

∫
dER

(ν)
ij,+EPj ln

(
R

(ν)
ij,+EPj

R
(ν)
ji,−EPi

)
+
∑
ij

∑
ν

∫
dER

(ν)
ij,+EPj ln

(
R

(ν)
ji,−E

R
(ν)
ij,+EPj

)

= +
∑
ij

∑
ν

∫
dER

(ν)
ij,+EPj ln

(
R

(ν)
ij,+EPj

R
(ν)
ji,−EPi

)
+
∑
ij

∑
ν

∫
dER

(ν)
ij,+EPj ln

(
R

(ν)
ji,−E

R
(ν)
ij,+E

)

= +
∑
ij

∑
ν

∫
dER

(ν)
ij,+EPj ln

(
R

(ν)
ij,+EPj

R
(ν)
ji,−EPi

)

+
∑
ij

∑
ν

∫
dER

(ν)
ij,+EPj

{
βν [Ei − Ej + E − µν(Ni −Nj)]− βHν E

}
= +

∑
ij

∑
ν

∫
dER

(ν)
ij,+EPj ln

(
R

(ν)
ij,+EPj

R
(ν)
ji,−EPi

)
+
∑
ν

{
βν [I

(ν)
E − µνI

(ν)
M ] + βHν I

(ν),H
E

}
. (7.108)

In the first equality sign we have jused used the trace conservation
∑

i Ṗi = 0, in the third line
we used that the term with an individual ln(Pj) would vanish due to the trace conservation as
well, and in the fourth equation we have inserted the generalized KMS relation specific for each
reservoir. Finally, we identify the entropy flow in terms of the heat currents entering the system

Ṡe =
∑
ν

{
βν [I

(ν)
E − µνI

(ν)
M ] + βHν I

(ν),H
E

}
(7.109)
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and also the entropy production rate

Ṡi =
∑
ij

∑
ν

∫
dER

(ν)
ij,+EPj ln

(
R

(ν)
ij,+EPj

R
(ν)
ji,−EPi

)
. (7.110)

To show its positivity, we generalize the logarithmic sum inequality∑
i

ai ln
ai
bi
≥ a ln

a

b
, a =

∑
i

ai , b =
∑
i

bi (7.111)

to double summations and integrals∫
dE
∑
ij

aEij ln
aEij
bEij
≥ a ln

a

b
, a =

∫
dE
∑
ij

aEij , b =

∫
dE
∑
ij

bEij . (7.112)

Then, identifying aEij = R
(ν)
ij,+EPj and bEij = R

(ν)
ji,−EPi we obtain that a = b, and consequently, as

a ≥ 0 for each reservoir ν, this bounds the entropy production rate

Ṡi =
∑
ν

Ṡ
(ν)
i ≥ 0 , (7.113)

which also holds in far-from-equilibrium regimes.
Furthermore, we note that if we introduce counting fields via

Lij =
∑
ν

∫
dER

(ν)
ij,+Ee

+iχν(Ni−Nj)e+iξν(Ei−Ej+E)e−iλνE (7.114)

in the off-diagonal matrix elements of the Liouvillian, we obtain a symmetry of the form

L(−χν ,−ξν ,−λν) = L†(+χν + iβνµν ,+ξν − iβν ,+λν − iβHν ) . (7.115)

As the eigenvalues of a matrix are not changed by transposition and as the long-term cumulant-
generating function is given by the dominant eigenvalue of L, it follows that

C(−χν ,−ξν ,−λν) = C(+χν + iβνµν ,+ξν − iβν ,+λν − iβHν ) . (7.116)

This in turn will imply that a fluctuation theorem exists for large times. Actually, one can prove
that a modified fluctuation theorem exists also for short times, but this will have to take the
changes of the system entropy into account.

7.5 A non-perturbative form for entropy production

A recent paper by M. Esposito nicely discusses general properties of entropy production that hold
independent of the used master equation approaches [42]. We start from a setting where both
system and interaction Hamiltonians are allowed to be time-dependent

H(t) = HS(t) +
∑
ν

H
(ν)
I (t) +

∑
ν

H
(ν)
B . (7.117)
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Initially, we assume that the system and reservoirs are uncorrelated, and that the reservoirs are
initially at thermal equilibrium states

ρ(0) = ρS(0)
⊗
ν

ρ̄
(ν)
B , ρ̄

(ν)
B =

e−βν(H
(ν)
B −µνN

(ν)
B )

Zν
, (7.118)

where Zν and N
(ν)
B denote partition function and reservoir particle number of reservoir ν, respec-

tively. We will only assume this at the initial time, but not for t > 0. In fact, the treatment is
so general that the reservoirs can be arbitrarily small, they can even consist of single qubits and
they can move arbitrarily far away from any product state during the evolution. The only formal
requirement is that they are initially represented as a thermal equilibrium state.

Since the evolution of the total system is unitary, the total entropy is a constant of motion,
yielding the relation

−Tr {ρ(t) ln ρ(t)} = −Tr {ρ(0) ln ρ(0)} = −TrS {ρS(0) ln ρS(0)} −
∑
ν

Trν

{
ρ̄

(ν)
B ln ρ̄

(ν)
B

}
, (7.119)

where we have used that for an initial product state it is additive in system and reservoir contri-
butions. Now, we introduce the local reduced density matrices of system and reservoirs

ρS(t) = Tr{ν} {ρ(t)} , ρν(t) = TrS,ν′ 6=ν {ρ(t)} , (7.120)

and turn to the entropy of the system

S(t) = −TrS {ρS(t) ln ρS(t)} . (7.121)

We see that its initial value is related to the full entropy of the system via

S(0) = −Tr {ρ(t) ln ρ(t)}+
∑
ν

Trν

{
ρ̄

(ν)
B ln ρ̄

(ν)
B

}
. (7.122)

Its change can therefore be written as

∆S(t) = S(t)− S(0)

= −TrS {ρS(t) ln ρS(t)}+ Tr {ρ(t) ln ρ(t)} −
∑
ν

Trν

{
ρ̄

(ν)
B ln ρ̄

(ν)
B

}
= −Tr {ρ(t) ln ρS(t)}+ Tr {ρ(t) ln ρ(t)} −

∑
ν

Trν

{
ρ̄

(ν)
B ln ρ̄

(ν)
B

}
= −Tr

{
ρ(t) ln ρS(t)

⊗
ν

ρ̄
(ν)
B

}
+ Tr {ρ(t) ln ρ(t)}+

∑
ν

Trν

{[
ρν(t)− ρ̄(ν)

B

]
ln ρ̄

(ν)
B

}
= D

(
ρ(t)

∣∣∣∣∣∣ρS(t)
⊗
ν

ρ̄
(ν)
B

)
−
∑
ν

βνTrν

{[
ρν(t)− ρ̄(ν)

B

] [
H

(ν)
B − µνN

(ν)
B

]}
, (7.123)

where the first term is nothing but the distance – expressed in terms of the quantum relative
entropy, compare Eq. (2.64) – between the actual state of the full density matrix and the product
state. It is positive and vanishes if and only if the system and bath density matrices are not
entangled, it will be denoted as the entropy production

∆iS(t) = D

(
ρ(t)

∣∣∣∣∣∣ρS(t)
⊗
ν

ρ̄
(ν)
B

)
≥ 0 . (7.124)
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We see that the entropy production is large when the distance between the actual state and the
product state is large, such that it can be seen as quantifying the correlations between system and
reservoir. For finite-size reservoirs, recurrences can occur, and the entropy production can behave
periodically. We therefore note that its production rate need not be positive. In particular, for
periodically evolving systems we must observe times where d

dt
∆iS(t) < 0.

By contrast, the second term can be identified as the entropy flow

∆eS(t) = −
∑
ν

βνTrν

{[
ρν(t)− ρ̄(ν)

B

] [
H

(ν)
B − µνN

(ν)
B

]}
=

∑
ν

βν∆Qν(t) , (7.125)

where the the heat flowing from the reservoir ν into the system is defined as

∆Qν(t) =
〈
H

(ν)
B − µνN

(ν)
B

〉
0
−
〈
H

(ν)
B − µνN

(ν)
B

〉
t
. (7.126)

7.5.1 Entropy production rate

We can solve Eq. (7.123) for the entropy production

∆iS(t) = S(t)− S(0)−
∑
ν

βν∆Qν(t) . (7.127)

Performing a time derivative on both sides yields

d

dt
∆iS(t) = Ṡ(t)−

∑
ν

βν∆Q̇ν(t) , (7.128)

where Q̇ν(t) now denotes the heat current entering the system from reservoir ν. In general, this
quantity will not be positive. However, assuming evolution under a Lindblad form, we know that
also the entropy production rate d

dt
∆iS(t)→ Ṡi ≥ 0 is positive, compare Sec. 3.3.

7.5.2 Example: Steady-state entropy production in the SET

For exactly solvable models such as the SET, we usually do not have direct access on the entropy
production. However, we can express it by the entropy change of the system and the heat leaving
the reservoirs

∆iS(t) = ∆S(t) +
∑
ν

[〈
H

(ν)
B − µνN

(ν)
B

〉
t
−
〈
H

(ν)
B − µνN

(ν)
B

〉
0

]
. (7.129)

For large times, the system reaches a stationary state, i.e., ∆S(t) assumes a constant value, which
however is negligibly small in comparison to the other terms, which grow linearly in time. In
particular, the difference between the reservoir energies and particle numbers at time t and the
initial time will be given by〈

H
(ν)
B

〉
t
−
〈
H

(ν)
B

〉
0
≈ −tI(ν)

E ,
〈
N

(ν)
B

〉
t
−
〈
N

(ν)
B

〉
0
≈ −tI(ν)

M , (7.130)
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where we have introduced the energy and matter currents entering the system from reservoir ν.
We had already obtained an exact expression for the matter current, compare Eq. (7.23), but the
calculation for the energy current is completely analogous, yielding

I
(L)
E = IE =

∫
ω [fL(ω)− fR(ω)]T (ω)dω = −I(R)

E

I
(L)
M = IM =

∫
[fL(ω)− fR(ω)]T (ω)dω = −I(R)

M , (7.131)

where T (ω) ≥ 0 denotes a transmission function [27]. Neglecting the finite constant contributions,
we obtain for the long-term entropy production

∆iS(t) ≈ t [−(βL − βR)IE + (βLµL − βRµR)IM ]

= t

∫
T (ω) [(βLµL − βRµR)− (βL − βR)ω] [fL(ω)− fR(ω)] dω . (7.132)

We can now examine the integrand more closely. Using that T (ω) > 0, we find its only root at
βL(ω̄ − µL) = βR(ω̄ − µR). Furthermore, the first two derivatives become

d

dω
[(βLµL − βRµR)− (βL − βR)ω] [fL(ω)− fR(ω)]

∣∣∣
ω=ω̄

= 0 ,

d2

dω2
[(βLµL − βRµR)− (βL − βR)ω] [fL(ω)− fR(ω)]

∣∣∣
ω=ω̄

=
(βL − βR)2

1 + cosh
[
βLβR(µL−µR)

βL−βR

] ≥ 0 . (7.133)

This proves that the root of the integrand is actually a minimum of the integrand, and therefore
the integrand is non-negative throughout. From this, we directly see that the second law is fulfilled
at steady state

∆iS(t) ≈ t

∫
T (ω) [(βLµL − βRµR)− (βL − βR)ω] [fL(ω)− fR(ω)] dω ≥ 0 . (7.134)

7.5.3 Example: Transient entropy production for pure-dephasing

We had solved the pure dephasing version of the spin-boson model

H = Ωσz + λσz ⊗
∑
k

(
hkbk + h∗kb

†
k

)
+
∑
k

ωkb
†
kbk . (7.135)

before. For the system, we would in the eigenbasis of σz simply obtain stationary populations and
decaying coherences

|ρ01|(t) = e−f(t)
∣∣ρ0

01

∣∣ , f(t) =
4

π

∫ ∞
0

Γ(ω)
sin2(ωt/2)

ω2
coth

(
βω

2

)
dω , (7.136)

compare Eq. (2.102). To benchmark our master equation approaches we had also calculated the
change of the reservoir energy

∆E(t) =
2

π

∫ ∞
0

Γ(ω)

ω
sin2

(
ωt

2

)
dω (7.137)
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see Eq. (4.125), and the change of the reservoir particle number

∆N(t) =
2

π

∫ ∞
0

Γ(ω)

ω2
sin2

(
ωt

2

)
dω (7.138)

compare Eq. (4.85). For a single reservoir, Eq. (7.123) becomes

∆iS(t) = S(t)− S(0) + β [∆E(t)− µ∆N(t)] . (7.139)

Using that ∆E(t) > 0, ∆N(t) > 0, and for bosons µ ≤ 0 (actually, we would normally drop it for
photons), we can already conclude that the second term is separately positive. Also, if we would
let t → ∞, the final density matrix of the system would be diagonal, such that we can conclude
that S(∞)− S(0) > 0, but does this hold for all times? Parametrizing the density matrix by the
occupation ρ11 and the time-dependent coherence ρ01(t), its von-Neumann entropy becomes

S(t) = −1

2

[
1−

√
(1− 2ρ11)2 + 4|ρ01(t)|2

]
ln

1

2

[
1−

√
(1− 2ρ11)2 + 4|ρ01(t)|2

]
−1

2

[
1 +

√
(1− 2ρ11)2 + 4|ρ01(t)|2

]
ln

1

2

[
1 +

√
(1− 2ρ11)2 + 4|ρ01(t)|2

]
. (7.140)

Using that as time increases, the coherences become smaller |ρ01(t)|2 = e−2f(t)|ρ0
01|

2
, we find (in

the regime 0 ≤ (1 − 2ρ11)2 + 4|ρ01(t)|2 ≤ 1 that is allowed for a valid density matrix), that
S(t) = −(1− x)/2 ln(1− x)/2− (1 + x)/2 ln(1 + x)/2 is a monotonously decaying function when√

(1− 2ρ11)2 + 4|ρ01(t)|2 = x ∈ [0, 1]. Therefore, we conclude S(t) > S(0), and consequently

∆iS(t) = S(t)− S(0) + β [∆E(t)− µ∆N(t)] ≥ 0 , (7.141)

confirming the validity of the second law or – depending on the perspective – the validity of our
exact solution.

7.6 Reaction-coordinate treatment

Conventional master equation approaches typically work well when the coupling is small and when
the Markovian approximation fits well. This implies rapidly decaying correlation functions and
consequently, their Fourier transforms should be relatively flat. In the examples we discussed,
these Fourier transforms were given by products of spectral coupling densities and Bose-Einstein
or Fermi-Dirac distribution functions. Therefore, one may expect the conventional master equation
to work well when the spectral coupling density is flat and also the temperature of the reservoir is
high. In this section, we will discuss an approach that is applicable at high temperatures but very
peaked spectral densities.

7.6.1 Bogoliubov transformation

Many physical problems are represented in the language of second quantization, using fermionic
or bosonic annihilation and creation operators. These obey canonical commutation or anticom-
mutation relations, respectively. Here, we just show that using a unitary transformation, we can
map to new operators of the same type whilst preserving the canonical commutation relations.
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We start with bosons, which obey the commutation relations

[ak, a
†
k′ ] = δkk′ , [ak, ak′ ] = 0 . (7.142)

The Bogoliubov transformation expands these operators in a new set of operators

ak =
∑
q

ukqbq , a†k =
∑
q

u∗kqb
†
q , (7.143)

where the complex-valued coefficients ukq are matrix elements of a unitary matrix, obeying the
relation ∑

k′

ukk′uqk′ = δkq . (7.144)

Then, the transformation is of course invertible, and we can show that the commutation relations
are preserved, the only non-trivial one being

[ak, a
†
k′ ] =

∑
qq′

ukqu
∗
k′q′ [bq, b

†
q′ ] =

∑
q

ukqu
∗
k′q = δkk′ . (7.145)

The same holds for Fermions, with their anticommutation relations being

{ck, c†k′} = δkk′ , {ck, ck′} = 0 . (7.146)

We also find that any unitary transformation

ck =
∑
q

ukqdq , c†k =
∑
q

u∗kqd
†
q (7.147)

will preserve the canonical anticommutation relations, the only non-trivial one being

{ck, c†k′} =
∑
qq′

ukqu
∗
k′q′{dq, d

†
q′} =

∑
q

ukqu
∗
k′q = δkk′ . (7.148)

Such mappings are useful to bring e.g. a Hamiltonian into diagonal form, where its spectrum
can be conventiently calculated, e.g.

ε1c
†
1c1 + ε2c

†
2c1 + Tc†1c2 + T ∗c†2c1 = ε̃1d

†
1d1 + ε̃2d

†
2d2 . (7.149)

This maps two coupled units into two decoupled ones. However, Bogoliubov mappings can also be
used to change the structure of the Hamiltonian in a desired way, changing our definition of system
and reservoir, see Fig. 7.6. In what we use below, the requirement is that the Hamiltonian of the
interaction is linear in the reservoir creation and annihilation operators and that the reservoir
consists of independent fermions or bosons.

7.6.2 Example: Mapping for a finite bosonic reservoir

Let us as an example consider the spin-boson model, described by the full Hamiltonian

H =
ω

2
σz + σx

∑
k

(
hkbk + h∗kb

†
k

)
+
∑
k

ωkb
†
kbk . (7.150)
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Figure 7.6: Sketch of the principle of Bogoliubov mappings to treat Non-Markovian system-
reservoir interactions. Initially (left), the coupling between system and reservoir may not admit
a Markovian treatment. Successive Bogoliubov transformations enable one to transfer degrees of
freedom into the system, with the aim that the transformed coupling admits a Markovian treat-
ment.

We will demonstrate that we can map this Hamiltonian into

H =
ω

2
σz + σx(λa+ λ∗a†) + Ωa†a+

∑
k>1

(
Hkaa

†
k +H∗ka

†ak

)
+
∑
k>1

Ωka
†
kak

=
ω

2
σz + |λ|σx(ã+ ã†) + Ωã†ã+

∑
k>1

(
Hkãã

†
k +H∗k ã

†ãk

)
+
∑
k>1

Ωkã
†
kãk . (7.151)

Here, we have in the last step only absorbed a phase in the bosonic operators of both supersystem
and residual reservoir. This demonstrates that it completely suffices to consider λ > 0, i.e., its
phase does not contain any physics in case of a single terminal.

The Bogoliubov transform simply maps to a new set of bosonic annihilation and creation
operators. Mathematically, it can be written with a priori unknown coefficients ukk′ as

bk = uk1a+
∑
q>1

ukqaq , (7.152)

and similarly for the creation operators. Here, we have split the first mode (later-on interpreted as
reaction coordinate) from the others (the residual oscillators) also in notation, since the reaction
coordinate will be treated as part of the system. The fact that the transformed operators have to
obey bosonic commutation relations leads to the requirement

δkk′ = uk1u
∗
k′1 +

∑
q>1

ukqu
∗
k′q , (7.153)

i.e., the transformation needs to be unitary. However, in addition we demand that this trans-
formation maps the Hamiltonian into the simpler form of Eq. (7.151). This leads to additional
equations. In particular, the constraint that

∑
k(hkbk + h∗kb

†
k) = λa + λ∗a† can be fulfilled by the

equations

0 =
∑
k

ukqhk , ∀q > 1 ,

λ =
∑
k

uk1hk . (7.154)
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Finally, we have to fulfil the constraint
∑

k ωkb
†
kbk = Ωa†a+

∑
q>1(Hqaa

†
q+H∗q a

†aq)+
∑

q>1 Ωqa
†
qaq.

This yields the equations

Ω =
∑
k

ωk|uk1|2 ,

δqq′Ωq =
∑
k

ωku
∗
kqukq′ ∀q, q′ > 1 ,

Hq =
∑
k

ωkuk1u
∗
kq ∀q > 1 . (7.155)

However, since we do not demand specific values for λ, Ω, and Hq, the three equations do not
represent constraints but rather link the parameters of the transformed model with the original
ones.

The only constraints to be fulfilled are therefore

0 =
∑
k

ukqhk , ∀q > 1 ,

δqq′Ωq =
∑
k

ωku
∗
kqukq′ ∀q, q′ > 1 , (7.156)

where we have to demand that Ωq ≥ 0 to ensure for thermodynamic stability. We will argue
that such a solution will always exist. Arranging the elements of the original coupling and of the
unknown coefficients in vectors

|h〉 =
1√∑
k |hk|

2

 h∗1
...
h∗K

 , |uq〉 =

 u1q
...

uKq

 , (7.157)

we see that the first relation can be written as an orthogonality constraint of the form 〈h|uq〉 = 0
for q > 1. The second equation looks like an orthogonality relation between eigenvectors, except
that the additional orthogonality constraint has to be respected. We can therefore fulfil both
equations by defining the |uq〉 as the eigenvectors of a matrix

Heff |uq〉 = Ωq |uq〉 ,

Heff = (1− |h〉 〈h|)

 ω1

. . .

ωK

 (1− |h〉 〈h|) . (7.158)

This matrix is hermitian and has thus real eigenvalues. Furthermore, its eigenvalues are non-
negative, as it is obtained from a projection of a positive definite matrix. Of course, also the
unitarity of the transformation is then respected. Clearly, the first eigenvector with eigenvalue
Ω1 = 0 is |u1〉 = |h〉. Such transformations rather serve as proof-of-principle here, since one will
in practice rather be interested in the continuum limit, where the explicit numerical diagonalizion
becomes intractable.

However, even in the continuum limit we can determine the parameters of the supersystem
without explicit numerical diagonalization, i.e., solely from knowing the spectral density of the
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original model

|λ|2 =
∑
k

|hk|2 →
1

2π

∫
Γ(0)(ω)dω ,

Ω =
∑
k

ωk|uk1|2 =
∑
k

ωk
|hk|2∑
k′ |hk′ |

2 =

∑
k ωk|hk|

2

|λ|2
→

1
2π

∫
ωΓ(0)(ω)dω

1
2π

∫
Γ(0)(ω)dω

. (7.159)

We note that these two relations must generally hold for unitary transformations of the form
bk =

∑
k′ ukk′ak′ (tacitly identifying b1 = b). The first ist just a consequence of [b, b†] = 1, whereas

the second follows from inverting the transformation and comparing the reservoir Hamiltonian.
Also in case of fermions they hold correspondingly. It remains to relate the spectral density of the
transformed model with the original spectral density.

7.6.3 Mappings for continuous reservoirs

Initial mapping for bosonic reservoirs

The general starting point is the Hamiltonian

H = HS + S ⊗
∑
k

(
hkak + h∗ka

†
k

)
+
∑
k

ωka
†
kak , (7.160)

where HS is an arbitrary system Hamiltonian (containing e.g. interactions etc.), and S = S† is a
hermitian operator that acts exclusively in the Hilbert space of the system. In contrast, the ak are
bosonic annihilation operators annihilating mode k in the reservoir with energy ωk and emission
amplitude hk. The Heisenberg equations of motion tell us

Ȧ = i[HS, A] + i[S,A]⊗
∑
k

(
hkak + h∗ka

†
k

)
≡ iS1 + iS2 ⊗

∑
k

(
hkak + h∗ka

†
k

)
,

ȧk = −iωkak − ih∗kS . (7.161)

The equation for the reservoir creation operators can be obtained by hermitian conjugation. We
introduce the Fourier-transformed operators (this has technically the advantage that we need not
deal with initial conditions)

ak(z) =

∫
ak(t)e

+iztdt : =z > 0 , (7.162)

and similar for all system operators. Note however that we follow the convention to introduce the
same transformation for annihilation and creation operators, which means that in the following,
when transferring results from annihilation operators towards creation operators, For a product of
two operators we will then encounter a convolution∫

f(t)g(t)e+iztdt =
1

2π

∫
f(z′)g(z − z′)dz′ , (7.163)

which in the equations of motion then implies

izA(z) = iS1(z) + i
1

2π

∫
S2(z′)⊗

∑
k

(
hkak(z − z′) + h∗ka

†
k(z − z

′)
)
dz′ ,

izak(z) = −iωkak(z)− ih∗kS(z) . (7.164)
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Solving the second equation for ak(z) =
−h∗k
z+ωk

S(z), and similarly for the creation operator a†k(z) =
−hk
z+ωk

S(z) and inserting this in the first equation we get an equation valid for the system only

zA(z) = S1(z)− 1

2π

∫
S2(z′)

∑
k

(
|hk|2

z − z′ + ωk
+

|hk|2

z − z′ + ωk

)
S(z − z′)dz′

= S1(z)− 1

2π

∫
S2(z′)

1

π

∫
dω

(
Γ(0)(ω)

z − z′ + ω

)
S(z − z′)dz′

= S1(z)− 1

2π

∫
S2(z′)W (0)(z′ − z)S(z − z′)dz′ . (7.165)

In the last step, we have introduced the Cauchy-Hilbert transform of the spectral coupling density

W (n)(z) =
1

π

∫
Γ(n)(ω)

ω − z
dω . (7.166)

Here, the index denotes the particular spectral coupling density, i.e., in our case Γ(0)(ω) =
2π
∑

k |hk|
2δ(ω − ω0

k). The Cauchy-Hilbert transform can be inverted by performing a limit

lim
ε→0+

=W (n)(ω + iε) =
1

π
lim
ε→0+

∫
Γ(n)(ω′)ε

(ω′ − ω)2 + ε2
dω′ = Γ(n)(ω) . (7.167)

We will not solve the equation (7.165), not even knowing what the actual operators S1(z) and
S2(z) are in our specific case.

Instead, we use that we can use that with our unitary mapping our Hamiltonian can be written
as

H = HS + λS(b+ b†) + Ωb†b+
∑
k

(
H∗kbb

†
k +Hkb

†bk

)
+
∑
k

Ωkb
†
kbk . (7.168)

Here, HS and S are the same operators as before, but b now annihilates a boson on the supersystem
(composed now of system and collective or reaction coordinate) with new reaction coordinate
energy Ω and supersystem-internal coupling λ. In particular, since we include the reaction coor-
dinate dynamics into the system, one can treat the strong-coupling limit at the price of increasing
the system dimension (which is strictly-speaking infinite in case of bosons). Furthermore, the bk
denote the modes of the residual bath, with transformed emission and absorbtion amplitudes Hk

and renormalized energies Ωk. We again derive the equations of motion in the Heisenberg picture

Ȧ = i[HS, A] + iλ[S,A](b+ b†) ≡ iS1 + iS2(b+ b†) ,

ḃ = −iλS − iΩb− i
∑
k

Hkbk ,

ḃk = −iH∗kb− iΩkbk . (7.169)

We apply the same Fourier transform, yielding

izA(z) = iS1(z) +
i

2π

∫
S2(z′)λ

[
b(z − z′) + b†(z − z′)

]
dz′ ,

izb(z) = −iλS(z)− iΩb(z)− i
∑
k

Hkbk(z) ,

izbk(z) = −iH∗kb(z)− iΩkbk(z) . (7.170)
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We can solve the last equation

bk(z) =
−H∗k
z + Ωk

b(z) (7.171)

and insert it in the second

zb(z) = −λS(z)− Ωb(z) +
∑
k

|Hk|2

z + Ωk

b(z) , (7.172)

which yields the solution

b(z) =
−λ

z + Ω−
∑

k
|Hk|2
z+Ωk

S(z) . (7.173)

With this solution, we eventually reconsider the first equation

zA(z) = S1(z)− 1

2π

∫
S2(z′)2

 λ2

z − z′ + Ω−
∑

k
|Hk|2

z−z′+Ωk

S(z − z′)dz′

= S1(z)− 1

2π

∫
S2(z′)2

(
λ2

z − z′ + Ω− 1
2
W (1)(z′ − z)

)
S(z − z′)dz′ . (7.174)

Comparing Eq. (7.174) with Eq. (7.165), we conclude

2
λ2

Ω− (z′ − z)− 1
2
W (1)(z′ − z)

= W (0)(z′ − z) . (7.175)

We solve this for

W (1)(z) = 2Ω− 2z − 4
λ2

W (0)(z)
, (7.176)

and subsequently evaluate its imaginary part at z = ω + iε

Γ(1)(ω) = lim
ε→0+

=W (1)(ω + iε) = −4λ2 lim
ε→0+

= 1

W (0)(ω + iε)

= +4λ2 lim
ε→0+

=W (0)(ω + iε)

|W (0)(ω + iε)|2
= 4λ2 Γ(0)(ω)

|W (0)(ω)|2
. (7.177)

Therefore, to compute the spectral coupling density of the transformed Hamiltonian, we need to
compute the Cauchy-Fourier transform of the old spectral density

lim
ε→0+

∣∣W (n)(ω + iε)
∣∣2 = lim

ε→0+

∣∣∣∣ 1π
∫

Γ(n)(ω′)

ω′ − ω − iε
dω′
∣∣∣∣2

=

[
1

π
P
∫

Γ(n)(ω′)

ω′ − ω
dω′
]2

+
[
Γ(n)(ω)

]2
, (7.178)

where P denotes the Cauchy principal value. Altogether, we therefore obtain the mapping

Γ(1)(ω) =
4λ2Γ(0)(ω)[

1
π
P
∫ Γ(0)(ω′)

ω′−ω dω′
]2

+ [Γ(0)(ω)]
2
. (7.179)

The clear advantage is that we can now only use complex calculus to evaluate the next spectral
coupling density from an old one.
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Mapping for particle-conserving bosonic Hamiltonians

Let the mapping be given by

H = HS + a
∑
k

h∗ka
†
k + a†

∑
k

hkak +
∑
k

ωka
†
kak

= HS + λ(n)ab† + λ(n)a†b+ Ω(n)b†b+ b
∑
k

H∗kb
†
k + b†

∑
k

Hkbk +
∑
k

Ωkb
†
kbk . (7.180)

The Heisenberg equations become in the first representation

ȧ = i[HS, a]−
∑
k

hkak ≡ iS1 −
∑
k

hkak , ȧk = −ih∗ka− iωkak , (7.181)

which upon Fourier-transformation, solving for the reservoir-mode and re-insertion into the first
equation yields

za(z) = S1(z) +
1

2
W (n)(−z)a(z) . (7.182)

Similarly, the Heisenberg equations in the second representation read

ȧ = i[HS, a]− iλ(n)b ≡ iS1 − iλ(n)b , ḃ = −iλ(n)a− iΩ(n)b− i
∑
k

Hkbk ,

ḃk = −iH∗kb− iΩkbk . (7.183)

Upon Fourier-transforming, solving iteratively the last two equations and plugging the result into
the first, we arrive at

za(z) = S1(z) +

(
λ(n)

)2

z + Ω(n) − 1
2
W (n+1)(−z)

a(z) , (7.184)

and comparing with the equation we had before we can again conclude that

1

2
W (n)(−z) =

(
λ(n)

)2

z + Ω(n) − 1
2
W (n+1)(−z)

. (7.185)

This is precisely the same relation we had before, such that the recursion relations for the spectral
for the spectral densities

Γ(n)(ω) = 2π
∑
k

|hk|2δ(ω − ωk) , Γ(n+1)(ω) = 2π
∑
k

|Hk|2δ(ω − ωk) , (7.186)

and the renormalized coupling λn as well as the renormalized energy Ωn the following relations
hold

λ2
n =

1

2π

∫
Γ(n)(ω)dω , Ωn =

1

2πλ2

∫
ωΓ(n)(ω)dω ,

Γ(n+1)(ω) =
4λ2

nΓ(n)(ω)[
1
π
P
∫ Γ(n)(ω′)

ω′−ω dω′
]2

+ [Γ(n)(ω)]
2
. (7.187)
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The convergence properties of related recursion relations have been discussed in great detail [43].
The difference with the previous treatment is that the structure of the Hamiltonian (bosonic

tunneling) is similar before and after the transformation, we just need to redefine system and
reservoir. Therefore, it can be applied recursively. This way, we can understand Fig. 7.6 as the
sequential application of multiple Bogoliubov transformations. However, this would in general be
too tedious. Therefore, one would in practice prefer to truncate the resulting chain at some point,
using a perturbative approach such as e.g. based on the master equation.

Mapping for fermionic tunneling Hamiltonians

For fermions everything works just as for bosons, we just replace in typical notation hk → tk and
Hk → Tk, but the same recursion relations and mappings hold. This can be easily understood
as the equations of motions are for non-interacting fermions equivalent (up to a sign change in
the amplitudes) as for non-interacting bosons. Using fermionic reaction coordinates has, however
the clear advantage, that with an additional fermionic reaction coordinate, the dimension of the
supersystem Hilbert space just doubles, whereas for bosons it is multiplied by infinity.

General properties of the recursion relations

We summarize that the recursion relations are valid for quite general bosonic and fermionic models
that are linear in the bosonic and fermionic reservoir operators and which are mapped in to chains
for particle-number-conserving hopping Hamiltonians.

Def. 23 (Martinazzo recursion relations). The couplings, energies, and spectral coupling densities
transfer according to

(λ(n))2 =
1

2π

∫
Γ(n)(ω)dω , Ω(n) =

1

2π(λ(n))2

∫
ωΓ(n)(ω)dω ,

Γ(n+1)(ω) =
4λ2

nΓ(n)(ω)[
1
π
P
∫ Γ(n)(ω′)

ω′−ω dω′
]2

+ [Γ(n)(ω)]
2
. (7.188)

Table 7.1 provides some examples of spectral densities and their mappings. The functional
form of the mapping implies that a hard cutoff will reproduce itself, such that convergence of all
integrals is ensured. In particular, the last entry in Tab. 7.1 demonstrates that the limiting case
of a semicircle

Γ(∞)(ω) = δ

√
1−

(ω
δ
− ε

δ

)2

Θ(ω, ε− δ, ε+ δ) (7.189)

is a stationary point for mappings with a rigid cutoff. In contrast, the mapping suggested in
Ref. [43] maps bosonic chains to a sequence of x−x couplings, and the recursion relations are only
formally similar, such that also the stationary spectral density is different.

7.6.4 General Properties: Stationary state of the supersystem

In the strong-coupling limit, we will no longer expect the local Gibbs state e−βHS/ZS to be the
stationary state of the system. Rather, one will expect it to be given by the reduced density matrix



7.6. REACTION-COORDINATE TREATMENT 199

Γ(n)(ω) (λ(n))2 Ω(n) Γ(n+1)(ω)

Γ δ2

(ω−ε)2+δ2
Γδ
2

ε 2δ

Γ δ4

[(ω−ε)2+δ2]2
Γδ
4

ε δ(2δ)2

(ω−ε)2+(2δ)2

Γe−
(ω−ε)2

δ2
Γδ

2
√
π

ε 2δe
+

(ω−ε)2

δ2
√
π[1−erf2(iω−ε

δ )]
ΓΘ(ω, ε− δ, ε+ δ) Γδ

π
ε 4πδ

π2+4arctanh2( ε−ωδ )
Θ(ω, ε− δ, ε+ δ)

Γ
[
1−

(
ω
δ
− ε

δ

)2
]

Θ(ω, ε− δ, ε+ δ) 2
3

Γδ
π

ε 8δ
3π

1− (ω−ε)2

δ2

4(δ(ω−ε)−(ω+δ−ε)(ω−δ−ε)arctanh[ω−εδ ])
2

π2δ4
+
(

1− (ω−ε)2
δ2

)2

Γ
√

1−
(
ω
δ
− ε

δ

)2
Θ(ω, ε− δ, ε+ δ) Γδ

4
ε δ

√
1−

(
ω
δ
− ε

δ

)2
Θ(ω, ε− δ, ε+ δ)

Table 7.1: Selected mappings for spectral densities, using Θ(x, a, b) = Θ(x − a)Θ(b − x) and
erf(z) = 2√

π

∫ z
0
e−t

2
dt. As a rule of thumb, the width of the old density becomes the coupling

strength of the new density, and only a hard cutoff will survive recursive transformations.

of the total Gibbs state

ρ̄ ≈ TrB

{
e−β(HS+HB+HI)

Z

}
, (7.190)

which only when HI → 0 would coincide with the system-local Gibbs state. Since the reaction-
coordinate mappings allow to to to arbitrarily strong coupling as long as the coupling between
supersystem and residual reservoir is small, we can test whether the resulting stationary state in
the supersystem is consistent with these assumptions.

When we apply the master equation formalism to the supersystem

H ′S = HS +HRC +HS,RC , (7.191)

composed of system and reaction coordinate, we know that for a single reservoir, the stationary
state will approach the Gibbs state associated with the supersystem

ρ̄′S =
e−βH

′
S

TrS,RC

{
e−βH

′
S

} . (7.192)

We define a Hamiltonian of mean force

H∗ = − 1

β
ln

(
TrB

{
e−β(HS+HI+HB)

}
TrB {e−βHB}

)
. (7.193)

It can be seen as an effective Hamiltonian for the system in the strong coupling limit. In the
weak-coupling limit (HI → 0), we would get H∗ → HS. By construction, the Hamiltonian of mean
force obeys

e−βH
∗

=
TrB

{
e−β(HS+HI+HB)

}
TrB {e−βHB}

=
TrRC,B′

{
e−β(H′S+H′I+H′B)

}
TrRC,B′

{
e−β(HRC+H′I+H′B)

}
H′I→0
≈

TrRC

{
e−βH

′
S

}
TrRC {e−βHRC}

. (7.194)

This implies that the reduced steady state becomes

ρ̄S = TrRC {ρ̄′S} =
TrRC

{
e−βH

′
S

}
TrS,RC

{
e−βH

′
S

} ≈ eβH
∗
TrRC

{
e−βHRC

}
TrS,RC

{
e−βH

′
S

} =
eβH

∗

Tr {eβH∗}
. (7.195)
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7.6.5 Example: Single-Electron Transistor

According to the results of the previous section, the Hamiltonian for the SET

H = εd†d+
∑
ν

∑
k

(
tkνdc

†
kν + t∗kνckνd

†
)

+
∑
ν

∑
k

εkνc
†
kνckν , (7.196)

in addition characterized by a Lorentzian spectral coupling density

Γ(0)
ν (ω) = 2π

∑
k

|tkν |2δ(ω − εkν) =
Γνδ

2
ν

(ω − εν)2 + δ2
ν

(7.197)

can therefore be mapped to a triple-quantum dot that is coupled to two leads (we introduce a
separate reaction coordinate for each reservoir)

H = εLd
†
LdL + εd†d+ εRd

†
RdR +

√
ΓLδL

2

(
dd†L + dLd

†
)

+

√
ΓRδR

2

(
dd†R + dRd

†
)

+
∑
ν

∑
k

(
Tkνdνd

†
kν + T ∗kνdkνd

†
ν

)
+
∑
ν

∑
k

Ωkνd
†
kνdkν . (7.198)

This second Hamiltonian is parametrized by the transformed spectral density

Γ(1)
ν (ω) = 2π

∑
k

|Tkν |2δ(ω − Ωkν) = 2δν , (7.199)

compare Tab. 7.1.
We can now treat the triple quantum dot as a system and apply the master equation formalism,

provided that βνδν � 1. For a nonvanishing potential (or thermal) bias, we can compare the
current obtained from the master equation treatment with the energy current from the exact
solution [27] (compare also Sec. 7.1).

IM =

∞∫
−∞

GC(ω) [fL(ω)− fR(ω)]SC(ω)dω ,

IE =

∞∫
−∞

ω ·GC(ω) [fL(ω)− fR(ω)]SC(ω)dω , (7.200)

with the factors

GC(ω) =
Γ

(0)
L (ω)Γ

(0)
R (ω)

Γ(ω)
,

SC(ω) =
1

π

Γ(ω)/2

(Γ(ω)/2)2 + [ω − ε− Σ(ω)]2
, (7.201)

and where Γ(ω) = Γ
(0)
L (ω) + Γ

(0)
R (ω) and Σ(ω) = ΣL(ω) + ΣR(ω) and

Σν(ω) =
1

2π
P
∫ ∞
−∞

Γ
(0)
ν (ω′)

ω − ω′
dω′ =

Γνδν(ω − εν)
2 ((ω − εν)2 + δ2

ν)
(7.202)
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denotes a small correction to the system energy level (Lamb-shift).
The dependence of the energy current versus coupling strength is depicted in Fig. 7.7. For

weak coupling strengths, the current is approximately linear, which agrees well with the master
equation result. However, for intermediate coupling strengths the exact solution shows a turnover
and saturates at infinite coupling strength. We see that the Lindblad-type secular master equation
for the triple quantum dot fails spectactularly in the weak-coupling limit, whereas the secular
master equation for the single quantum dot fails in the intermediate and strong coupling limit.
Without the secular approximation, the Born-Markov master equation for the triple quantum dot
performs farely well (with and without including imaginary parts in the half-sided FTs of the
correlation functions). The failure of the secular approximation master equation for the triple
quantum dot can be understood as for weak coupling Γα → 0, the system Hamiltonian becomes
near degenerate for εL = εR = ε. Then, the secular approximation is invalid.

7.6.6 Example: Pure dephasing model

We consider as initial Hamiltonian the pure dephasing model

H =
ω

2
σz + σz

∑
k≥1

(hkbk + h∗kb
†
k) +

∑
k≥1

ωkb
†
kbk . (7.203)

We had derived the exact solution for the change in the reservoir energy before, compare Eq. (4.125)

∆E(t) =
∑
k

|hk|2

ωk
2[1− cos(ωkt)] . (7.204)

The total energy radiated into the reservoir can then be written as

∆E = lim
t→∞

1

π

∫
Γ(ω)

1− cos(ωt)

ω
dω =

1

π

∫
Γ(ω)

ω
dω . (7.205)

The transient energy current into the reservoir therefore becomes

IE =
d

dt
∆E(t) =

∑
k

|hk|22 sin(ωkt) =
1

π

∫
Γ(0)(ω) sin(ωt)dω . (7.206)

As long as the initial reservoir state is diagonal in the reservoir Hamiltonian, this does not de-
pend on its other characteristics (such as, e.g., temperature), and it describes a genuine quantum
contribution resulting from the initial energy content of the interaction.

Using a reaction coordinate, we can map the model into

H =
ω

2
σz + λσz(a+ a†) + Ωa†a

+a
∑
k

Hka
†
k + a†

∑
k

H∗Kak +
∑
k

Ωka
†
kak . (7.207)

From the good experience with a Lorentzian functions we also would like to consider a Lorentzian-
type density, but for bosons have the additional constraint that the density should rise at least
linearly near the origin. From subtracting the Lorentzian with an inverted frequency we arrive at
the parametrization

Γ(0)(ω) = 4Γ
δ2εω

((ω − ε)2 + δ2) ((ω + ε)2 + δ2)
, (7.208)
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which vanishes linearly at the origin, and ε and δ still approximately assume the role of a mean
and width, respectively.

The exact solution for the current then becomes

IE(t) = Γδe−δt sin(εt) . (7.209)

Similarly, the total radiated energy becomes

∆E =
Γδε

δ2 + ε2
. (7.210)

We obtain for the renormalized parameters of the supersystem

λ2 =
Γδ

π
arctan

( ε
δ

)
, Ω =

ε
2
π

arctan
(
ε
δ

) . (7.211)

For ε � δ, we can approximate arctan
(
ε
δ

)
→ π/2, and we recover relations very similar to

the previous case. The new spectral coupling density has to be calculated using the Martinazzo
recursion relation (7.188). For brevity, we do not state it explicitly here, but again it vanishes
linearly at Γ(1)(0) = 0, and its height is now roughly controlled by δ and its width by ε.

We can now apply a master equation treatment for the system plus reaction coodinate, and
compute the expectation value of the interaction energy

∆Ei(t) = −
〈
λσz(a+ a†)

〉
(7.212)

between original system and reaction coordinate. Since this part of the Hamiltonian corresponds
to the interaction Hamiltonian of the original model

λσz(a+ a†) = σz
∑
k≥1

(hkbk + h∗kb
†
k) , (7.213)

and the energy of the spin system does not change, it precisely corresponds to the energy radiated
into the reservoir. However, we have to take care that the initial state of the spin and of the boson
factorize

ρ′
0
S = ρ0

S ⊗ ρ0
RC . (7.214)

Furthermore, we have to fix the initial state of the reaction coordinate. In the regime where the
master equation treatment of the supersystem is applicable, a reasonable choice is

ρ′
0
S = ρ0

S ⊗
e−βΩa†a

TrRC

{
e−βΩa†a

} . (7.215)

Finally, simulation of a bosonic quantum system within a Fock space representation requires a
cutoff in the maximum number of bosonic quanta. Care should be taken that the bosonic cutoff is
large enough by checking convergence of the results. Then, the RC method approaches the exact
result pretty well. As sanity check, one can confirm that the solution does not depend on the initial
state of the spin and not on the actual value of the initial temperature of the reaction coordinate.

In particular, we see in Fig. 7.8 that the oscillation frequency and amplitude of the exact
solution is well reproduced by the RC method. We see that at short times the Lamb-shift is
completely negligible, but at large times, keeping it, does improve the quality of the solution to an
extent that it can hardly be distinguished from the exact result.
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Figure 7.7: Plot of the energy currents computed using the naive secular master equation approach
for the single dot (green), the exact solution (7.200) (red), the Born-Markov-Secular master equa-
tion for the triple quantum dot (black), and the Born-Markov master equation for the triple
quantum dot (dark and light blue). In the strong-coupling limit, all triple quantum dot methods
perform very well, where the naive master equation for the single dot fails completely. However,
the secular approximation also predicts finite currents at vanishing coupling, which is nonsense.
This results from the secular approximation, which becomes invalid in this regime. The Born-
Markov approach does not have this problem (but does not guarantee a strictly positive definite
density matrix or strictly consistent thermodynamics as it is not of Lindblad form). Finally, the
dashed curve displays the result when the imaginary part of the half-sided FT’s is just neglected.
Parameters ΓL = ΓR = Γ, δL = δR = 0.1, εL = εR = ε = 1.0, βL = βR = 1.0, µL = +1.0 = −µR.
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Figure 7.8: Plot of the time-dependent energy current entering the reservoir for the pure dephasing
model. The RC method captures the initial phase quite well. Parameters: Γ = 1, δ = 0.01, ε = 1,
β = 100, ω = 1, Ncut = 10 (Ncut = 15 yields identical results).



Chapter 8

Selected nonequilibrium phenomena

8.1 The quantum Ising model in a transverse field

The quantum Ising chain in a transverse field for N spins

HS = −g
N∑
i=1

σxi − J
N∑
i=1

σzi σ
z
i+1 , (8.1)

where g describes the coupling to an external magnetic field, J the inter-chain coupling to nearest
neighbors, and periodic boundary conditions are assumed σzN+1 ≡ σz1 is a paradigmatic model to
describe quantum-critical behaviour [44]. The model is analytically diagonalizable for finite N and
displays a second order quantum phase transition between a paramagnetic phase (for g > J) and
a ferromagnetic one (g < J) [45].

We can introduce a dimensionless phase parameter by fixing Ωs = J and Ω(1 − s) = g with
energy scale Ω

HS = −Ω(1− s)
N∑
i=1

σxi − Ωs
N∑
i=1

σzi σ
z
i+1 . (8.2)

The successive application of Jordan-Wigner, Fourier-, and Bogoliubov transform maps the system
Hamiltonian into

H′S =
∑
k

εk(γ
†
kγk − 1/2) , k = ±1/2,±3/2, . . . ,±(N − 1)/2 (8.3)

with fermionic annihilation operators γk that describe quasi-particles. Here, the quasi-momentum
k may assume half-integer values, and the single-particle energies – that correspond to excitation
energies of the full model – are defined by

εk = 2Ω

√
(1− s)2 + s2 − 2s(1− s) cos

(
2πk

N

)
. (8.4)

8.1.1 Exact Diagonalization of the closed system

The Jordan-Wigner transform (JWT)

σxn = 1− 2c†ncn , σzn = −(cn + c†n)
n−1∏
m=1

(
1− 2c†mcm

)
(8.5)
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maps the spin-1/2 Pauli matrices non-locally to fermionic operators cm. Inserting the JWT into
the Ising Hamiltonian, one has to treat the boundary term with special care

H = −g
N∑
n=1

(1− 2c†ncn)− J
N−1∑
n=1

(cn + c†n)(cn+1 + c†n+1)(1− 2c†ncn)

−J(cN + c†N)

[
N−1∏
n=1

(1− 2c†ncn)

]
(c1 + c†1)

= −g
N∑
n=1

(1− 2c†ncn)− J
N−1∑
n=1

(c†n − cn)(c†n+1 + cn+1)

+J(c†N − cN)(c†1 + c1)

[
N∏
n=1

(1− 2c†ncn)

]
, (8.6)

where we have extensively used the fermionic anticommutation relations. Introducing the projec-
tion operators on the subspaces with even (+) and odd (-) total number of fermion quasiparticles

P± ≡ 1

2

[
1±

N∏
m=1

(1− 2c†mcm)

]
, (8.7)

we may also write the Hamiltonian (8.6) H = (P+ +P−)H(P+ +P−). It is straightforward to see
that terms with different projectors and with n < N vanish

0 = P+(1− 2c†ncn)P− = P−(1− 2c†ncn)P+ ,

0 = P+(c†n − cn)(c†n+1 + cn+1)P− = P−(c†n − cn)(c†n+1 + cn+1)P+ . (8.8)

For the boundary terms one finds similarly

(P+ + P−)(c†N − cN)(c†1 + c1)

[
N∏
n=1

(1− 2c†ncn)

]
(P+ + P−)

= (P+ + P−)(c†N − cN)(c†1 + c1)(2P+ − 1)(P+ + P−)

= P+(c†N − cN)(c†1 + c1)P+ − P−(c†N − cN)(c†1 + c1)P− , (8.9)

such that we can finally write the Hamiltonian (8.6) as the sum of two non-interacting parts with
either an even or an odd total number of fermionic quasiparticles

H = P+H+P+ + P−H−P−

= P+

[
−g

N∑
n=1

(1− 2c†ncn)− J
N∑
n=1

(c†n − cn)(c†n+1 + cn+1)

]
P+

+P−
[
−g

N∑
n=1

(1− 2c†ncn)− J
N∑
n=1

(c†n − cn)(c†n+1 + cn+1)

]
P− . (8.10)

Note that this requires to define antiperiodic boundary conditions in the even (+) subspace c
(+)
N+1 ≡

−c(+)
1 and periodic boundary conditions in the odd (-) subspace c

(−)
N+1 ≡ +c

(−)
1 .
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Since the even subspace is relevant to our model, we further seek to diagonalize the Hamiltonian

H+ = −g
N∑
n=1

(1− 2c†ncn)− J
N∑
n=1

(c†n − cn)(c†n+1 + cn+1) (8.11)

with antiperiodic boundary conditions cN+1 = −c1. Translational invariance suggests to use the
discrete Fourier transform (DFT, preserving the anticommutation relations due to its unitarity by
construction)

cn =
e−iπ/4√
N

∑
k

c̃ke
+ikn 2π

N , (8.12)

which is a specific case of a Bogoliubov transformation. It is compatible with the antiperiodic
boundary conditions when k takes half-integer values

k ∈ {±1

2
,±3

2
,±5

2
, . . .} , where |k| ≤ N − 1

2
(8.13)

(Note that the number of quasiparticles in the even subspace is the same e.g. for N = 6 and
N = 7). The DFT maps the Hamiltonian into

H+ = −gN1 +
∑
k

{
2[g − J cos(k2π/N)]c̃†kc̃k + J sin(k2π/N)

[
c̃†kc̃
†
−k + c̃−kc̃k

]}
. (8.14)

Now, the observation that only positive and negative frequencies couple (conservation of one-
dimensional quasi-momentum), suggests to use the reduced Bogoliubov transform

c̃k = u+kγ+k + v∗−kγ
†
−k , (8.15)

which mixes positive and negative momenta and where the a priori unknown coefficients have
already been labeled suggestively (a more general ansatz would eventually of course yield the same
solution). Since the new operators γk should be fermionic, we obtain from the orthonormality
conditions

1 = |u+k|2 + |v−k|2 , 0 = u+kv
∗
+k + u−kv

∗
−k = (v∗+k, v

∗
−k)

(
u+k

u−k

)
. (8.16)

Demanding that the Bogoliubov transform eliminates all non-diagonal terms (of the form γ−kγ+k

etc.) yields (by combining positive and negative k) the equation

0 = 2

[
g − J cos

(
k

2π

N

)]
(u+kv−k − u−kv+k) + 2J sin

(
k

2π

N

)
(u−ku+k + v−kv+k)

= (v−k, u−k)

(
+2
[
g − J cos

(
k 2π
N

)]
+2J sin

(
k 2π
N

)
+2J sin

(
k 2π
N

)
−2
[
g − J cos

(
k 2π
N

)] )( u+k

v+k

)
≡ (v−k, u−k)M

(
u+k

v+k

)
. (8.17)

All equations can be fulfilled when we choose (u+k, v+k)
T as the normalized positive energy eigen-

state of the matrix M with eigenvalue

ε+k = +2
√
g2 + J2 − 2gJ cos(k2π/N) ≡ εk (8.18)
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and (v∗−k, u
∗
−k)

T = (−v∗+k,+u∗+k)T as its negative energy eigenstate with eigenvalue

ε−k = −2
√
g2 + J2 − 2gJ cos(k2π/N). To be more explicit, we have

uk =
g − J cos(k2π/N) +

√
g2 + J2 − 2gJ cos(k2π/N)√[

g − J cos(k2π/N) +
√
g2 + J2 − 2gJ cos(k2π/N)

]2

+ [J sin(k2π/N)]2
,

vk =
J sin(k2π/N)√[

g − J cos(k2π/N) +
√
g2 + J2 − 2gJ cos(k2π/N)

]2

+ [J sin(k2π/N)]2
. (8.19)

Using these solutions, we obtain when N is even

H+ =
∑
k

2

√
g2 + J2 − 2gJ cos

(
k

2π

N

)(
γ†kγk −

1

2

)
=
∑
k

εk

(
γ†kγk −

1

2

)
, (8.20)

which reproduces the single particle energies introduced before.

8.1.2 Equilibrium

We can write for the logarithm of the partition function

lnZ(β) = ln Tr
{
e−βH

}
= ln

∏
k

(
e+βεk/2 + e−βεk/2

)
=

∑
k

ln

[
2 cosh

(
βεk
2

)]
→ N

∫ +1/2

−1/2

ln

[
2 cosh

(
βε(κ)

2

)]
dκ , (8.21)

where we have used an asymptotic convergence to an integral for large N in the last step and

ε(κ) = 2Ω
√

(1− s)2 + s2 − 2s(1− s) cos (2πκ) (8.22)

becomes a continuous band.
Now, the mean energy can be expressed by the derivative of the partition function with respect

to the inverse temperature

〈E〉 =
Tr
{
He−βH

}
Tr {e−βH}

=
−∂βZ(β)

Z(β)
= −∂β lnZ(β)

= −N
∫ +1/2

−1/2

ε(κ)

2
tanh

(
βε(κ)

2

)
dκ , (8.23)

and we see that at zero temperature β → ∞ it simply becomes the ground state energy of the
Ising model

〈E〉
N
→ −

∫ +1/2

−1/2

ε(κ)

2
dκ . (8.24)
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This integral can be solved exactly and leads to a discontinuity in the second derivative of the
energy density with respect to the quantum-critical parameter.

The heat capacity is given by the derivative of the energy with respect to temperature

C =
∂ 〈E〉
∂T

=
∂ 〈E〉
∂β

∂β

∂T
= −β2∂ 〈E〉

∂β
= +β2∂

2 lnZ(s, β)

∂β2
. (8.25)

For our model, we can therefore get an expression for the specific heat capacity (per chain length)

C

N
=

∫ +1/2

−1/2

(
βε(κ)

2

)2

cosh2
(
βε(κ)

2

)dκ . (8.26)

We can plot the heat capacity versus temperature and we see that away from the critical point
(s 6= 1/2), it vanishes at low temperatures, i.e., injecting energy into the system immediately
increases the temperature. At the critical point however, the spectrum becomes gapless, and the
heat capacity is finite already at the smallest achievable temperatures. When we consider finite
temperatures, the heat capacity vanishes for low temperatures in the gapped phase but rises above
a certain critical temperature. This extends the zero-temperature phase diagram by a classical
phase on top of the quantum phase, see Fig. 8.1.
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Figure 8.1: Plot of the critical temperature versus the paramagnetic-ferromagnetic transition pa-
rameter s. Below the curve, the heat capacity vanishes, whereas it becomes finite above the curve.
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8.1.3 Non-Equilibrium

We can place the Ising model (8.1) in a nonequilibrium context by coupling it two two reservoirs,
labeled source (S) and drain (D) in the following, using the collective coupling

HI = Jx ⊗
∑
k

(
hkSbkS + h∗kSb

†
kS

)
+ Jx ⊗

∑
k

(
hkDbkD + h∗kDb

†
kD

)
. (8.27)

Since we have expressed the system Hamiltonian with non-interacting fermionic operators, it is
useful to do the same with the interaction. Obviously, the used transformations do not affect the
reservoir part, such that it suffices to transform Jx =

∑N
i=1 σ

x
i with the very same transformations

as before. Inserting the Jordan-Wigner-Transformation (8.5) yields

Jx = N1− 2
N∑
n=1

c†ncn . (8.28)

Furthermore, inserting the DFT (8.12) leads to

Jx = N1− 2
∑
k

c̃†kc̃k . (8.29)

Finally, inserting the Bogoliubov transformation (8.15), replacing k → −k in some terms and
exploiting that the coefficients (8.19) are real yields

Jx = N1− 2
∑
k

[
|uk|2γ†kγk + |vk|2γkγ†k + ukv−k

(
γ†+kγ

†
−k + γ−kγ+k

)]
, (8.30)

which by using the fermionic anticommutation relations is equivalent to

Jx = N1− 2
∑
k

[
|vk|21 +

(
|uk|2 − |vk|2

)
γ†kγk + ukv−k

(
γ†+kγ

†
−k + γ−kγ+k

)]
, (8.31)

where the coefficients are defined by vk ∝ s sin
(

2πk
N

)
and uk ∝

[
1− s− s cos

(
2πk
N

)
+ εk/(2Ω)

]
subject to the normalization |uk|2 + |vk|2 = 1.

It is immediately visible that this type of interaction does not trigger transitions between the
subspaces of even and odd quasiparticle number. We may therefore restrict our considerations
completely to the subspace of even quasiparticle number. That is, out of the 2n eigenstates which
we can label as

|n〉 =
∣∣n−(N−1)/2, . . . , n−1/2, n+1/2, . . . , n+(N−1)/2

〉
(8.32)

we can constrain ourselves to the ones that have an even total number of quasiparticles, of which
there are just 2N/2. Furthermore, we see that – if at all – the interaction always creates pairs
of quasi-particles with opposite quasi-momenta. Since the ground state has no quasi-particle
pairs at all, the relevant subspace containing the total ground state and within which transitions
are triggered by the interaction is given by the subspace of pairs of quasiparticles with opposite
quasimomenta, i.e., we can constrain ourselves to the states

|n〉 =
∣∣n+(N−1)/2, . . . , n+1/2, n+1/2, . . . , n+(N−1)/2

〉
, (8.33)
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of which there are only 2N/2 (we have supposed before that N is even). In this subspace, the basis
elements can be conveniently constructed from the ground state via

|n〉 =
∣∣∣n 1

2
, n 3

2
, . . . , nN−1

2

〉
≡
∏
k>0

(
γ†+kγ

†
−k

)nk
|0〉 , (8.34)

where nk ∈ {0, 1} denotes the occupation of a quasi-particle pair with momenta (+k,−k) such

that
(
γ†kγk + γ†−kγ−k

)
|n〉 = 2nk |n〉.

High-Dimensional Rate Equation.

Applying the standard master equation derivation in the relevant subspace, Eq. (8.34), (employing
Born, Markov, and secular approximations in the standard way we have discussed) yields a rate
equation

ρ̇n =
∑
m

(∑
α

γαnm

)
ρm (8.35)

for populations of the system energy eigenstates ρn ≡ 〈n| ρ |n〉, where the transition rates γαnm
due to reservoir α admit only creation or annihilation of single quasi-particle pairs, see vertical
lines in Fig. 8.2. Assuming thermal reservoir states, the transition rates (n 6= m) evaluate to
γαnm = Γα(∆mn) [1 + nα(∆mn)] |〈n| Jx |m〉|2 with energy differences ∆mn ≡ Em − En and
system energies En =

∑
k>0 εk(2nk − 1). The diagonal values γαnn follow from trace conservation.

Using Eq. (8.35) and the rates γαnm, we obtain an analytical result for the non-equilibrium
steady state solution. The stationary solution of the rate equation can even for non-equilibrium
(different temperature) configurations be obtained using basically two ingredients. First, we
note that the Fourier transforms of the bath correlation functions obey the usual Kubo-Martin-
Schwinger conditions γα(−ω) = e−βαωγα(+ω), which lead when the system is coupled to only one
bath (e.g. by setting ΓD(ω) = 0) to thermalization of the system with the temperature of the
remaining reservoir (e.g. β−1

S ). Formally, such a thermal state is characterized by the ratio of
diagonal elements to be

ρ̄n
ρ̄m

= e−β(En−Em) =
n(En − Em)

1 + n(En − Em)
, (8.36)

where n(ω) corresponds to the Bose distribution of the connected reservoir. For coupling to
multiple reservoirs we use that the occupations of the different reservoirs enter linearly and just
weighted by the different tunneling rates to motivate the ansatz (∆nm ≡ En − Em)

ρ̄n
ρ̄m

=
n̄(∆nm)

1 + n̄(∆nm)
, n̄(ω) ≡ ΓS(ω)nS(ω) + ΓD(ω)nD(ω)

ΓS(ω) + ΓD(ω)
. (8.37)

Indeed, one can easily prove for the rate equation

ρ̇n =
∑
m 6=n

∑
α

Γα(∆mn) [1 + nα(∆mn)] |〈n|Mx |m〉|2ρm

−

( ∑
m 6=n

∑
α

Γα(∆nm) [1 + nα(∆nm)] |〈m|Mx |n〉|2
)
ρn (8.38)
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Figure 8.2: Spectrum of the Ising model for N = 6. The thin dotted curves belong to the subspace
with an odd number of quasiparticles. Solid curves belong to the even subspace, and bold colored
curves correspond to the subspace formed by pairs of quasiparticles with opposite quasimomenta.
The vertical lines denote allowed transitions.

the validity of the stationary state by inserting

ρ̄m =
n̄(∆mn)

1 + n̄(∆mn)
ρ̄n =

∑
α Γα(∆mn)nα(∆mn)∑

α Γα(∆mn) [1 + nα(∆mn)]
ρ̄n (8.39)

and using that Γα(∆mn) = −Γα(∆nm) and nα(∆mn) = − [1 + nα(∆nm)]. By a sequence of
pair annihilations – compare Fig. 8.2 – it therefore follows that any stationary occupation may be
connected to the ground state occupation ρ̄0 via

ρ̄n = ρ̄0

∏
k>0

(
n̄(2εk)

1 + n̄(2εk)

)nk
. (8.40)

The latter is fixed by the normalization Tr {ρ̄n} = 1

1 = ρ̄0

1∑
n1/2=0

. . .
1∑

n(N−1)/2=0

∏
k>0

(
n̄(2εk)

1 + n̄(2εk)

)nk
= ρ̄0

∏
k>0

[
1∑

nk=0

(
n̄(2εk)

1 + n̄(2εk)

)nk]
= ρ̄0

∏
k>0

1 + 2n̄(2εk)

1 + n̄(2εk)
(8.41)

which eventually yields

ρ̄n =
∏
k>0

[n̄(2εk)]
nk [1 + n̄(2εk)]

1−nk

1 + 2n̄(2εk)
, (8.42)
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which is completely governed by an effective average bosonic occupation n̄(ω) ≡
∑
α Γα(ω)nα(ω)∑

α Γα(ω)
.

However, our system has more than one allowed transition frequency, which implies that the
stationary state (8.42) is non-thermal (i.e., cannot be described by a single effective temperature)
as soon as the reservoir temperatures are different [nS(ω) 6= nD(ω)]. We note that this non-
equilibrium steady state for an interacting model holds for weak system-reservoir coupling only
– opposed to results obtained for non-interacting models. Eq. (8.42) enables us to calculate the
stationary values of the energy, the magnetization, and the current both for finite chain lengths
and in the thermodynamic limit N →∞.

Energy

The stationary expectation value of the system energy then becomes〈
Ē
〉

= Tr {HSρ̄} =
∑
n
〈n|HS |n〉 ρn =

∑
k>0

εk
∑
n

(2nk − 1)ρn

=
∑
k>0

εk

1∑
nk=0

[n̄(2εk)]
nk [1 + n̄(2εk)]

1−nk

1 + 2n̄(2εk)
(2nk − 1) =

∑
k>0

−εk
1 + 2n̄(2εk)

, (8.43)

where we have used that
∑1

nk=0
n̄nk [1+n̄]1−nk

1+2n̄
= 1 holds for each k separately in the second line.

In the thermodynamic limit (N →∞) and noting that all relevant quantities actually depend on
κ = k/N , the sum is easily converted into an integral, and we arrive at

Ē =
∑
k>0

−εk
1 + 2n̄(2εk)

N→∞→ N

1/2∫
0

−ε(κ)

1 + 2n̄(2ε(κ))
dκ , (8.44)

where we have introduced the continuum of system energies ε(κ) ≡ ε(Nκ). At strictly zero tem-
perature, where n̄(2ε(κ)) = 0, the system settles to the ground state, and the energy density can
be expressed by a complete elliptic integral E/N → −2Ω

π
EE(4s(1 − s)), with a divergent second

derivative at scrit = 1/2. This divergence, which reflects the usual ground state QPT criticality of
the Ising chain, is also predictable from analyzing the analytic structure of the integrand in (8.44)
at zero temperature. For finite temperature and also in non-equilibrium setups where n̄(2ε(κ)) 6= 0,
the energy density remains analytic at the critical point.

Finally, we mention that at equilibrium, where n̄(ω) = n(ω), we can compare this with
Eq. (8.23)

〈E〉 = −N
∫ +1/2

−1/2

ε(κ)

2
tanh

(
βε(κ)

2

)
dκ = −N

∫ 1/2

0

ε(κ) tanh

(
βε(κ)

2

)
dκ

= −N
∫ 1/2

0

ε(κ)

1 + 2n̄(ε(κ))
dκ . (8.45)

Here, we have a difference in the denominator, which results from the fact that in Eq. (8.23) we
have used the full subspace of an even number of quasiparticles, whereas here we have considered
the subspace of pairs of quasiparticles with opposite quasimomentum. However, this discrepancy
does not lead to drastic changes in the phase diagram. Since we can – up to a factor – transform
the two expressions for the energy by a mere rescaling of Ω, the same phase diagram as depicted
in Fig. 8.1 applies.
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Magnetization

Similarly, we evaluate the diagonal matrix elements of the magnetization operator Jx

〈n| Jx |n〉 = N − 4
∑
k>0

|vk|2 − 4
∑
k>0

(
|uk|2 − |vk|2

)
nk

= N − 4
∑
k>0

[
|vk|2 +

(
1− 2|vk|2

)
nk
]
, (8.46)

which can be inserted in the stationary expectation value to yield

〈
J̄x
〉

=
∑
n
〈n| Jx |n〉 ρ̄n = N − 4

∑
k>0

|vk|2 − 4
∑
k>0

(
1− 2|vk|2

) 1∑
nk=0

nk
[n̄(2εk)]

nk [1 + n̄(2εk)]
1−nk

1 + 2n̄(2εk)

= N − 4
∑
k>0

|vk|2 − 4
∑
k>0

(
1− 2|vk|2

) n̄(2εk)

1 + 2n̄(2εk)
= N − 4

∑
k>0

|vk|2 + n̄(2εk)

1 + 2n̄(2εk)
. (8.47)

Finally, the sum over k can similarly be converted into an integral. Furthermore, by inserting the
coefficient (8.19) in the continuum representation and zero-temperature limit, we obtain for the
magnetization density

〈j̄x〉 =

〈
J̄x
〉

N
= 1− 4

1/2∫
0

v2(κ)dκ =
EE(4s(1− s)) + (1− 2s)EK(4s(1− s))

π(1− s)
, (8.48)

where EE(x) and EK(x) denote the complete elliptic integral and the complete elliptic integral of
the first kind, respectively.

Eventually, this results for large N in (v(κ) ≡ v(Nk))

〈Jx〉 → N

1− 4

1/2∫
0

|v(κ)|2 + n̄(2ε(κ))

1 + 2n̄(2ε(κ))
dκ

 . (8.49)

At zero temperature, the integral is similarly solved by normal elliptic integrals and those of the
first kind, which display a divergence in the first derivative of the magnetization density with
respect to s. However, at finite temperature the magnetization density remains analytic, which is
most evident in the trivial high-temperature case where n̄(2ε(κ))→∞.

Heat Current

It is not too surprising that neither mean energy nor magnetization exhibit no sign of critical
behaviour at s = 1/2, since at finite temperatures we are deeply within the classical phase. The
more surprising it is that the heat current is even deeply withing the classical phase sensitive to
the critical point.

This changes drastically, however, when we consider the heat current through the Ising chain
from one reservoir to the other. The stationary current of bosons emitted to the drain can for
example be obtained by inserting energy counting fields in the off-diagonal matrix elements of the
rate equation matrix, i.e., to perform in Eq. (8.38) the replacements

ΓD(∆mn) [1 + nD(∆mn)] → ΓD(∆mn) [1 + nD(∆mn)] e+i∆mnχ , (8.50)
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which automatically takes into account that ∆mn > 0 corresponds to emission into the drain
and ∆mn < 0 to absorption. Note that in the latter case one would use ΓD(−x) [1 + nD(−x)] =
ΓD(+x)nD(+x). This upgrades the rate equation by a counting field ρ̇ = L(χ)ρ, and the stationary
current can then be obtained with the stationary state by deriving the rate matrix with respect
to the counting field χ

I = (−i)Tr {L′(0)ρ̄} =
∑
n

∑
m 6=n

∆mnΓD(∆mn) [1 + nD(∆mn)] |〈n|Mx |m〉|2ρ̄m

=
∑

nm : ∆mn>0

∆mnΓD(∆mn) [1 + nD(∆mn)] |〈n|Mx |m〉|2ρ̄m

−
∑

nm : ∆nm>0

∆nmΓD(∆nm)nD(∆nm)|〈n|Mx |m〉|2ρ̄m

=
∑
m

∑
k>0

[
2εkmkΓD(2εk) [1 + nD(2εk)] (4ukvk)

2 ρ̄m − 2εk(1−mk)ΓD(2εk)nD(2εk) (4ukvk)
2 ρ̄m

]
=

∑
k>0

2εkΓD(2εk)(4ukvk)
2
∑
m

[mk [1 + nD(2εk)]− (1−mk)nD(2εk)] ρ̄m

=
∑
k>0

2εkΓD(2εk)(4ukvk)
2

1∑
mk=0

[mk [1 + nD(2εk)]− (1−mk)nD(2εk)]
[n̄(2εk)]

mk [1 + n̄(2εk)]
1−mk

1 + 2n̄(2εk)

=
∑
k>0

2εkΓD(2εk)(4ukvk)
2 n̄(2εk)− nD(2εk)

1 + 2n̄(2εk)

=
∑
k>0

2εk(4ukvk)
2 ΓS(2εk)ΓD(2εk) [nS(2εk)− nD(2εk)]

ΓS(2εk) [1 + 2nS(2εk)] + ΓD(2εk) [1 + 2nD(2εk)]
, (8.51)

which with evaluating the prefactor Ak ≡ 4ukvk from (8.19) becomes

I

N
= 32

1/2∫
0

s2Ω2 sin2(2πκ)

ε(κ)

ΓSΓD[nS(2ε(κ))− nD(2ε(κ))]

ΓS[1 + 2nS(2ε(κ))] + ΓD[1 + 2nD(2ε(κ))]
dκ ≡

1/2∫
0

j(s, κ)dκ .(8.52)

At the critical point and for small κ, the integrand behaves as

j(1/2, κ) =
8πΩ(βD − βS)ΓDΓS

ΓSβD + ΓDβS
κ+O{κ2} ,

∂

∂s
j(s, κ)

∣∣∣∣
s=1/2

=
32πΩ(βD − βS)ΓDΓS

ΓSβD + ΓDβS
κ+O{κ2} , (8.53)

which leads to divergence of the second derivative of the current at the critical point for all
temperature configurations.

Analysis of the transition rates (e.g., by introducing energy counting fields as discussed before)
yields our result for the current of net emitted bosons at the drain,

I =
∑
n,m

(Em − En)γDnmρ̄m (8.54)

=
∑
k>0

2εkA
2
kΓS(2εk)ΓD(2εk) [nS(2εk)− nD(2εk)]

ΓS(2εk) [1 + 2nS(2εk)] + ΓD(2εk) [1 + 2nD(2εk)]
,
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Figure 8.3: Renormalized energy current I and its second derivative w.r.t. s (inset) versus phase
parameter s for different chain lengths N = 4, 40, ∞ (dotted, dashed, and bold solid, respectively)
and for different source temperatures ΩβS = 0.1, 0.5, 1.0 (black/brown, red/orange, and dark/light
green, respectively). The dash-dotted purple curve denotes the analytically accessible case of
nD(ω)→ 0, nS(ω)→∞, and N →∞. Other parameters: ΩβD = 10, ΓS(εk) = ΓD(εk) = Γ.

where the second line follows after a straightforward calculation by inserting the stationary state
and explicitly evaluating the transition rates. Here, we have introduced Ak ≡ 4ukvk = 4sΩ

εk
sin
(

2πk
N

)
.

Evidently, the current is antisymmetric when S ↔ D, vanishes at equilibrium, and is positive
when the source temperature exceeds the drain temperature [which implies nS(ω) > nD(ω)].
Most important however, in the thermodynamic limit N → ∞ the current I directly reflects
the signatures of the ground state quantum phase transition of the Ising chain. Formally, this
correspondence is visible by the integral representation of I, which shows a divergence of its
second derivative with respect to the phase parameter s at all temperatures, see Fig. 8.3. The

second derivative of the integrand in the continuum version I/N ≡
∫ 1/2

0
j(s, κ)dκ of Eq. (8.54) will

at the critical point scrit = 1/2 for small κ diverge as

∂2j(s, κ)

∂s2

∣∣∣∣
s=1/2

≈ −32ΩΓSΓD(βD − βS)

π(ΓSβD + ΓDβS)κ
+O{κ} , (8.55)

whilst the integrand itself and its first derivative remain finite. Even for the extreme non-
equilibrium, infinite thermobias regime the heat current displays a divergence of the second deriva-
tive at scrit = 1/2, compare the dash-dotted curves in Fig. 8.3. This can even be seen in closed
analyitic form, since in the infinite thermobias regime (nS(2ε(κ)) → ∞ and nD(2ε(κ)) → 0),
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where (8.52) becomes

I

N
→ 16ΓD(sΩ)2

1/2∫
0

sin2(2πκ)

ε(κ)
dκ

=
4ΓDΩ

3π(1− s)2

[
(1− 2s(1− s))EE(4s(1− s))− (1− 2s)2EK(4s(1− s))

]
, (8.56)

where EE(x) represents the complete elliptic integral and EK(x) the complete elliptic integral of
the first kind.

8.2 Detection of charge fluctuations

Charge detectors are an important tool which we have used multiple times. Here, we will try to
understand their effect on the system better and to link their presence with an effective description
of quantum measurements. We will start from the point contact Hamiltonian

HQPC =
∑
k

εkLγ
†
kLγkL +

∑
k

εkRγ
†
kRγkR

+(1− δd†d)
∑
kk′

tkk′γkLγ
†
k′R + (1− δd†d)

∑
kk′

t∗kk′γk′Rγ
†
kL , (8.57)

where tkk′ denotes the tunneling amplitude from mode k of the left QPC lead to mode k′ of the right
QPC lead. The prefactor 1− δd†d reduces (0 ≤ δ ≤ 1) these amplitudes when a nearby charge (we
will specify it later) is present. For δ = 0, the QPC is insensitive to the nearby dot occupation, and
δ → 1 means that transport through the QPC is completely blocked. We label our system coupling
operators as A1 = A2 = A = 1 − δd†d and for our reservoir we have B1 =

∑
kk′ tkk′γkLγ

†
k′R = B†2.

Basically, we could have put these definitions into a single operator, but in Sec. 4.2.2, we have
already computed the correlation functions for such a QPC model, and we can now add a counting
field to the description counting positively all charges that enter the right QPC lead. Then, the
Fourier transforms of the reservoir correlation functions become (compare Eqns. (4.60) and (4.61))

γχ12(Ω) = e−iχt

∫
[1− fL(ω)]fR(ω − Ω)dω =

e−iχt(Ω− V )

1− e−β(Ω−V )
,

γχ21(Ω) = e+iχt

∫
fL(ω)fR(ω + Ω)dω =

e+iχt(Ω + V )

1− e−β(Ω+V )
, (8.58)

where t > 0 is some baseline transmission of the QPC, β its ambient temperature, and V the QPC
bias voltage. Furthermore, according to Eq. (4.112), the coarse-graining dissipator can be written
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as

ρ̇S = −i

 1

2iτ

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

C0
αβ(t1 − t2)sgn(t1 − t2)Aα(t1)Aβ(t2),ρS


+

1

τ

τ∫
0

dt1

τ∫
0

dt2
∑
αβ

[
Cχ
αβ(t1 − t2)Aβ(t2)ρSAα(t1)−

C0
αβ(t1 − t2)

2
{Aα(t1)Aβ(t2),ρS}

]

= −i

 1

2i2πτ

τ∫
0

dt1

τ∫
0

dt2

∫
dωσ0

αβ(ω)e−iω(t1−t2)Aα(t1)Aβ(t2),ρS


+

1

2πτ

τ∫
0

dt1

τ∫
0

dt2

∫
dωe−iω(t1−t2)

∑
αβ

[
γχαβ(ω)Aβ(t2)ρSAα(t1)−

γ0
αβ(ω)

2
{Aα(t1)Aβ(t2),ρS}

]
.

(8.59)

In particular, we will be neglecting the Lamb-shift σ0
αβ(ω) → 0 and will furthermore be inter-

ested in the infinite coarse-graining time limit τ → ∞, which effectively implements a secular
approximation.

8.2.1 Single quantum dot

When the QPC couples only to a single quantum dot (SQD)

HS = εd†d , (8.60)

we see that the interaction commutes with the dot Hamiltonian, such that to lowest order (the dot
may itself have further leads) no energy is exchanged between the QPC and the dot. For a single
dot, the interaction picture dynamics is trivial A(t) = 1− δd†d, and the coarse-graining dissipator
becomes for τ →∞

ρ̇S = −i

[
1

2i
(σ12(0) + σ21(0)) (1− δd†d)2,ρS

]
+

tV

eβV − 1

[
e−iχ(1− δd†d)ρS(1− δd†d)− 1

2

{
(1− δd†d)2,ρS

}]
+

tV

1− e−βV

[
e+iχ(1− δd†d)ρS(1− δd†d)− 1

2

{
(1− δd†d)2,ρS

}]
. (8.61)

As superpositions of states with different charge are not allowed for the SQD, the most general
density matrix of a single dot can be written as ρS(t) = P0(t) |0〉 〈0|+P1(t) |1〉 〈1|, which obey the
generalized master equation

d

dt

(
P0(t)
P1(t)

)
=
(
γ21(e+iχ − 1) + γ12(e−iχ − 1)

)( 1 0
0 (1− δ)2

)(
P0(t)
P1(t)

)
. (8.62)

At vanishing counting field, the effect of the QPC vanishes completely. Writing the probabilities
in a vector ρ = (P0, P1)T , we can write this as

ρ̇ = Ldt(χ)ρ , Ldt(χ) =
(
γ21(e+iχ − 1) + γ12(e−iχ − 1)

)( 1 0
0 (1− δ)2

)
. (8.63)
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If no further leads change the occupation of the SQD, the prefactor directly encodes the
cumulant-generating function of the QPC statistics, and we would get the two currents

IE = γ21 − γ12 = tV , IF = (1− δ)2 (γ21 − γ12) = (1− δ)2tV , (8.64)

depending on whether the dot is initially filled or empty, respectively. Similarly, we can compute
the zero-frequency noise from the second derivative with respect to the counting field

SE = γ21 + γ12 = tV coth

[
βV

2

]
, SF = (1− δ)2 (γ21 + γ12) = (1− δ)2tV coth

[
βV

2

]
. (8.65)

For large bias voltage, we can approximate this by coth
[
βV
2

]
→ 1, and the width of the current is

just controlled by the bias voltage as well, such that transport becomes Poissonian. In contrast,
for small bias voltage, the noise becomes SE → 2t/β and SF → (1− δ)2SE, which is just linear in
the temperature.

The Fano factor F = S/|I| is therefore just given by

FE = FF = coth

[
βV

2

]
, (8.66)

and it is not dependent on the dot occupation. In particular, it reaches 1 (Poissonian transport,
shot noise) when V →∞ and diverges as 2/(βV ) for small bias voltage. However, when now the
dot occupation is allowed to change in time, the dynamics becomes more interesting, see Fig. 8.4.
To use the point contact as a detector, we require that during the measurement time ∆t, the
system does not change due to other processes. Then, the joint system-detector density matrix at
time t+ ∆t is given by

σ(t+ ∆t) =
∑
nm

ρ(nm)(t+ ∆t)⊗ |n〉 〈m| , (8.67)

and by performing a projective measurement with the measurement operators Mn = |0〉 〈n| we see
that

Mnσ(t+ ∆t)M †
n = ρ(nn)(t+ ∆t)⊗ |0〉 〈0| . (8.68)

To infer how a projective measurement of the detector charges affects the system density matrix,
we consider its n-resolved version

ρ(n)(t+ ∆t) =
1

2π

∫ +π

−π
eL(χ)∆te−inχdχρ(t) = Kn(∆t)ρ(t) . (8.69)

When the bias voltage is large, transport becomes unidirectional, and we can simplify

Ldt(χ)→ γ21(e+iχ − 1)

(
1 0
0 (1− δ)2

)
, (8.70)

which enables us to compute all integrals explicitly

ρ(n)(t+ ∆t) =

(
γn21∆tn

n!
e−γ21∆t 0

0
(1−δ)2nγn21∆tn

n!
e−(1−δ)2γ21∆t

)
ρ(t) = Kn(∆t)ρ(t) . (8.71)
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Figure 8.4: Left: Simulated QPC current – adapted from Fig. 4.6 – when the dot is allowed to
experience slow occupation changes. Solid lines and shaded regions correspond to mean current
IE/F and noise

√
SE/F , respectively. To use the device as a detector discriminating empty and

filled dot, a discrimination threshold (orange) needs to be chosen suitably. Right: Sampling of
the trajectory on the left into a histogram (light color). The black curve would result for infinite
sampling. By collecting all measurement outcomes above the threshold into the outcome empty
(E) and all measurement outcomes below the threshold as corresponding to the outcome filled (F),
one automatically implements a weak measurement on the system (allowing e.g. for the possibility
of errors). Parameters as in Fig. 4.6.

These are just two Poissonian distributions moving at different pace: A fast one with cumulants
γ21∆t for the empty dot and a slow one with cumulants (1 − δ)2γ21∆t. The propagator Kn(∆t)
describes the effective action of measurement and interaction with the measurement device during
∆t. Due to the normalization of the Poissonian distributions, we have

∑
nKn = 1, such that upon

neglecting all measurement results, the measurement on the SQD has no effect. For large ∆t, we
can define a reasonable threshold such that (1 − δ)2γ21∆t < nth < γ21∆t. We can calculate it
analytically by solving for the n where Poissonian distributions are identical

(1− δ)(2n)(γ21∆t)n

n!
e−(1−δ)2γ21∆t =

(γ21∆t)n

n!
e−γ21∆t , (8.72)

which eventually yields

nth =
−δ(1− δ/2)γ∆t

ln(1− δ)
. (8.73)

Now, by absorbing all measurement outcomes below the threshold into the outcome of a filled dot
and the outcomes above the threshold into the outcome of an empty dot we get two measurement
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superoperators, which have a simple parametrization

KE =
∑
n≥nth

Kn(∆t) =

(
1− P 0

err 0
0 P 1

err

)
, KF =

∑
n<nth

Kn(∆t) =

(
P 0

err 0
0 1− P 1

err

)
. (8.74)

For suitably chosen nth, these indeed approach projectors onto the empty or the filled state as for
γ∆t→∞ we have Perr → 0.

8.2.2 Double quantum dot:Least-invasive measurement

Now, we consider a double quantum dot (DQD)

HS = ε(d†LdL + d†RdR) + T (dLd
†
R + dRd

†
L) + Ud†LdLd

†
RdR , (8.75)

with symmetric on-site energies ε, Coulomb interaction U , and tunneling amplitude T (general-
izations are of course possible). We can immediately calculate the eigenvalues and eigenvectors of
the system

|v0〉 = |00〉 , E0 = 0 ,∣∣v−1 〉 =
1√
2

[|01〉 − |10〉] , E− = ε− T ,∣∣v+
1

〉
=

1√
2

[|01〉+ |10〉] , E− = ε+ T ,

|v2〉 = |11〉 , E2 = 2ε+ U . (8.76)

If we only measure the left site occupation with the QPC (measuring on the right site is of
course also possible), the system coupling operator in the Schrödinger picture becomes A1 = A2 =
1− δd†LdL. However, in contrast to the SQD, the transformation into the interaction picture is less
trivial

A(t) = 1− δe+iHStd†LdLe
−iHSt

= 1− δ cos2(Tt)d†LdL − δ sin2(Tt)d†RdR − δ sin(Tt) cos(Tt)i(dLd
†
R − dRd

†
L)

1− δ1

4

[
e+i2Tt − e−i2Tt

]
(dLd

†
R − dRd

†
L)

= 1− δ
[

1

4
d†LdL −

1

4
d†RdR +

1

4
(dLd

†
R − dRd

†
L)

]
e+2iTt

−δ
[

1

4
d†LdL −

1

4
d†RdR −

1

4
(dLd

†
R − dRd

†
L)

]
e−2iTt

−δ
[

1

2
d†LdL +

1

2
d†RdR

]
= A+e

+2iTt + A−e
−2iTt + A0 , (8.77)

where we note that it does only depend on the internal DQD tunneling amplitude T . We can
insert this in the coarse-graining dissipator, which under neglect of the Lamb-shift σαβ(ω) → 0
and in the unidirectional QPC transport limit γ12(ω)→ 0 becomes

ρ̇S =
1

2πτ

τ∫
0

dt1dt2

∫
dωe−iω(t1−t2)γ21(ω)

[
e+iχA(t2)ρSA(t1)− 1

2
{A(t1)A(t2),ρS}

]
.(8.78)
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Out of the many contributions that arise when inserting the actual time-dependence of the system
operator, we only keep those that survive in the limit τ →∞, yielding

ρ̇S = γ21(+2T )

[
e+iχA−ρSA+ −

1

2
{A+A−,ρS}

]
+ γ21(−2T )

[
e+iχA+ρSA− −

1

2
{A−A+,ρS}

]
+γ21(0)

[
e+iχA0ρSA0 −

1

2
{A0A0,ρS}

]
. (8.79)

This dissipator looks quite different from the SQD dissipator. Phenomenologically, it can move
charges between left and right dot and thereby change the charge configuration just by the physical
back-action of the measurement. It induces dephasing in the energy eigenbasis of the system
but also acts dissipatively, since it can exchange energy with the system, compare Fig. 8.5. The

Figure 8.5: Sketch of the energy levels of
the DQD. Tunnel-couplings to further leads
from left and right dots may induce the dot-
ted transitions, whereas the coupling to the
QPC may only induce transition between
the singly-charged states (solid blue) with
energy difference ∆E = 2T .

simplest case arises when we consider QPC transmissions that would not allow for energy exchange,
which could e.g. be achieved by choosing a narrow transmission function for the QPC, such that
γ21(+2T ) = γ21(−2T ) = 0. By doing so, we effectively forbid the detector to exchange energy with
the system, as can be seen by realizing that [HS, A0] = 0. Then, the dissipator further simplifies

ρ̇S = +γ21(0)

[
e+iχA0ρSA0 −

1

2
{A0A0,ρS}

]
=
(
e+iχJ + L0

)
ρS , (8.80)

Evaluating this in the energy eigenbasis, this yields with A0 = 1− δ/2d†LdL− δ/2d
†
RdR the coupled

equations (we abbreviate γ = γ21(0))

ρ̇00 = γ(e+iχ − 1)ρ00 ,

ρ̇−− = γ(1− δ/2)2(e+iχ − 1)ρ−− ,

ρ̇++ = γ(1− δ/2)2(e+iχ − 1)ρ++ ,

ρ̇22 = γ(1− δ)2(e+iχ − 1)ρ22 ,

ρ̇−+ = γ(1− δ/2)2(e+iχ − 1)ρ−+ ,

ρ̇+− = γ(1− δ/2)2(e+iχ − 1)ρ+− . (8.81)
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This means that the measurement damps the coherences in the energy eigenbasis – but leaves
the coherences in the local (site-) basis. Without counting (χ → 0), there would be no effect of
the measurement, not even dephasing. With counting, we have an additional dephasing in the
energy eigenbasis due to the measurement. In this limit, the QPC makes no difference between an
electron situated on the left or right dot, since it couples to the hybridized states. Consequently,
in its cumulant-generating function we only see three different currents: I0 = γ for the empty
DQD, I1 = γ(1−δ/2)2 for the singly-charged DQD (coherences also contribute to this sector), and
I2 = γ(1 − δ)2 for the doubly charged DQD. When the DQD is in addition coupled to electronic
leads that lead to slow occupation changes, the allowed coherences ρ−+ and ρ+− will be damped
away, and the QPC will only switch between the three allowed current values, not at all resolving
the location of the electron in the singly-charged sector. The switching between these currents
is dictated by the rates which we have previously calculated for the DQD coupled to two leads,
compare Eq. (3.50), such that the total Liouvillian can be written as

L(χ, ξ, χ) = LDQD(χ, ξ) + Ldt(χ) , (8.82)

where LDQD(χ, ξ) denotes the DQD Liouvillian with counting fields describing the matter and
energy transfers to left and right DQD leads, and where Ldt(χ) is defined by Eq. (8.81). The
fact that the measurement is hardly invasive is also exemplified by the fact that the fluctuation
theorem for the DQD, exemplified by an existing symmetry of the form, compare Eq. (4.140),

LTDQD(−χ− iA,−ξ − iB) = LDQD(χ, ξ) , A = (−µLβL,−µRβR) , B = (βL, βR) , (8.83)

is not changed by the presence of the detector

LT (−χ− iA,−ξ − iB, χ) = L(χ, ξ, χ) , (8.84)

since the counting field of the latter only occurs on the diagonal. To interpret the outcome of the
detector, we consider Fig. 8.6.
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Figure 8.6: Left: Simulated QPC current when the DQD is allowed to experience slow occupation
changes. Solid lines and shaded regions correspond to mean current and noise, respectively. The
yellow curve depicts the actual state of the system, ordered from top to bottom values as |v0〉,
|v−〉, |v+〉, and |v2〉, respectively. Right: Corresponding histogram for infinitely long sampling
of the trajectory – calculated by computing the weighted average (for the chosen parameters we
have P0 = P− = P+ = P2 = 1/4) of Poissonian distributions for the respective QPC currents. In
contrast to Fig. 8.4, there are now three QPC currents observed, and two thresholds can be defined.
By collecting all measurement outcomes above the upper threshold into the outcome empty (E)
and all measurement outcomes below the lower threshold as corresponding to the outcome filled
(F), we can implement the measurement superoperators as before. However, in addition there is
now a third outcome (inconclusive). When measuring the medium current, the probability for the
left dot to be occupied or empty is 1/2. Other parameters as in Fig. 4.6.

There, one can observe three currents, where the lowest one corresponds to a doubly filled
DQD, and the highest one to an empty DQD. The intermediate current corresponds to a singly-
charged DQD, where however due to the high symmetry we cannot resolve the location of the
charge. Therefore, upon measuring this intermediate current, the probability to find the monitored
empty or filled is just one half, respectively. This measurement outcome should therefore be
termed inconclusive. The Liouvillian superoperators obey due to our special choice of operators
[J ,L0] = 0. In this case, we can compute the effective measurement propagator exactly

Kn(∆t) =
1

2π

∫ +π

−π
ee

+iχJ∆t+L0∆t−inχdχ =
J n∆tn

n!
eL0∆t , (8.85)

and by defining the thresholds n1 < n2, we can define the measurement superoperators in the same
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way as we did before

KE =
∑
n≥n2

Kn(∆t) , K? =
∑

n1<n<n2

Kn(∆t) , KF =
∑
n≤n1

Kn(∆t) . (8.86)

In contrast to the single quantum dot however, the measurement – when performed on a singly-
charged state – does not resolve the site of the electron. Furthermore, not considering the counting
statistics of the QPC at all (χ→ 0), we see that the associated Liouvillian vanishes and therefore
we have

KE +K? +KF = 1 , (8.87)

a consequence of our simplifications.
Note that the equations would be more complicated if we allowed the QPC to exchange energy

with the DQD system (e.g. finite γ21(±2T ), such that e.g. the blue transition in Fig. 8.5 would
be allowed) or of we would make the DQD more asymmetric εL 6= εR. Then also the original
fluctuation theorem would be modified, and depending on the system configuration one may also
observe four different currents instead of three, allowing for the possibility to locate the electron.

8.2.3 Triple quantum dot:Least invasive measurement

Now, we consider a serial double quantum dot (TQD), which for simplicity we choose highly
symmetric and in addition without Coulomb interaction

HS = ε(d†LdL + d†CdC + d†RdR) + TL(dLd
†
C + dCd

†
L) + TR(dRd

†
C + dCd

†
R) . (8.88)

The spectrum of the TQD can in this simple case also be obtained analytically

|v0〉 = |000〉 , E0 = 0 ,∣∣v−1 〉 =
1√

2 + 2
T 2
R

T 2
L

|100〉 − 1√
2
|010〉+

1√
2 + 2

T 2
L

T 2
R

|001〉 , E−1 = ε−
√
T 2
L + T 2

R ,

∣∣v0
1

〉
= −

√
T 2
R

T 2
L + T 2

R

|100〉+
1√

1 +
T 2
R

T 2
L

|001〉 , E0
1 = ε ,

∣∣v+
1

〉
=

1√
2 + 2

T 2
R

T 2
L

|100〉+
1√
2
|010〉+

1√
2 + 2

T 2
L

T 2
R

|001〉 , E+
1 = ε+

√
T 2
L + T 2

R ,

∣∣v−2 〉 =
1√

2 + 2
T 2
L

T 2
R

|110〉 − 1√
2
|101〉+

1√
2 + 2

T 2
R

T 2
L

|011〉 , E−2 = 2ε−
√
T 2
L + T 2

R ,

∣∣v0
2

〉
= −

√
T 2
L

T 2
L + T 2

R

|110〉+
1√

1 +
T 2
L

T 2
R

|011〉 , E0
2 = 2ε ,

∣∣v+
2

〉
=

1√
2 + 2

T 2
L

T 2
R

|110〉+
1√
2
|101〉+

1√
2 + 2

T 2
R

T 2
L

|011〉 , E+
2 = 2ε+

√
T 2
L + T 2

R ,

|v3〉 = |111〉 , E3 = 3ε . (8.89)
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We see that the splitting between states of equal charge that have a non-vanishing matrix element
with the operator d†CdC is ∆E = 2

√
T 2
L + T 2

R.

When the point contact measures the central dot, i.e., A1 = A2 = 1−δd†CdC , the transformation
into the interaction picture becomes

A(t) = 1− δe+iHStd†CdCe
−iHSt

= 1− δ T 2
R

T 2
L + T 2

R

sin2(t
√
T 2
L + T 2

R)d†RdR − δ
T 2
L

T 2
L + T 2

R

sin2(t
√
T 2
L + T 2

R)d†LdL

−δ cos2(t
√
T 2
L + T 2

R)d†CdC + δ
TLTR
T 2
L + T 2

R

sin2(t
√
T 2
L + T 2

R)(dLd
†
R + dRd

†
L)

+δ
iTL√
T 2
L + T 2

R

sin(t
√
T 2
L + T 2

R) cos(t
√
T 2
L + T 2

R)(dLd
†
C − dCd

†
L)

−δ iTR√
T 2
L + T 2

R

sin(t
√
T 2
L + T 2

R) cos(t
√
T 2
L + T 2

R)(dCd
†
R − dRd

†
C)

= A−e
−2it
√
T 2
L+T 2

R + A0 + A+e
+2it
√
T 2
L+T 2

R . (8.90)

Here, we have specifically

A0 = 1− δ T 2
R

2(T 2
L + T 2

R)
d†RdR − δ

T 2
L

2(T 2
L + T 2

R)
d†LdL − δ

1

2
d†CdC + δ

TLTR
2(T 2

L + T 2
R)

(dLd
†
R + dRd

†
L) ,

A− = +δ
T 2
R

4(T 2
L + T 2

R)
d†RdR + δ
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2(T 2
L + T 2
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4
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TLTR
4(T 2

L + T 2
R)

(dLd
†
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†
L)
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√
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†
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†
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†
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†
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R)
d†LdL − δ

1

4
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L + T 2
R)

(dLd
†
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†
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+δ
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4
√
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(dLd
†
C − dCd

†
L)− δ TR

4
√
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R

(dCd
†
R − dRd

†
C) . (8.91)

The dissipator then becomes in the unidirectional transport limit (under neglect of Lamb-shift and
taking τ →∞)

ρ̇S = γ21(+2
√
T 2
L + T 2

R)

[
e+iχA−ρSA+ −

1

2
{A+A−,ρS}

]
+γ21(−2

√
T 2
L + T 2

R)

[
e+iχA+ρSA− −

1

2
{A−A+,ρS}

]
+γ21(0)

[
e+iχA0ρSA0 −

1

2
{A0A0,ρS}

]
. (8.92)

The presence of the detector may now induce transitions between eigenstates of the same
charge, Fig. 8.7.
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Figure 8.7: Sketch of the energy levels of the TQD. Tunnel-
couplings to further leads from left and right dots may induce
the dotted transitions, whereas the coupling to the QPC may
only induce transition between the singly-charged states (solid
blue) with energy difference ∆E = 2

√
T 2
L + T 2

R.

However, to obtain the least invasive detector we consider a limit where the detector does not
inject energy, by considering the limit γ21(±2

√
T 2
L + T 2

R)→ 0, i.e.,

ρ̇S = γ21(0)

[
e+iχA0ρSA0 −

1

2
{A0A0,ρS}

]
. (8.93)

That in this case the detector does not inject energy is also exemplified by the relation [HS, A0] = 0.
However, now even in absence of counting ξ → 0, the effect of the detector is non-trivial. In contrast
to the DQD, the dissipator L(0) does not vanish. This is essentially due to the fact that the system
energy eigenstates with a different occupation of the central dot have different energies, compare
|v0

1〉 with
∣∣v±1 〉 and |v0

2〉 with
∣∣v±2 〉.

By sandwiching the dissipator, we get the following equations for the diagonal entries (for
simplicity, we only state these as we assume that the coherences are damped away in the long-
term limit by additional leads attached to the TQD left and right)

ρ̇0 = γ(e+iχ − 1)ρ0 ,

ρ̇10 = γ(e+iχ − 1)ρ10 ,

ρ̇1− = γ(1− δ/2)2(e+iχ − 1)ρ1− ,

ρ̇1+ = γ(1− δ/2)2(e+iχ − 1)ρ1+ ,

ρ̇2− = γ(1− δ/2)2(e+iχ − 1)ρ2− ,

ρ̇2+ = γ(1− δ/2)2(e+iχ − 1)ρ2+ ,

ρ̇20 = γ(1− δ)2(e+iχ − 1)ρ20 ,

ρ̇3 = γ(1− δ)2(e+iχ − 1)ρ3 . (8.94)

The equations for the 12 allowed coherences are similar with one exception (not shown): As χ→ 0,
the QPC has a non-vanishing effect on some of the coherences. As with the DQD, we can identify
three currents: IE = γ, when the central dot is empty with certainty, I1 = γ(1 − δ/2), when the
central dot is empty with probability 1/2, and IF = γ(1− δ)2, when the central dot is filled with
certainty. We can readily set up the BMS rate equation in the energy eigenbasis of the TQD

ρ̇aa =
∑
b

γab,abρbb −
∑
b

γba,baρaa , γab =
∑
αβ

γαβ(Eb − Ea) 〈a|Aβ |b〉 〈a|A†α |b〉
∗ , (8.95)
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which for brevity we do not show explicitly here. Fig. 8.7 may serve as a guidance here, for
example, the rate to relax from |v0

1〉 to |v0〉 is given by

R0,10 = ΓL[1− fL(ε)]
T 2
R

T 2
L + T 2

R

+ ΓR[1− fR(ε)]
1

1 +
T 2
R

T 2
L

. (8.96)

We can set up the full master equation as before, and, as the QPC counting field only enters on
the diagonal, the same arguments as before apply, such that the TQD fluctuation theorem is not
modified in this limit. In a similar fashion as for the DQD, we can also generate trajectories for the
QPC current. The result (not shown) looks just as the curve with symbols in Fig. 8.6, and again
the possibility of an inconclusive measurement result occurs. However, even when one measures
e.g. a high current with sufficient confidence, one is not sure whether the TQD is actually in
the state |v0〉 or in the state |v0

1〉. This limitation of measurement is something fundamental and
related to the uncertainty relation.

From the results of the last two sections, we see that a minimally invasive detector (leading
only to dephasing in the system energy eigenbasis) does not completely fulfil the purpose for which
it was constructed: It measures populations of energy eigenstates instead of populations of sites,
which need not always coincide and therefore induces an inconclusive outcome. Below, we will
discuss a variant of the detector that measures the local occupation.

8.2.4 Strongly-coupled QPC

Suppose that we have as before a system-QPC interaction of the form

HI = (1− δd†d)

[∑
kk′

tkk′γkLγ
†
k′R + h.c.

]
, (8.97)

which is however strong in comparison to the system Hamiltonian. Then, it is more advisable to
go to the interaction picture only with respect to the reservoir Hamiltonian, thereby treating HI

and HS on equal footing. Essentially, this just means that we add the commutator with the system
Hamiltonian in the dissipator and neglect the time-dependence of the system coupling operators in
the derivation of the master equation, effectively implementing the so-called singular coupling
limit [1]. Then, the dissipator for any system (SQD, DQD, TQD, . . . ) looks very similar to the
dissipator for the single quantum dot (8.61), except that it is already in the Schrödinger picture

ρ̇S = −i [HS, ρS]− i

[
1

2i
(σ12(0) + σ21(0)) (1− δd†d)2, ρS

]
+

tV

eβV − 1

[
e−iχ(1− δd†d)ρS(1− δd†d)− 1

2

{
(1− δd†d)2, ρS

}]
+

tV

1− e−βV

[
e+iχ(1− δd†d)ρS(1− δd†d)− 1

2

{
(1− δd†d)2, ρS

}]
. (8.98)

Neglecting the Lamb-shift and considering the unidirectional QPC transport limit, it assumes the
form

Ldt(χ)ρS = γ

[
e+iχ(1− δd†d)ρS(1− δd†d)− 1

2

{
(1− δd†d)2, ρS

}]
= e+iχJ ρ− J0ρ . (8.99)
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We see that by averaging over all particle measurement outcomes (χ → 0), we can write the
dissipator as

Ldt(0)ρS = −γ δ
2

2

[
dd†ρd†d+ d†dρdd†

]
. (8.100)

This just damps the coherences in the localized basis.

When the QPC is coupled to the central dot of a TQD that is in turn coupled to two leads as
before, we can always represent the most general density matrix in the localized basis of the TQD
as

ρ =



ρ000,000

ρ100,100 ρ100,010 ρ100,001

ρ010,100 ρ010,010 ρ010,001

ρ001,100 ρ001,010 ρ001,001

ρ110,110 ρ110,101 ρ110,011

ρ101,110 ρ101,101 ρ101,011

ρ011,110 ρ011,101 ρ011,011

ρ111,111


. (8.101)

Here, the coherences shown in red will be damped away when the dissipator is applied sufficiently
often or strongly. However, the deleted coherences are very vital for transport: To lowest order,
it is not possible for an electron to travel from the left dot to the right (e.g. from |100〉 to |001〉)
and vice versa without populating these coherences shown in red. Therefore, when the central
dot is monitored sufficiently often/strongly, the transport through it is completely blocked – a
manifestation of the quantum Zeno effect.

Since for this dissipator we have [J ,J0] = 0, we can calculate the quantities for detection
analytically

Kn(∆t) =
1

2π

∫ +π

−π
eLdt(χ)∆t−inχdχ =

J n∆tn

n!
e−J0∆t . (8.102)

In particular, we use the identity

(1− δd†d)n =
[
dd† + (1− δ)d†d

]n
= dd† + (1− δ)nd†d . (8.103)
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to compute

J nρ = γn
[
dd† + (1− δ)nd†d

]
ρ
[
dd† + (1− δ)nd†d

]
,

e−J0∆tρ =
∞∑
n=0

(−1)nγn∆tn

2nn!

[
1− δd†d

]2n
ρ
∞∑
m=0

(−1)mγm∆tm

2mm!

[
1− δd†d

]2m
=

∞∑
n=0

(−1)nγn∆tn

2nn!

[
dd† + (1− δ)2nd†d

]
ρ

∞∑
n=0

(−1)mγm∆tm

2mm!

[
dd† + (1− δ)2md†d

]m
=

[
e−γ/2∆tdd† + e−γ/2∆t(1−δ)2

d†d
]
ρ
[
e−γ/2∆tdd† + e−γ/2∆t(1−δ)2

d†d
]

= e−γ∆tdd†ρdd† + e−γ(1−δ)2∆td†dρd†d+ e−γ(1−δ+δ2/2)∆t
(
dd†ρd†d+ d†dρdd†

)
,

e+J e+iχ∆tρ =
∞∑
n=0

γn∆tne+inχ

n!

[
dd† + (1− δ)nd†d

]
ρ
[
dd† + (1− δ)nd†d

]
=

∞∑
n=0

γn∆tneinχ

n!

[
dd†ρdd† + (1− δ)2nd†dρd†d+ (1− δ)n

(
dd†ρd†d+ d†dρdd†

)]
= e+γ∆te+iχ

dd†ρdd† + e+γ∆t(1−δ)2e+iχ

d†dρd†d+ e+γ∆t(1−δ)e+iχ (
dd†ρd†d+ d†dρdd†

)
.

(8.104)

In particular, from combining the last two identities we obtain for the action of the full dissipator

eLdt(0)∆tρ = dd†ρdd† + d†dρd†d+ e−γ∆tδ2/2
(
dd†ρd†d+ d†dρdd†

)
. (8.105)

From this, we obtain that the exponential of this particular dissipator has a very similar action
than the dissipator itself(

eLdt(0)∆t − 1
)
ρ =

(
e−γ∆tδ2/2 − 1

) (
dd†ρd†d+ d†dρdd†

)
=

1− e−γ∆tδ2/2

γδ2/2
Ldt(0)ρ . (8.106)

This can be helpful to evaluate the energy change of the system during such a measurement of
duration ∆t

∆E = Tr
{
HS

(
eLdt(0)∆t − 1

)
ρ
}

=
1− e−γ∆tδ2/2

γδ2/2
Tr {HS(Ldt(0)ρ)} , (8.107)

which enables to define a current

Ims
E =

∆E

∆t
=

1− e−α

α
Tr {HS(Ldt(0)ρ)} , α =

γ∆tδ2

2
. (8.108)

For small α, this corresponds to the usual phenomenologically defined current, whereas for large
α, this tends to zero. We also note that the prefactor is always smaller than one.

We can be more specific and ask for the system energy change for a specific measurement
outcome

∆En = Tr

{
HS

(
Kn(∆t)ρ

Tr {Kn(∆t)ρ}
− ρ
)}

, (8.109)

or – after having defined a suitable threshold to separate between just two outcomes (empty and
filled) – for the average system energy change under measuring the outcome empty (E) or filled
(F), respectively

∆EE =
1

PE
Tr {HS(KE(∆t)− PE)ρ} , ∆EF =

1

PF
Tr {HS(KF (∆t)− PF )ρ} , (8.110)
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where PE = Tr {KE(∆t)ρ} and PF = Tr {KF (∆t)ρ}, respectively. For these questions it is helpful
to compute

Kn(∆t)ρ =
(γ∆t)n

n!
e−γ∆tdd†ρdd† +

(γ∆t(1− δ)2)n

n!
e−γ∆t(1−δ)2

d†dρd†d

+
(γ∆t(1− δ))n

n!
e−γ∆t(1−δ)e−γ∆tδ2/2

(
dd†ρd†d+ d†dρdd†

)
. (8.111)

It may be convenient to parametrize such a measurement by just two dimensionless numbers
0� y � x

x = γ∆t , y = γ∆t(1− δ)2 . (8.112)

Then, we have

√
xy = γ∆t(1− δ) , γ∆tδ2

2
=

(
√
x−√y)2

2
, (8.113)

which completely defines the measurement superoperators. The measurement becomes strong (in
the sense that it deletes coherences) when x and y are very different, and it also becomes error-free
(projective) when both x and y are very large but different. It becomes completely non-invasive
(after normalization), when x = y.

From summing up all outcomes up to a threshold nth, we get the propagator for the coarse-
grained measurement result filled

KFρ =
Γ(nth + 1, γ∆t)

Γ(nth + 1)
dd†ρdd† +

Γ(nth + 1, γ∆t(1− δ)2)

Γ(nth + 1)
d†dρd†d

+
Γ(nth + 1, γ∆t(1− δ))

Γ(nth + 1)
e−γ∆tδ2/2

(
dd†ρd†d+ d†dρdd†

)
, (8.114)

and from KE +KF = eLdt∆t we conclude for the result empty

KEρ =

(
1− Γ(nth + 1, γ∆t)

Γ(nth + 1)

)
dd†ρdd† +

(
1− Γ(nth + 1, γ∆t(1− δ)2)

Γ(nth + 1)

)
d†dρd†d

+

(
1− Γ(nth + 1, γ∆t(1− δ))

Γ(nth + 1)

)
e−γ∆tδ2/2

(
dd†ρd†d+ d†dρdd†

)
. (8.115)

The function f(nth, x) ≡ Γ(nth+1,x)
Γ(nth+1)

behaves similar to a Fermi function as a function of x, it is
always between 0 and 1, in particular it is 1 when x � nth and it is zero when x � nth. Its
steepest descent is found at x∗ = nth, for which an optimal value can also be expressed in terms
of x and y

nth =
x− y
ln x

y

. (8.116)

With the additional suppression of coherences, these measurement superoperators indeed approach
ideal projectors onto the empty or filled state, respectively. Furthermore, being the exponential of
Lindblad evolutions, they preserve the density matrix properties (after normalization), i.e., they
automatically implement a weak measurement of the occupation, with the limit γ∆tδ2/2 → ∞
limit of a strong measurement (deleting the coherences).
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We now consider a series of infinitesimally short measurements, parametrized only by x and y
and performed at timesteps of ∆τ > 0, in between which the Liouvillian LTQD of a triple quantum
dot shall be acting. The density matrix at time t+ ∆τ can then be iteratively obtained

ρ(t+ ∆τ) =
1

Pn(x, y)
eLTQD∆τKn(x, y)ρ(t) , Pn(x, y) = Tr {Kn(x, y)ρ(t)} , (8.117)

where Pn(x, y) denotes the probability to measure n particles. We can now check how different
measurement schemes affect the subsequent evolution [3], see Fig. 8.8. In the first three panels

0

25

50

75

100

125

150

d
et

ec
to

r 
cu

rr
en

t

0 2 4 6 8 10

dimensionless time Γt

0

0,5

1

o
cc

u
p
at

io
n

0

25

50

75

100

125

150

d
et

ec
to

r 
cu

rr
en

t

0 2 4 6 8 10

dimensionless time Γt

0

0,5

1
o
cc

u
p
at

io
n

0

25

50

75

100

125

150

d
et

ec
to

r 
cu

rr
en

t

0 2 4 6 8 10

dimensionless time Γt

0

0,5

1

o
cc

u
p
at

io
n

0

25

50

75

100

125

150

d
et

ec
to

r 
cu

rr
en

t

0 2 4 6 8 10

dimensionless time Γt

0

0,5

1

o
cc

u
p
at

io
n

Figure 8.8: Plot of detector current trajectories (symbols) and system occupations (curves) for
a completely insensitive detector (top left), an invasive detector (top right), an invasive detector
which measures 10 times more frequently (bottom left, for different initial conditions) and a non-
invasive QND detector which measures also very frequently but in the energy eigenbasis (bottom
right). Parameters: ΓL = ΓR = Γ, βL = βR = β, TL = TR = T , βΓ = 0.01, βT = 0.1,
βµL = +5 = −βµR, βε = 1, x = 100, y = 50 (top left: y = 100), Γ∆t = 0.01 (top panels),
Γ∆t = 0.001 (bottom panels).

of Fig. 8.8 we consider a measurement in the site basis, derived within the singular-coupling
limit, described by the exponential of Eq. (8.99). In the last (bottom right) panel we consider
a non-invasive quantum non-demolishion (QND) measurement, described by the exponential of
Eq. (8.93).
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First, when x = y (top left), the detector (here measuring in the local basis) is not sensitive to
the system and it does not influence its dynamics. The detector statistics is just Poissonian and the
system behaves as if it was not monitored. When the detector measures in the local basis (top right)
and is sensitive to the system occupation, the repeated application of the measurement leads to the
superposition of two Poissonian processes for the detector statistics, and projects the system density
matrix, suppressing coherences. An even more frequent application of the measurement (bottom
left) leads for an invasive detector to the suppression of coherences, quantum-Zeno trapping the
population of the central dot, independent of the initial condition (blue and magenta). Significantly
less jumps are observed. Finally, for measuring non-invasively in the energy eigenbasis (bottom
right), a third, inconclusive, outcome is introduced in the detector statistics, during which the
system evolves coherently as if it was decoupled from the leads.
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