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Abstract

This thesis presents several approaches to the dynamical Casimir effect within resonantly
vibrating cavities with losses at finite temperature. After an introduction to the topic and the
currently known results the canonical formalism is applied to the example of a massless scalar
field. A model for a cavity with leaks is introduced and its eigenmodes are calculated. Within
the framework of the rotating wave approximation an effective Hamiltonian is derived. The
effect of non-stationary boundary conditions on the particle number is calculated by means
of response theory, a master equation approach, and a non-perturbative approach. All results

are being compared and the generalization to the electromagnetic field is outlined.

Kurzfassung

Diese Diplomarbeit priasentiert mehrere Ansitze zum dynamischen Casimir-Effekt in resonant
vibrierenden Kavitaten mit Verlusten und bei endlicher Temperatur. Nach einer Einfiihrung
in das Thema und in die bisher bekannten Resultate wird der kanonische Formalismus auf das
Beispiel eines masselosen skalaren Feldes angewandt. Fiir Kavitaten mit Verlusten wird ein
Modell eingefiithrt und dessen Eigenmoden werden berechnet. Im Rahmen der "rotating wave
approximation” wird ein effektiver Hamilton-Operator abgeleitet. Der Effekt nichtstationérer
Randbedingungen auf die Teilchenzahl wird mittels Antwort-Theorie, eines Mastergleichungs-
ansatzes und mit einem nichtperturbativen Ansatz berechnet. Alle Resultate werden miteinan-
der verglichen und die Verallgemeinerung zum elektromagnetischen Feld wird skizziert.
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Chapter 1

Introduction

1.1 Motivation

The existence of virtual quantum fluctuations is one of the basic consequences of quantum field
theory. These virtual fluctuations can have real consequences. For example dynamical external
disturbances can lead to a creation of particles out of the vacuum! This phenomenon is referred
to as quantum radiation, since a classical analog does not exist. If the external disturbances
are represented by time-dependent boundary conditions imposed on the quantum fields, e.g.

moving mirrors, the scenario is also known as the dynamical Casimir effect.

The foundations of the dynamical Casimir effect have been laid with its static counterpart
as early as 1948 by Casimir in his famous paper On The Attraction Between Two Perfectly
Conducting Plates [1]. There a purely quantum-theoretical effect — the attractive Casimir
force between two parallel perfectly reflecting and neutral mirrors placed in the vacuum — was
predicted. This static Casimir force has been verified experimentally with high precision [2, 3]
for several geometries. Since then the Casimir effect has attracted the interest of many authors,

for a brief overview see e.g. [4, 5] and references therein.

However, the dynamical Casimir effect — where one or both of the mirrors are moving thus
inducing the creation of particles — has not yet been observed rigorously in an according ex-
periment. This effect — also known under the name non-stationary Casimir effect (NSCE) —
predicts (closely related) interesting phenomena like a modification of the known static Casimir
force (see e.g. [6, 7, 8,9, 10, 11]) and the creation of particles (e.g. photons in the case of the
electromagnetic field) out of the vacuum induced by moving mirrors. This thesis is devoted
to the latter effect. The observation of quantum radiation would provide a substantial test

7



8 CHAPTER 1. INTRODUCTION

of quantum field theory and thus be of special relevance. It was proposed by Schwinger [12]
that the phenomenon of sonoluminescence might be based on the NSCE. However, it remains
doubtful whether the required extreme conditions are realized in the corresponding scenario.
The complete understanding of the dynamical Casimir effect is still a challenging theoretical

problem.

In 1970 Moore [13] succeeded in presenting the first calculation of quantum radiation exploiting
the conformal invariance of scalar fields in 141 space-time dimensions. Based on this method
Fulling and Davies [14] calculated the radiation emitted by a moving mirror in 141 dimensions.
These considerations were improved by a long line of authors, see e.g. [15, 16, 17, 19, 20]. Some
authors (see e.g. [21, 22, 23]) considered the effects of losses in 141 dimensions. Many publi-
cations were also devoted to the calculation of particle creation effects in resonantly vibrating
cavities, since this configuration was found to lead to significant effects [15, 7]. However, it
must be mentioned that all those calculations exploited the special structure of 1+1 space-
time dimensions via applying approaches based on the conformal mapping methods developed
in [13, 14]. They are therefore a priori restricted to 1+1 dimensions. Since the character of
quantum radiation in 341 dimensions differs drastically from the two-dimensional situation,
the method of conformal mapping can not be obviously generalized to higher space-time di-
mensions. A different — and also consistent — approach was presented by Ford and Vilenkin
[24] in 1981, where the radiation of a single moving mirror was considered. The quantization
of the field has always been a challenging problem [25, 26, 27], but the complete theory in-
cluding non-ideal dynamical boundary conditions is not completely solved at the moment. The
Hamiltonian approach, whose advantages were demonstrated in e.g. [28, 29, 30] can also be
generalized to an arbitrary number of dimensions. But even within this approach the results
differ a lot, since the spectrum of cavity eigenmodes is not equidistant anymore in higher then
two-dimensional space-times. Since the velocity of the boundaries will under laboratory con-
ditions always be much smaller than the speed of light, the quantum effect of particle creation
was found to be small except in the case of parametric resonance (see e.g. [6, 31, 32]) in analogy
to the two-dimensional results. In this case a boundary of the cavity is oscillating at twice an
eigenfrequency. This leads to a squeezing of the vacuum state thereby inducing the creation of

particles out of the vacuum.

Accordingly, several authors (see e.g. [18, 33, 34, 35, 36, 37]) considered 3+1 dimensional
dynamical cavity models with ideal mirrors. Since the cavities are assumed to be initially
empty, these publications neglect the effects of finite temperatures. However, as was shown
in [38, 39, 40] these temperature effects may even dominate the pure vacuum effect by several
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orders of magnitude at room temperature and therefore their neglect is not justified.

In the resonance case in 3+1 dimensions an exponential growth of the particle number versus
the perturbation time was predicted, see e.g. [18, 33, 34, 38, 39, 40]. In view of this prediction
an experimental observation of quantum radiation within the scenario of parametric resonance
seems to be rather simple, provided the cavity is oscillating for a sufficiently long time. However,
in all the aforementioned considerations ideal boundary conditions were used, i.e. the mirrors
bounding the cavities were assumed to be perfectly reflecting. This unphysical presumption is
not an adequate description of real systems. It is therefore essential to include the effects of
losses and finite temperature in a realistic experiment. In addition, for the case of parametric
resonance also the impact of a detuned oscillation frequency will have to be examined, since
this seems to pose a challenging experimental problem [41, 42, 43, 44].

In order to include the effects of losses in 3+1 dimensions an approach based on an ad hoc
master equation ansatz has been applied in [43, 44]. However, this ansatz is suitable for the
corresponding stationary system (i.e. without a moving boundary) and not necessarily for a
vibrating one. (Possible limitations to this master equation ansatz were already expected in
these publications and the need for a master equation derived starting from first principles was
also expressed.) In addition, temperature effects were not taken into account rigorously.

The canonical approach [38, 39] enables a convenient calculation of temperature effects. How-
ever, this method still lacks a generalization for systems with leaks. The quantum electrodynam-
ics of single transparent mirrors has already been considered [45], a realistic 3+1 dimensional
vibrating cavity however, has not been examined so far. The present thesis aims at providing
a remedy in this field by applying the canonical approach to such a cavity, taking into account
simultaneously the effects of finite temperature and losses.

1.2 Overview

This thesis is organized as follows.

In chapter 2 the general canonical formalism is presented and the quantization scheme is out-
lined. A model cavity is considered and a solution of its eigenfrequency spectrum is found
perturbatively where the transmittance of the dispersive mirror serves as a perturbation pa-
rameter. For the case of parametric resonance an effective time evolution operator is derived
using the rotating wave approximation (RWA).

In chapter 3 the number of created particle due to the dynamical Casimir effect will be calculated
perturbatively using the framework of response theory.
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Chapter 4 is devoted to the derivation of a master equation describing the model system with
losses. In addition, this master equation is solved for an effective statistical operator accounting
for the relevant observables. This statistical operator enables the calculation of expectation
values and thus the comparison with the results of the previous chapter.

A complete treatment of time-evolution governed by an arbitrary quadratic Hamiltonian in form
of a non-perturbative method is presented in chapter 5. The perturbatively obtained particle
creation results of the previous sections are found to be consistent within the corresponding
limit.

Finally, chapter 6 gives a summary and discussion of the results of this thesis.

An overview of the employed conventions will be given in the following section and a list of all

used symbols can be found on page 82.

1.3 Notations

In this thesis the following conventions will be employed.

e Throughout this thesis natural units given by
h=c=¢;=py=1 (1.1)
will be used.

e Since all calculations are performed in a flat spacetime the conventional choice of the

metric is given by

Y = ) (1.2)

e All Lorentz vectors and tensors are labeled with lowercase Greek indices running from
zero (time component) to three (spatial components) whereas lowercase Latin indices
only stand for the spatial components (running from one to three). For these indices the

commonly practiced Einstein sum convention is employed whenever possible.

e If no special range of an integral or sum is specified then the integration or summation
will have to be extended to the largest possible range.
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e The commutator of two operators A and B is defined by
[4,5) = AB - BA, (1.3)
whereas the anti-commutator is given by
{A,B} = AB+ BA. (1.4)

e The time-ordered product of two time-dependent bosonic operators A, (¢,) and A,(t,) is
defined as

A~ ~ ~

T A1) Ay(ta) ]| = A, (1) Ay()O(t, — 1) + Ay(t) A, (1), ~ 1,) (L5)

where ©(z) stands for the Heaviside Step function. Anti-chronological ordering is defined

THA () Ay(t)| = A1 (1) Ay (8)O(t — 1) + Ay(t) A, (1)t — 1) (1.6)

These formulas can easily be generalized to an arbitrary number of time-ordered operators,

see also appendix 7.3.

e For reasons of brevity the time-dependence of the initial (i.e. before any disturbance)

creation and annihilation operators is omitted
a,(0)=a,,  a(0)=ada. (1.7)
e In addition, the shorthand notation for the hyperbolic sine and cosine functions

S(t) = sinh (2&t) , C(t) = cosh (2¢t) , (1.8)

with £ being the squeezing parameter will be used whenever possible.
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Chapter 2

(General Formalism

2.1 Lagrangian

For reasons of simplicity a massless, noninteracting, and neutral (i.e. real) scalar field ®(r,1)
coupled to an external potential V(7;t) is considered inside a domain G(¢) with Dirichlet
boundary conditions. These boundary conditions are incorporated by the external potential.
Accordingly, the theory is characterized by the corresponding Lagrangian density

1
L= 5(0,2)(0"®) - V(r; )92, (2.1)
It is advantageous to introduce a set of eigenfunctions {f,} determined by the eigenvalue
equation
{2V = V2} fu(rst) = (1) fu(r30) (2:2)

where the potential V' (r;t) also imposes the (time-dependent) Dirichlet boundary conditions

Vi fu(r;t)\aG(t) =0. (2.3)

The time-dependence of the eigenfunctions and eigenfrequencies is introduced by the time-
dependence of the domain G(t), i.e. the moving boundary of the cavity. Above eigenvalue
equation does not completely determine the set { fu} — in addition the set of functions is

complete

Y Bt L) =8 (r — 1) (2.4)

13
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and orthonormal
/ drfi(r 0, (r 1) =6, (2.5)

For the description of neutral scalar fields it suffices to consider real-valued eigenfunctions, i.e.
the field ® can be expanded

o(r,t) = Q1) f, (i), (2.6)

where the time-dependent coefficients @), (t) are uniquely determined. By inserting this expan-
sion into the Lagrange function L and defining the coupling matrix
Of,(r;t)
— 3 BAD .
M (0 = [ g i (2.7
the Lagrange function yields (see also [38]) the form

L = /d?’rﬁ

1 . 1 . 1
1 n v

VK
Note that due to the ortho-normality of the set {f,} and the Dirichlet boundary conditions the

coupling matrix M, (t) turns out to be antisymmetric

0 d(su * . ) —
Mo, = [ GG L) = T = [ ddg im0y =0, 09)

see also [34, 38]. The matrix M, (t) accounts for the strength of coupling between two different

modes p and v.

2.2 Hamiltonian

For the calculation of time-evolution operators a Hamiltonian representation is advantageous.

The Hamiltonian can obtained from the Lagrangian by virtue of a Legendre transform

H=> PQ,-L, (2.10)
"
where with the Lagrangian of section 2.1 the canonical conjugated momenta determines to
oL .
P, = 00 = Qu+ Y Q,M,,(t). (2.11)
1 v



2.3. CANONICAL QUANTIZATION 15

Accordingly, the Hamilton function (cf. [28, 38]) reads
1 2 1 2 2
H=2) Pi+o) QQu+) PM,Q,. (2.12)
p p p

Aiming at performing the calculations in the interaction picture it is advantageous to split this
Hamiltonian into three parts H = Hy+ H7 + H} where the unperturbed Hamiltonian H,

1 1
Hy = d P+ 3 > (@)%Q; (2.13)
% B

corresponds to a set of harmonic oscillators having the frequency Qg. The interaction Hamil-

tonian splits up into two parts, of which
1
HP = 3 D AR MQ:, (2.14)
o

will further-on be called squeezing interaction Hamiltonian. The term
2 02 0\2
A () = () — (2,) (2.15)

denotes the difference of the (squared) time-dependent eigenfrequencies €22 (t) from the unper-

turbed ones (€29)*. The other part — the velocity interaction Hamiltonian — is given by
H = > P,M,(1)Q,. (2.16)
787

This distinction (see also e.g. [38, 39]) is — independent of the particular geometry under con-
sideration [36] — well motivated, since Hf is determined by the time-dependent eigenfrequency
deviation AQ2(t) and H) is induced by the non-vanishing coupling matrix M, (¢) which is
due to the time-dependent eigenfunctions. In the case of a stationary system (where eigenfunc-
tions and eigenfrequencies do not depend on time) both AQ () and M, () will vanish. In the
interaction picture this case corresponds to the unperturbed system.

2.3 Canonical Quantization

The scheme of Canonical Quantization can be executed via introducing the field momentum

oL :
I(r,t) = o ®(r,t) = %:P“(t)fu(r,t) : (2.17)
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which can also be expanded into the complete set {f,} with time-dependent coefficients P, (t).
The quantization is now performed by switching from classical fields to field operators and

demanding the equal time commutation relations
[&(r, ) ,ﬂ(r’,t)} = iS(r—1),
[@(r, ) ,@(r’,t)} = 0, |f(r¢),060,1)] =0. (2.18)

These commutation relations are valid inside the domain G(¢). Accordingly, the coefficients in

the field expansions also become operators @, — Qu and P, — 15“, which have to obey

Q0. B0)] = i,
Q.0.Q.0] = 0. [B®.2®)]=0. (2.19)

However, to consider systems with many particles it is convenient to introduce the annihilation

and creation operators, respectively

L (20Q,(0) +iP,0) . al(n) = L

a,(t) = NGis /20

These operators have to obey the usual bosonic equal time commutation relations

a,(t),al@®)] = 6,,,
a,(t),a,t)] = 0, [al(t),al(t)] =0. (2.21)

The diagonal unperturbed Hamiltonian yields — with the chosen normalization — the form

(%600 —iP,m) . (220

1

Hy=) (&L(t)&u(t) + 5) : (2.22)

In the interaction picture the dynamics of the ladder operators is governed by

d&gft) =i [ﬁo , &u(t)] = —i00%,,(t) . (2.23)

This differential equation leads to an oscillating time-dependence

a,(t) = a,e "t (2.24)

of the ladder operators. Accordingly, in the interaction picture the particle number operator is
explicitly time-independent

A

N, =dal(t)a,(t)=a

; i (2.25)
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Figure 2.1: Model of a leaky cavity. A large ideal cavity is split up by a dispersive mirror into
a leaky cavity and a reservoir. The left (perfectly reflecting) wall of the cavity is moving.

for all modes p. With these ladder operators, the squeezing and velocity Hamiltonians H S(t)
and HY (t) in the interaction picture are given by
. 1AQ(E) . . o o
Hi(t) = Y 7o [@)°(1) + @) (1) + a,(al (1) + a},()a, (1)) .
u

I

Y@ = 3 M) [ a0 + 06, 0) - a,00a}(0) - 4,0a,0)] . (226)

2.4 A Model Cavity

A first step towards leaky systems is to examine the influence of transparent mirrors on quantum
electrodynamics as was done in [45, 46]. Mirrors with a finite transmittance can for example be
modeled by some external potential V' (z;¢) by which the field ® is influenced. The construction
of a leaky system is then completed by employing transparent mirrors to form a cavity. In order
to obtain bound states it will be necessary to enclose the leaky system by a larger ideal cavity.
The simplest model for a leaky cavity surrounded by an ideal one is obtained by inserting a
transparent mirror into an ideal cavity, see also figure 2.1. To allow for dynamical external
conditions the left wall of the cavity is moving with a prescribed trajectory a(t) in time. The
corresponding static system in 141 dimensions has already been treated in [48, 26]. However,
the dynamical system considered here has interesting properties. For ideal cavities the non-
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vool

|||> E
|||> i

i \

x=a(t) x=b X=C

Figure 2.2: Diagram of the z-dependence of V (z). The Dirichlet boundary conditions are sim-
ulated by infinitely high potential walls whereas the dispersive mirror at x = b is approximated

by a é-function potential.

stationary boundary conditions are known to lead to a squeezing of the vacuum state which
causes the creation of particles inside the cavity, see e.g. [38, 39]. In the system considered
here the boundary conditions only vary in the left non-ideal cavity. In a general case for an
arbitrarily shaped cavity the only condition on the potential V' (z) would be that it should be
infinitely large outside the cavity domain G(t) to prevent any particle losses. Following the
idea in [45, 48] one can model a transparent mirror by a J-type potential whereas the perfectly

reflecting mirrors can be incorporated by infinitely large potential walls

Vi) = vé(x—b) ifalt)y<z<c (2.27)
’ 00 otherwise ’

where 0(z) denotes the Dirac d-distribution. An illustration of this potential is given in figure
2.2. The parameter 7y enters the reflection and transmission amplitudes of the internal dispersive
mirror at a given frequency w via [45, 46]
1y w

R:_ ) - )
w+ vy w1y

(2.28)

where |R|> + |T|° = 1 holds. Thus any desired transmittance of the dispersive mirror can be
adjusted. The method is not confined to this very simple model: Any functional dependence
inside the domain G(t) modeling a dispersive mirror would hold. The ansatz used here is a
simplified version of an experimentally significant scenario where the electromagnetic field is
examined in an ideal cavity with a thin dielectric slab with thickness d — having a very large
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dielectric constant — inserted. The potential could then be incorporated by a space-dependent

permittivity [48]
g(x) =1+ad(x), (2.29)
where o has the dimension of a length and relates with the dielectric constant e of the slab via

o
s=1+4+—. 2.30
£ +d (2.30)

2.5 Eigenmodes

For a complete knowledge of the Hamiltonian in section 2.2 the set of eigenfunctions {f,} de-
termined by the eigenvalue equation {2V — V?} f,(r;t) = Q(t)f,(r;t) needs to be known.
Note that the potential from section 2.4 also imposes the Dirichlet boundary conditions
f“(r;t)| sc) = 0. Any time dependence of eigenfunctions and eigenfrequencies is therefore
only introduced via the time-dependent boundary parameters. This differential equation can

be solved with the separation ansatz [38]

fulr) = flr) fa(ry), (2.31)

where f,U depends only on the coordinate parallel to the wall velocity and fuL is dependent on

the perpendicular coordinates. For the special case of the rectangular model system this means
) =fi@), [y = fiw)rhie). (2.32)
Separating the frequency contributions
2 2 1\2 T\2 2 2)2
Q2 = ()’ +(2,)% = () + ()* + (22)*, (2.33)

leads to the well-known trivial ¥ and z solutions of a particle within a box potential

2 n,m n,m
Y — : Y ] Y
HORYE [—Ay} W=

. 2 . [n,m ,  Nn,T
fi(z) = HESIH[AZZ] , Q= Ay (2.34)

where Ay and Az denote the dimensions of the cavity in the perpendicular directions. The

|

quantum numbers n, and n, can assume all positive integer values n,,n, € N, . The remaining

differential equation for f;(z) reads

{276(z — b) — 2} f2(z) = ()2 fi(z), (2.35)
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where the Dirichlet boundary conditions

Tilamay = Jitloze =0 (2.36)

have to be imposed. These boundary conditions are already satisfied by the solution ansatz
(48, 26|

L,sin[Q(z —a)] if a<z<b
fi(@) =4 R,sin[Q%(c—x)] if b<z<c , (2.37)
0 elsewhere

where L, and R, denote constant coefficients for the left and right side, respectively. By
integration fbbjoo dx one can find [48, 45] the connection condition

Ofy Ofy .

(0L b) = 5@ 1 8) = 20£1(). (2.38)
In addition the solution has to be continuous which implies

[o@ L b) — fi(z1b) =0. (2.39)

These conditions do not only link the coefficients L, and R, but can also be combined to an

equation to determine 2}

—% = cot [ (b — a)] + cot [ (c —b)] . (2-40)

"

For given cavity parameters {a,b,c,v} a numerical solution of this equation can always be
obtained. However, via introducing the dimensionless perturbation parameter
_ %

N, = ot (2.41)
it is also possible to obtain an approximate analytical solution. Note that this parameter is
small 7, < 1 in the limit of the internal mirror being nearly perfectly reflecting. Since the
trigonometric cot functions are very sensitive to small variations of the frequency Qﬁ, one can

equivalently solve the equation

— = cot [Q%(b— a)] + cot [Q(c —b)] (2.42)
M
by a series expansion in 7,. If 2/, goes to co the equation can only be fulfilled if one or even
both of the cot functions diverge. (Whether one or both are contributing is determined by
the ratio (b — a)/(c — b) and its inverse which are both assumed to be non-integer numbers in
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the following perturbative calculations meaning that only one of the addends is dominating.)

Expanding one of the addends around the poles at x = n7w

1 1 1 , .
x_nﬂ_—g($—nﬂ')—g($—n7r) +0((3:—n7r) ) (2.43)

cot(z) =

and the other one around the same frequency value yields a polynomial that can be solved for
the frequency (2 as a series expansion in 7, < 1. Depending on which addend is expanded

around its pole one obtains two sets of approximate eigenfrequencies

n,.m 1 1 c—
0% — z = cot 2 O (n
Mt b—a 2(b—a) gt 4(b — a) €0 (nw b— a> Mgt (n"m’l) ’
n.mw 1 1 b—a
QF = r ————cot 2 O (n? 2.44
Ng,T c—b 2(6 _ b)nnmr + 4(6 _ b) co (nwﬂ—c _ b) nnx,r + (nnm,'r) ) ( )

where p = (n,,(/r) with l-eft for cotjw(b — a)] and r-ight for cot[w(c — b)] is found to be a
multi-index. Inserting the parameter 7, yields a polynomial that can be solved for (2. Asis
demonstrated in figure 2.3, the quality of the linear (in 1) approximation suffices already for
moderate values of ¥ > 50. The insertion of the eigenfrequencies in the ansatz (2.37) leads to two
classes of eigenfunctions, see also figure 2.4. The remaining global factor L, is determined by
demanding the set {f,} to be normalized. In the limit of small 7, one can therefore distinguish
between two classes of solutions: right- and left-dominated eigenfrequencies also implying the
existence of right- and left-dominated eigenmodes. These shall be denoted by the flags r and [,
respectively, in the following. According to figure 2.4 the eigenfunctions are mainly concentrated
in the respective part of the cavity. Thus the eigenfunctions are labeled by multi-indices: 3
quantum numbers n,,n,,n, € N, and a flag r /1 denoting the class (right- or left-dominated,
respectively) of the eigenfunction, i.e. a certain mode can be labeled by u = (n,,n,,n,,7/1).
A perturbative expression for the eigenfunctions up to O (7,) is given in appendix 7.1.

The time-dependence of eigenfrequencies and eigenfunctions due to dynamical external condi-
tions can now be incorporated via the time-dependent boundary parameter a(t).

If the velocity of the boundary a(t) is small — meaning a(t) = O (¢) with some € < 1 — then the
coupling matrix M, can be factorized into an approximately constant factor m ,, — representing
the geometry of the system under consideration — and the velocity of the boundary

M, (t) =m,a(t) + O (€) with m,, = /d?’r%fu. (2.45)

v ©

Since the time-dependence of the right-dominated modes is less complicated than that of the
left-dominated ones, it may sometimes be advantageous to exploit the antisymmetry of m,.
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Figure 2.3: Comparison of the dimensionless exact numerical and approximate analytical eigen-
frequencies (2.44) QF,(b— a). The linear approximation is already sufficient at moderate values
of v(b — a) > 50. In these calculations a ratio of (¢ — b)/(b — a) = 10/3 has been assumed.
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Figure 2.4: Tlustration of the z dependence of the lowest (n, = 1) left- and right-dominated
eigenmodes f;(x) for n,, = 0.1. The modes are mainly concentrated in the corresponding
part of the complete system thus substantiating the nomenclature. At the position of the

dispersive mirror b the derivatives of the functions are discontinuous.
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The calculation of the geometry factor m,, between the two modes p = (ng,n. Thys Moy f) and
u = (nl, Ty M f' ) reduces to only one integration, since for a rectangular cavity the dy and
dz integrations simply generate Kronecker symbols. Accordingly, one finds for the geometry

factor

m = [ & 0wl — s, 6/ i) fe 0)aa

aL OQ
_ _ b2
- 5ny,n’y§nz,n’z [ v a (b a“) Y Ha I (b )

OR 002
~LEI%,(b—a) + R, 21, (c — b) 12 (c—b)|, (2.46)

[ Tl 17 Y da Y da

where the integrals I, () are defined via

L,(z) = /C sin(Q5y) sin(2y) dy ,
B) = [ weos(@)sin(@y) dy,
I(z) = /Ocos(Qﬁy)sin(Q,‘fy)dy. (2.47)

For the following calculations the coupling between different modes will be of special relevance.
In these cases the occurrence of many perturbation parameters 7, can be avoided by defining
the fundamental perturbation parameter

sz

n=n 2.48
= (2.48)

and expressing all others via 7, = (€2 /Q,)n. The coupling of the lowest left-dominated mode

p = (1,1,1,1) to some right-dominated one v = (n,,n,,n,,r) will be given here explicitly

ofe

m,, = —51,%(51 /da:f‘”

6171 51 (_l)nmnz (;_T(Z z

3 3T, Q
= =+ O (n*) =0 (), (2.49)
(¢ — b) sin (n,m2=%) [ng (';_T’Z)Z - 1] 0 ()

to demonstrate that the coupling between these modes is small. Note that this expression
diverges if (b — a)/(c — b) is an integral number or if n, = (¢ — b)/(b — a) which has been
excluded from the beginning.
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2.6 Effective Time Evolution

In the interaction picture the time evolution operator is given by the formal expression
A A T A
U(T,0) = T,exp <—z/ H,(t) dt) , (2.50)
0

where 7, denotes time-ordering and H,(t) = H? (t)+ HY (t) denotes the time-dependent pertur-
bation Hamiltonian in the interaction picture. Above operator equation shall be understood as
the corresponding series expansion of the exponential. In general the arbitrary time-dependence
of H ;(t) makes the calculation of U very difficult. If H ;T is small, then an expansion of the
exponential yields a power series in H ;T suitable for perturbation theory. However, in view
of an experimental verification of the dynamical Casimir effect U should deviate significantly
from the identity which implies that H ;1" should be large. Therefore another approximation
needs to be found. It has been predicted by several authors that the phenomenon of parametric
resonance where the cavity wall performs harmonic oscillations at a certain frequency is the
most promising scenario for an experimental observation of quantum radiation. For an ideal
cavity this resonance leads to an exponential growth of the particle number and is therefore
favorable for an experiment. Via time-averaging over the oscillations (see subsection 2.6.1)
00 n T
oo =y / dty ...t T, [Hy(1) . B (,)] (2.51)
0

n!
n=0

an effective time evolution operator can be defined within the rotating wave approximation
(RWA)

2 RWA

U (T, 0) " exp (—iﬁlgﬂT), (2.52)

see e.g. [39, 28, 30]. Thereby the time-ordering is neglected and an effective interaction Hamil-

tonian can be defined via
ar rwa 1 (7 1 (" I
0 0 0

The justification for this procedure will be given in the following section.

2.6.1 Rotating Wave Approximation (RWA)

The series expansion of the time-evolution operator contains time-ordered products of the
time-integrated interaction Hamiltonians. In the case of parametric resonance the rotating
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wave approximation allows for an approximate solution of these integrals via averaging over
the fast oscillations. The time-ordered products can also be rewritten as (see also appendix
7.3)

A A

To|Ht) . i) = Bt At

— Z @ (tP(l) — tP(Q)) Ce @ (tP(n—l) — tP(n)) X

PES,\P,
S 8P AR D H (o) - [ tog)  Hiltg)] X
sets{k,l}
o Hi(tpg) (2.54)
where S, denotes the permutation group of the integer numbers {1,2,...,n — 1,n} and P,

stands for the identity permutation. The function §(P,{k,l}) € {0,1} regulates which terms
contribute for a given permutation P, see also the appendix 7.3. This leads to two basic types

of integrals in the time-evolution operator series expansion.

Effective Interaction Hamiltonian Since in the first term of (2.54) no time-ordering is
present, all the d¢;-integrations factorize and one just has to consider the time-integrated inter-
action Hamiltonian. In the interaction picture squeezing and velocity interaction Hamiltonian
contain all possible quadratic combinations of the time-dependent creation and annihilation
operators. In addition there is a time-dependent factor induced by the deviation AQ (%) in the
squeezing Hamiltonian and the coupling matrix M, () in the velocity Hamiltonian. In the case
of parametric resonance a parameter a(t) accounting for the position of one boundary performs

harmonic oscillations at an external vibration frequency w
a(t) = ay + €lysin(wt) , (2.55)

where [, is some characteristic length of the system and ¢ < 1 denotes the dimensionless
vibration amplitude. Accordingly, one finds via expanding around a, for the time-dependent
factors (2.15) and (2.45) a purely oscillating behavior
AQ%(t) = 2906—921 esin(wt) + O (€)
u " Bag 0 )

M, @) = my,lwecos(wt) + O () . (2.56)

177%

Together with the trivial time-dependence of the ladder operators

a,(t) = a,e” %, af(t) = af et (2.57)
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this leads in (2.53) to generic integrals of the form

T
%/ H(t)dt = —ZAi/ sin(wt) exp(£i2Q)¢t) dt
0

%/OT Hi(t)dt = —ZB / cos(wt) exp(iz(QO + Q%) dt, (2.58)

where all operators as well as the time-independent parameters of the external disturbance
have been absorbed in A* and Bif,. Considering these integrals over many periods (in the limit
wT > 1) one finds

1
# Speolc)
020 % +0 (wlT) (2.59)

Obviously significant contributions can only arise if the deviation § < 1, see also subsection
2.6.4. Equivalently, in the squeezing Hamiltonian only those terms where the squeezing reso-
nance condition [40, 43, 44, 32, 39]

w =20 (2.60)

holds for some mode p will be kept. Assuming a nondegenerate spectrum of the eigenfrequencies
of the cavity this condition projects the sum onto only one mode p.

In the velocity interaction Hamiltonian one finds due to the quadratic combinations of different
ladder operators the more sophisticated velocity resonance condition [40, 39]

w= [0+, (2.61)

which could — in contrast to the squeezing Hamiltonian — in general be fulfilled by a set of
paired modes {ur}. This depends on the dimensions and the geometry of the cavity under
consideration. Note that due to the antisymmetry of the coupling matrix m,,, the two coupling
modes are not allowed to be the same.

Accordingly, the first term in (2.54) yields a product of n effective interaction Hamiltonians
HIT within the RWA.
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Neglect of Time-Ordering The remaining terms in (2.54) do consist of a sum over products

with commutators. A typical corresponding integral in the time evolution operator is therefore

given by
1 [T N .,
I; = T2 / dtpydtpy [ Hi(tp) aHI(tP(l))] X
0
O(tpe—1) = trw)Otpry — tras1)) @ (pu—1) — tpw)O L — tpusr)) - (2.62)

In the case of parametric resonance the Hamiltonians carry an oscillating time-dependence and
constant contributions H,(t) = A"t 4 Bo(¢) which follows directly from their Fourier ex-
pansion H,(t) = 3 A,e™" if one identifies A°™* = A and B®(t) = £0 A, et Therefore

the commutator cannot yield anything but oscillating contributions to the integral I,

ﬁ](tP(lc)) ; ﬁ[(tP(l))] = [Acom ’BOSC(tP(l)) - Bosc(tp(k))}
+ [Bosc(tp(k)) aBOSC(tP(z))}

— E : [AO:An] (einwtp(l) _ einwtp(k))

+ Z [/in , flm] exp [z’w (ntp(k) + mtp(l))] , (2.63)

n,m#0
since n, m are discrete and t is a continuous variable. Accordingly, these terms are neglected
within the RWA
1
L,=0(—), 2.64
=0 () (264
which is a neglect of time-ordering [39] itself.
Accordingly, the series expansion for the time-evolution operator can be re-summed in the

rotating wave approximation to yield
T n
/ dt, ...dt,T, [Hl(tl) N .Hf(tn)} WA (HgﬂT) , (2.65)
0

which leads to the effective time evolution operator (2.52).

2.6.2 Effective Squeezing Hamiltonian

For the resonance case one obtains via inserting the frequency deviation (2.56) into (2.26) for

the squeezing interaction Hamiltonian
100°

Hi @) = ) 537(‘:6% sin(wt) [(a,)*(t) + (@})*(t) + a,()al (1) + a},(1)a, (1))

+0 (€ . (2.66)
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According to subsection 2.6.1 one can only expect significant contributions in the time integral
if the resonance condition w = 2Q2 holds, where p can in principle be any mode of the system

under consideration. Therefore with the aid of (2.59) the effective squeezing Hamiltonian reads

, i 090 X .
HS: = 1875610 [(aL)Q — (a,)?] - (2.67)

This is obviously a generator for a squeezing operator for the mode p. For the model system of

a rectangular cavity where [, = (b—a,) this means that two cases will have to be distinguished:

® = (ngn,,n,r)is a right-dominated mode. In this case one finds

o000
—L =0 2.68
since the unperturbed eigenfrequencies of right-dominated modes (2.44) do not depend
on a, up to O (n). This case leads to a corresponding suppression by a factor of at least

n? in the effective squeezing Hamiltonian and is not considered here.

e 1= (n,mn,,n,l)is a left-dominated mode. Hence one finds with

o9 Q% Q0
po_ <Qlé ) +0 () (2.69)
u

da, b—a,
that this scenario is not suppressed and therefore more important for an experiment.
Among all left-dominated modes the lowest one is of special relevance since in an ex-
periment lower frequencies are favorable. In addition, this choice reduces the number of
possible combinations fulfilling the velocity resonance condition simultaneously. Accord-
ingly, here the case of fundamental resonance is considered which is incorporated by the
squeezing resonance condition [39, 40, 43, 44|

w =209 . (2.70)

From now on the fundamental resonance mode will be denoted with the multi-index
L=(1,1,1,1).

The effective squeezing interaction Hamiltonian (cf. [28, 39]) therefore determines according to

Hg = i€ [( 1) = (&L)Q} : (2.71)

with the squeezing parameter £ given by

g_ - QO (%ﬁo> : (2.72)

The Hamiltonian HZ; is a generator for a squeezing operator for the mode L.
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2.6.3 Effective Velocity Hamiltonian
The same procedure can be applied for the velocity interaction Hamiltonian which reads with
the aid of (2.56) and (2.26) in the case of parametric resonance
Ay Q)
H/(t) = = Z QOm Jewly cos(wt) [ (t)al (t) + aL(t)a,,(t) — au(t)a:f,(t) — au(t)a,,(t)}
+O (e ). (2.73)

The occurrence of inter-mode couplings now results in the more sophisticated resonance con-
dition (see also e.g. [39, 40])

[ES (2.74)

Generally, this resonance condition can be fulfilled by several pairs of right- or left-dominated

modes, i.e. the (symmetrized) effective velocity Hamiltonian reduces with (2.59) to

~ i 1 Qo 0o
HY = - /=2 1/
off 1 QO+QO 2( ) Qo) m,, ewl 0]

uy: =w

. QO

|20 5 ol
( QO QO) m,ewly [ala, — a,al] . (2.75)
;u/|QO Qol—w

The structure of creation and annihilation operators in the first sum resembles a non-diagonal
multi-mode squeezing generator whereas the second sum consists of hopping operators. Ac-
cordingly, multi-mode squeezing is induced by the velocity interaction Hamiltonian, whereas
the squeezing interaction Hamiltonian leads to single-mode squeezing. Two important cases (&
and © coupling) have to be considered. For the example of the model system of a rectangular
cavity proposed in section 2.4 the Hamiltonian shall be calculated explicitly. For simplicity it

will be assumed here that only one pair of modes fulfills the resonance condition.

e & coupling w = Q9+ QY. In this case the effective velocity Hamiltonian simplifies accord-

7 QO QO ta .
= 3 (“QO ”QO) myqew(b — ag) (al{ag alaZ) , (2.76)

which is a multi-mode squeezing Hamiltonian. If one wants to fulfill squeezing and ve-

ing to

locity resonance conditions simultaneously, i.e. 2Q% = Q9 + QY the number of possible
combinations — depending on the cavity dimensions — reduces significantly.
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— QY are both right-dominated modes. This combination requires large quantum num-
bers of the right-dominated modes since the reservoir is assumed to be larger than
the leaky cavity.

— QY is a left-dominated mode and I a right-dominated mode, respectively. Also this
combination is possible but requires Q29 # Q9 since this case would lead to Q% = Q9
which was excluded in the solution of the eigenvalue equation.

— Y are both left-dominated modes. This case can only be fulfilled if QY = Q9 since
09 is already the lowest left-dominated mode. However, due to the antisymmetry
of the coupling matrix M;; = 0 this combination vanishes and therefore does not

contribute at all.

e O coupling w = Q9 — Q9. For this case the resulting effective velocity Hamiltonian does
not resemble a squeezing but a hopping operator

. ([0 [ag
Y = 22 22 ) mpew(b — ap) (ala, — agal) (2.77)
31 8 ( Qg Q(l) 12 0 ( 1%2 1 2)

The & coupling is of special interest since if one does not insist on simultaneously fulfilling
the squeezing resonance condition parametric resonance could also be induced by lower
external frequencies w = Q9 — Q9 < 2Q% whose generation would simplify the experiment.

In the case of simultaneously fulfilling both conditions one finds several combinations.

— The frequencies QY are both right-dominated modes. This combination is possible
but large quantum numbers are required since the reservoir is larger than the cavity.

— Both modes are left-dominated. Also this combination is possible but requires large
quantum numbers. In addition, due to the non-equidistant eigenfrequencies of the
cavity and the shift induced by the non-ideal walls the fulfillment of this resonance

condition is hardly possible.

— QY is a right-dominated mode and QY some left-dominated mode, respectively. The
lowest possible right-dominated mode would therefore be given by Q5 = Q% =309

i.e. with Q% = Q9. This case will be considered in all further examples.

Note that the general procedure lined out in this thesis would most likely be applicable to
any possible combination — for the non-perturbative approach this is demonstrated explicitly
in section 5.5. However, in the chapters 3 and 4 only one special case of & coupling will be
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considered w = 2QY = Q% — Q% where the multi-index R stands for the right-dominated mode
fulfilling

Q% =309 . (2.78)
In this case the effective velocity Hamiltonian (2.75) (cf. [39]) simplifies to

HY = ix (a}&R - &La;) , (2.79)
where

L e o
x= 160 {1\ g Tt (b—ag)mp = O(n) (2.80)
L R

is the velocity parameter of the system. Since x = O (mL,R) = O (n) it follows that x/& < 1
in the limiting case of an almost perfectly reflecting mirror. The main contribution to particle
creation is therefore induced by the squeezing interaction Hamiltonian, but to include the effects
of losses it is necessary to fulfill both squeezing and velocity resonance conditions simultaneously.

As the complete effective interaction Hamiltonian one consequently finds with (2.71)

il = i€ |(@)? = (a,)?] + ix [} g — a,0f] (2.81)

2.6.4 Detuned Resonance

In the basic approximation in subsection 2.6.1 — the RWA — so far an exact fulfillment (6 = 0)
of the resonance conditions has been assumed. However, in a realistic experiment this will not
be the case since the external vibration frequency will in general be ”detuned” — it will deviate
from the fundamental (or any other) resonance frequency. One can assume one boundary of
the cavity to vibrate at the external vibration frequency w’ = w(1 + §) parameterized by

a(t) = ay + €lysin [w(1 + )t] , (2.82)

where 6 < 1 denotes the dimensionless deviation from the exact resonance frequency w. It
remains to be shown if the RWA is capable of describing the effects of detuning. The basic
initial assumptions are w7 > 1, ¢ < 1, and 0 < 1 with ewT = O (1) and owT = O (1).
Therefore, terms with €67 (wT)¥ are neglected with the RWA if I +.J > K holds. In the case
of detuned parametric resonance one finds for the oscillating factors
2 0 692 : 2
AQ(t) = ZQua—aOlOe sinfw(l +6)t] + O (¢°) ,

M,,@t) = mylw(l+d)ecosfw(l+8)t]+O () . (2.83)

uv
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The generalized integrals of (2.59) can also be written as

1
Alet
—|Ale +O<wT>’

7)<
5= Fserio(L).
7)<

1
i
—|Ale +(9( T)’

I = —|Ale .
2 \|e +(9(MT>, (2.84)

I, = 3A+o<

12 = _A+O(

where the detuning parameter A is given by

1 — el : V2 — 2cos(6wT)
AN=—3—— = |Al|e*?® Al =
LT [Ale, 1Al 6w T | ’

(2.85)

with ¢ denoting its complex phase. However, the neglect of time-ordering within the RWA is
questionable for non-vanishing detuning §. If one proceeds naively one finds for the example of

a rectangular cavity the total effective interaction Hamiltonian
Il = i€ |A| [e¥(a))? — e7%(a,)?] + ix |A| [ %alay — e¥aLal] (2.86)

In order to use the simpler expressions obtained earlier it is convenient to take advantage of
the invariance of the physical observables under phase transformations of the annihilation and

creation operators. By introducing new operators
a; — exp(ip/2)a; , ap — exp(3ip/2)ag (2.87)
the form of equation (2.81) is completely regained
Hjy = its |(a})* — (%)2} + X5 [&TL&R — Gyl (2.88)
where the squeezing and velocity parameters are modified by the common factor |A|
=&AL, xs=x1A] (2.89)

and thus become dependent on the perturbation time 7". Consequently, in the RWA the effects
of detuning would be taken into account by substituting & — &; and x — x; everywhere in
the obtained solutions (integrals over the perturbation time 7" will not occur). An analogous
procedure (with different phase transformations) can also be applied in the case of & coupling.
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Figure 2.5: The varying detuning parameter |A| is 1 for § = 0 and vanishes for 6w7T = 27. In
view of w7 > 1 this really requires § < 1. The half-width of above curve is 7.582.

The condition on x and £ not to vanish — this would completely destroy the dynamical Casimir

effect since then the effective interaction Hamiltonians would vanish — leads to an upper bound
WwT 0| < 27, (2.90)

see also figure 2.5. This constraint shows the RWA does not seem capable of including detuning
effects since the upper bound will always be reached at some time. The dependence of the
absolute value detuning parameter |A| on the argument dw7 is depicted in figure 2.5. An upper
bound for the detuning constant has also been found by other authors, see e.g. [43, 44, 41, 40].
However, in order to find resonant particle creation in these publications the detuning ¢ had to
be bounded by the dimensionless amplitude ¢, see also section 5.3.



Chapter 3
Response Theory

A closed system in an initial thermal equilibrium can be described by the canonical ensemble

where the statistical operator (see e.g. [49, 50, 51]) is given by
exp (—ﬁ[%)
p(t =0) = po = S
Tr {exp (—ﬂH()) }

with 8 denoting the initial inverse temperature. The expectation value of an observable }A’(t)

(3.1)

can be obtained via

vy =TV @am} =i} (3.2)

3.1 Expectation Values
In the interaction picture the expectation value at time ¢ = T of an observable Y reads
V() = T{VpT)} =T {TOT,050"(T,0)}

T T
_ Tr{f/?;exp (—z' / ﬁ,(tl)dtl) o7 exp (+¢ / fII(tQ)dtz)} O (33)
0 0

where 'fj denotes the anti-chronological time ordering operator and U is the time evolution
operator.

For a small interaction Hamiltonian A ;1" one could expand the time evolution operator yielding
a series expansion for (Y(T')). However, for the case of parametric resonance (see section 2.6)
this procedure is not justified, since the interaction Hamiltonian H ;1" is not small.

35
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Within the rotating wave approximation in section 2.6.1 an effective time-evolution operator

was derived

U (T, 0) ¥ exp ( iH ffT) (3.4)
where the effective interaction Hamiltonian (2.81) was given by

Al = i€ [(a))? - (a,)?] +ix [aLag — a,0f] - (3.5)
(Remember, the time-ordering had been neglected within the RWA.) Inserting the effective

time-evolution operator one finds for the expectation value of the observable Y
(v (T)) A Ty {ff exp (—i(ﬁfﬂ + ﬁgf):r) fo exp (+¢(ﬁfﬂ + I?IQVH)T) } . (3.6)

In the case of parametric resonance the effective squeezing interaction Hamiltonian H ST is not
small which makes an expansion of the exponentials futile. It is therefore necessary to separate

the two Hamiltonians. This can be achieved with the ansatz

exp ( i(HS, + Heg)f) — exp (_iﬁffﬁf) &(7) (3.7)

with 6 being an auxiliary operator. This ansatz also implies the initial condition (0) = 1.
Differentiating above expression with respect to 7 and multiplying with exp(—i—z’ﬁfﬂT) from the

left one yields
do (1)

o= —iexp(—iHS5T)HY: exp(+iHST)6 (1) = —iHY (1)6 (1), (3.8)
where the (7-dependent) squeezed effective velocity Hamiltonian has been introduced via
HY(T) = exp (—}-iﬁfﬂ ) HY: exp (—z’ﬁgﬂ) . (3.9)

Further-on all squeezed operators will be denoted using calligraphy letters. The differential
equation for 6 can be solved by formal integration. Iteration of the obtained solution yields

the series expansion

6(T) = 1-i / dr Y ()6 ()

/ dTl/ dr, .. / dTnﬂ(‘:ﬁ(Tl) .. 72;;(7'")
0

(=3)" g + [V 7%
d7'1 d7'2 .. dr,T. ['Heff(ﬁ) .. .Heﬁ(Tn)]
n! 0 0 0

J [exp <—¢/0T7%6Vﬂ(r)dr)] . (3.10)

I
Msz

S
Il

I
Msz

3
Il
o

I
N
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Though the original time-ordering (7;) had been neglected in the RWA, it has been reintroduced
at this point as a parameter (7.) ordering. Inserting this solution together with the ansatz (3.7)
into the expectation value and using the invariance of the trace under cyclic permutations of

its arguments yields
T
(1)) "™ Tr {jz(T)ﬁexp (—i / ﬂeVﬂ(Tl)dTl) X
0
A T A
po T exp (—H/ ’H;f(TZ)dTQ) } : (3.11)
0

Accordingly, also the observables have to be squeezed

A

Y(T) = exp (-I—ZH HT) Y exp ( if HT) (3.12)

but here using the physical perturbation time 7'. This picture will further-on be denoted with
squeezing interaction picture. Note that in this picture the statistical operator at time 7" relates

with the initial statistical operator via
p(T) = &(T)pod™(T) . (3.13)

As the advantage of these manipulations one can now expand the expectation value (Y(7))
into a perturbation series with powers of fOT HY:(T)dT = O (n). Keeping only terms to second

order (see also [39]) one finds

V(1)) = (vOT)) + (vO(T)) + (vO(T)) + 0 (H)*) , (3.14)

YOm) = I},

(o [an.i [ ansisi]}

0oy = {3 [anamn [ anim)]

% { T / dTlHeff 1 / d7'27'z¥f(7'2)/30}
1 ~ ~ N ~
—yre{y@ai [a#n) oA (3.15)

Therefore complete knowledge of the squeezed operators as well as of the commutators will be

~

5
|
=

essential. In above equations the lowest order (Y(®)(T)) just represents the result one would
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obtain for an ideal cavity (n = 0), which should enable one to check the results for consistency
with other authors. The next term (Y (T)) = O () accounts for the linear response. Finally
the term (Y ®(T)) = O (n?) consisting of three traces constitutes the quadratic answer. Note
that above expansion already implies the immanent failure of the quadratic approximation since
at large perturbation times 7' the perturbation parameter fOT ﬁgf(t)dt will become too large.
This problem can only be solved by considering all orders of n in perturbation theory, see also
chapter 5.

3.2 The Quadratic Response

The terms in (3.15) are still too complex to perform calculations. Therefore it is advantageous

to apply some simplifications to yield a more convenient form.

e Since the statistical operator g, involves arbitrarily high powers of creation/annihilation
operators it is practical to rewrite the linear response via exploiting the invariance of the

trace under cyclic permutations

oy =1ef |i [ an A 3@} (3.16)

such that only a finite number of commutators has to be calculated.

e The quadratic Tesponse can also be rewritten to take a more convenient form. Inserting the
identity ,50)7 (T) = Y(T ) po — [V(T), p,] and by making use of the property T[A(t)B(t')] +
TTA®)B(t)] = {A(t), B(t')} (see also appendix 7.3) one finds

vy = {3 [ [ i)
{ { dm%evﬂ(ﬁ), / dTZﬁerf(T2)}}
1 { 0] T [t [[amitn)}
_ Tr{ / dr,HYp (1)) [)7, / dTﬂerf(Tz)]}
+%Tr{ﬁ0 [% ( / dr 1Yy () / d@ﬁgf(@)) y]} . (3.17)

l\Dlr—l
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Thus one finds for the complete quadratic response

{00 )
{[ () 9T o
=

pui [ arfia(e) |i [ am ) 3@)
+ 300 |T: [ an#late) [ argfla(e) ()|}
+O ((7% ) ) . (3.18)

This form is now suitable for evaluating the traces since all commutators only concern a finite

¥(T) =

number of creation and annihilation operators and can therefore easily be calculated.

3.3 Squeezing

In this section the squeezed effective velocity Hamiltonian and the squeezed particle number

operator for the resonance modes shall be calculated explicitly. The squeezing operator

A

$(r) = exp (+illG) = exp (€[ (a,)* - (a])?] ) (3.19)
implies the following transformation rules of the creation and annihilation operators (see e.g.
[50, 52])

bp(r) = S(1)a,S'(r) = a,C(r) +ajS(r),

b (r) = S(r)a}S'(r) =alc(r) +a,S(r), (3.20)

with the hyperbolic cosine and sine functions
C(7) = cosh(2¢7) S(7) = sinh(2¢7). (3.21)

Since the effective squeezing Hamiltonian HS o only contains ladder operators of the fundamental
resonance mode L it follows via the commutation relations (2.21) that other modes than L
are not affected by the squeezing operator S, Applying above transformation rules to the
effective velocity Hamiltonian (2.79) derived for the case of © coupling (in subsection 2.6.3)
HY: = ix(alap — agal,) one finds for its squeezed counterpart

Al(r) = SV ALS (7) = ix [C(r) (aLag — aal) + 8(r) (as0e - alal)| . (322)
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When applying the squeezing procedure to the particle number operator one finds again that

only the fundamental resonance mode N, = &TL& 1, 1s affected

N (T) = S(T)N,ST)=35(T )AT3*( )S(T)a,S'(T)
[1+28%(T)] afa, + S(QT) [(a})u(am + SX(T). (3.23)

3.4 An Example: Particle Creation

For the example of a rectangular cavity as described in section 2.4 the number of created
particles due to the dynamical Casimir effect shall be calculated perturbatively. If one was
interested in none of the coupling modes (R and L) the calculation would reduce to the initial
expectation values since in the linear and quadratic response all commutators would vanish.
Therefore the dynamical Casimir effect in the case of parametric resonance produces only
particles in the fundamental resonance mode L and in the coupling mode R.

3.4.1 The Fundamental Resonance Mode

Employing the squeezed particle number operator (3.23) it is — with the aid of appendix 7.2 —

straightforward to compute the lowest order result
(NT)) = Te {7 (T)p } = (1+ 283(T)) NE + SX(T), (3.24)

where the initial particle number N? is given by the Bose-Einstein distribution

o 1
N? =Tr {aTLaLpO} = 5o 1 (3.25)

L—1
This is the well-known result that has already been derived in [40, 39] for ideal cavities (n =
0). The corresponding result with N? = 0 has also been found in [33, 34, 17, 18], where
the temperature corrections have not been considered. The calculation of the linear response
function requires the commutator of the time-integrated squeezed effective velocity Hamiltonian

/ HY(t)dt = 5 [( (T) = 1) (aLaR aLaR> +S8(T )( TaR—aL&;)] , (3.26)
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with the squeezed particle number operator A .(T)
_X R A
[ / HYe(t)dt N (T )] = % {(C(T) —1) (1+28%(T)) (aLaR + a‘fLa;)
+(C(1) = 1) S@T) (a}a + )
—S(T) (1 +28%(T)) (a}&R + aLa;)

~S(T)S(2T) (aLaR +ala }%)}
— ;_? {F1 (T) (a}aR + aLa}c)

+Fy(T) (a5 +ahal) } (3.27)
where the auxiliary functions F;(T') are given by

F(T) = [C(T)-1]82T) - 8(T) [1+28*T)] ,
F(T) = [C(T)—1][1+28*T)] — S(T)S(2T). (3.28)
Obviously the remaining combinations of creation and annihilation operators are not balanced

— see also appendix 7.2 —i.e. the number of creation and annihilation operators of every mode

(R and L) is not equal. Hence the linear response vanishes

(NI(T) {[/ HY: () dt , N (T )] }_0 (3.29)

Repeating these calculations for the quadratic response requires some more work. The term
without time-ordering in the quadratic response function (Y ®(T)) = (Y,;”) + (v2) is found
to yield

) = Tr{ﬁoi / rfla(r) | / rily(n) 30)| |

+S(T)F(T) (N, — Ny} - (3.30)
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Considering the term with time-ordering it is convenient to rewrite the expression

YOy = %Tl"{ﬁo [7; / dr HYy (1) / dryH (1), V(T )]}
= %Tr {ﬁo/dﬁda [ﬂf‘%(ﬁ)?{
%Tr{/so / drydr, | [Ali(rs) ?%eVﬂ(Tl)] o(r, —Tl),j;(T)}}

= 5{p0 [ dnar, [[Hate) Ha(w)] 067, - ) 9]} (331)

where in the last step it has been used that the commutator of two hermitian operators is
anti-hermitian and thus only contributing to the vanishing imaginary parts of the expectation
value. (Since other imaginary parts do not arise, the trace over this commutator has to vanish.)

It remains to calculate the commutator of the velocity Hamiltonians at different times

Alp(m) Hin(r)] = *[C(m)S(r) - C(r)S (2)] [aLaR—a’fLaL,a}aR iyl

[(ar)? ~ )+ (ab - (am . (3.32)
Accordingly, the trace with time-ordering is given by
) 1 [ . . '
o) = guefa |7 [andn) [ i) v )
= LT { o [ (@) = (@) + (a))° = (@h)>. V(D) } . (3.33)
where the exchange integral I, is calculated in appendix 7.4. After exploiting the relations

between the hyperbolic sine and cosine functions one finally finds as a result for the expectation
value of particles in the fundamental resonance mode L

(N(T)) = S*(T)+ [1+28(T)] Ny

+X[3¢2(T) — 20(T) — 1 — 26T S(2T)]

4¢°
+4—; [4C*(T) — 2C(T) — 2 — 46TS(2T)| N}
+4><_; [26°(T) = 20(T)] N3 + O (i) (3:34)

where N9 is the initial particle number of the mode R. The leading terms T8(27T) in the
quadratic answer stem from the time-ordering which is therefore especially important. The
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immanent failure of the quadratic approximation is represented by the fact that these lead-
ing order terms will cause the particle number to become negative when the duration of the

perturbation 7' becomes too large.

3.4.2 Coupling Modes

Since the effective squeezing Hamiltonian contains only operators of the fundamental resonance
mode, the particle number operators of all other modes are not affected by the squeezing

procedure. Considering the coupling right dominated mode R one finds for the lowest order

. - 1
(NEUT)) = Te dNpy = Tr { N } = Vg, = T

0 . (3.35)
r—1

In the linear response the commutator of the squeezed effective velocity Hamiltonian with the

particle number operator yields unbalanced terms which traces vanishes. Thus also here the

linear response is found to vanish
(N(1) =0. (3.36)

Considering the quadratic response one finds that the trace with time-ordering vanishes since
the commutators only yield unbalanced terms. Calculation of the other trace with the commu-
tators finally yields the expectation value of N R

(Np(T)) = Ny

XZ

+4—€2 [2C*(T) — 2C(T) + 1]
+4X—; [2¢*(T) — 2¢(T)] N}
25 2em) + AN+ O (1) (3.37)

For n = 0 there would not be any created particles in the reservoir due to the dynamical Casimir
effect corresponding to a perfect internal mirror.

Remarkably the coefficient of N? in (Ng(T)) equals the coefficient of N9 in (N, (T)). As one
will see in chapter 5, this feature is preserved to any order of n in the full response function.
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Chapter 4
Master Equation Approach

A fundamental problem in quantum theory is to study the time evolution of states or equiva-
lently the statistical operator. A corresponding differential equation accounting for either the
reduced or the complete statistical operator of a system is known as master equation. When
considering systems with losses one often defines a complete ideal system consisting of a (gen-
erally larger) reservoir and a leaky system. A reduced statistical operator only accounts for
either the reservoir or the leaky system and thus obeys a non-unitary time-evolution (changing

entropy).

4.1 Introductory Remarks

In the interaction picture the time-evolution of the statistical operator is governed by the von-
Neumann (see e.g. [49, 50]) equation

WO [,y 0] (4.1)

However, in the present case it is convenient to use yet another picture, where also the time-
dependence arising from the effective squeezing interaction Hamiltonian lﬁlesﬁ is carried by the
operators. The time evolution of the statistical operator is then only governed by 7-2;% Ac-

cording to (3.13) the statistical operator in this picture is given by
pT) = 6(T)pe'(T)
T T
= T, [exp (—z’ ’HXH(T)dT)] P T [exp (—H/ He‘%(T)dT)] . (4.2)
0

45



46 CHAPTER 4. MASTER EQUATION APPROACH

Hence one finds via differentiation that the time evolution of the statistical operator in this

modified interaction picture is governed by a modified von-Neumann equation

0O i [Aa). ot0)] = ~i8i(0). (43)

where above equation also serves as a definition for the action of the Liouvillian super operator
E(t) on the statistical operator p, (see also [49, 50]). When describing systems with losses
one is only interested in the part of the statistical operator accounting for the leaky system.
Accordingly one can define a reduced statistical operator (see also e.g. [52]) accounting only
for the system with losses via averaging over the degrees of freedom of the reservoir

prt) = Trp{p(t)} . (4.4)
In above definition Try means that the trace only concerns the modes of the reservoir cavity
Tr,, {A} = 3 (k. AR R, (4.5)
n{%,ng,...zo

where nZ is the particle occupation number of the i®® mode of the reservoir. Introducing the
time-independent projection super operator ¢ = B (cf. [50]) via its action on an arbitrary

operator A(t)

PA(t) = pr(0)Try { A(1)} (4.6)

it is obvious that it projects the complete statistical operator

~

Po(t) = pr(0)pL(t) (4.7)

onto the reduced effective statistical operator p; (t) of the leaky system.

4.2 The Zwanzig Master Equation

Multiplying the von Neumann equation (4.3) with ‘f3 and (1 — ‘IB) respectively one obtains two

equations of which the latter can be used to eliminate the term (1 — ‘3) p(t) in the first one.

With the reduced time evolution super operator

{(t,#) = exp (—i(l ) /t t E:(t")dt") (4.8)
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one obtains Zwanzig’s generalized master equation [50]

2P0 @@t — B, 0)(1 - B)6(0)

ot
_RE() / G, 1)1 — B RAt)d (4.9)

This equation holds to all orders in perturbation theory (1) but its application in practice is
not easy. Assuming the complete system to be in an initial thermal equilibrium state yields

considerable simplifications [50].

1. Since HY; from section 3.3 contains only odd and p5(0) only even powers of the creation
eff Pr

and annihilation operators for the mode R it follows with appendix 7.2 that

Tr, {ﬁgfﬁR(O)} ~0. (4.10)

In the Zwanzig master equation this means equivalently

A A~

PL(HP(t) = 0. (4.11)
2. The (initial) statistical operator of the thermal equilibrium factorizes

po = p(0) = p1,(0) ® pr(0), (4.12)

hence one finds (with Try{pz} = 1)

~

(1—P)p(0) = 0. (4.13)

These assumptions yield a simplified Zwanzig master equation

OBp(t)
ot

_ R /0 (e, VBB dt (4.14)

This exact master equation accounts for s3\3,5(15) and thus for the statistical operator of the leaky
system p; (t). It is still exact but too difficult to solve which makes it necessary to apply some

approximations in practice.
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4.3 Approximations

If the coupling between the system and the reservoir is sufficiently weak to allow a perturbative
treatment one can apply several approximations. For the special case of a rectangular cavity
as proposed in section 2.4 the expansion parameter n < 1 accounting for the transmittance
of the internal mirror was introduced. With the assumption of left-dominated modes coupling
to right-dominated modes in subsection 2.6.3 the effective velocity interaction Hamiltonian
was found to be small ﬁg& = O (n). Since it contains the ladder operators of right- and left-
dominated modes, respectively, it represents the coupling between system and reservoir and
therefore fulfills the aforementioned requirement. To obtain a reassurement of the response
theory approach of chapter 3 only those approximations which keep the level of accuracy at

O (n?) are appropriate.

4.3.1 Born Approximation

The squeezed effective velocity Hamiltonian HY; is of O (n) which also implies £ =0().
Accordingly, the approximation ﬁ(t, t') = 14+ 0O (n) (also known as Born approxzimation [52, 50])
leads to the neglect of terms that are of O (n?) in the Zwanzig master equation. Therefore one
finds via the Born approximation
OPh(t)
ot

= P20 [ 2OFo) +0 () (4.15)

an approximate master equation accounting for the reduced statistical operator. Eliminating

the projection super operator ‘/I\? in favor of the effective statistical operator p; (t) via ‘i?ﬁ(t) =
Pr(0)pL(t) yields

el - —1v, {20 [ Bpa0m 000 )+ 0 (). 1)

This Born master equation is retarded, i.e. the calculation of a solution is complicated by
the occurrence of p;(t') on the right hand side. Accordingly, yet another approximation is

advantageous.

4.3.2 Markov Approximation

Since according to equation (4.3) the Liouvillian operator £ = O (1) is comparably small, one
finds via formally integrating (4.16) that the substitution p; (') — p; (t) on the right hand side
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corresponds to an approximation neglecting terms of O (n?) in the reduced density operator
pr(t). This does not change the level of accuracy [O (n?)] at this point and is therefore certainly
justified. The corresponding approximation is also known as short memory approximation
[50, 51, 52] and yields

20 - —1v, { [ 208w 0,001 | + O () )

Using the definition of the Liouvillian operator ¢ in equation (4.3) one can equivalently write

aﬁaLt(t) = +1lrg {ﬂ;f(t)ﬁR(O)ﬁL(t) /0 ﬂ;f(t')dt'}

—Trp, {ﬁevﬁ(t) /0 ﬁevﬁ(t')dt'ﬁR(O)ﬁL(t)} +he +0 (), (4.18)

where h.c. stands for the hermitian conjugate operators. Performing the traces over the reser-
voir yields a master equation accounting for the leaky system, which does not contain any

operators of the reservoir.

4.3.3 Approximate Master Equation

The calculation of the traces involves terms of the form

Tey { [t — %) (00, (1) [anin —afal]) b = @l o (1), Tro{apha(0)ig}

—aypp(t)ag (1+ Np) . (4.19)

Note that Trp is invariant only under cyclic permutations of operators accounting for the
reservoir. Operators accounting for the left cavity are not affected by the trace. Finally, one



50 CHAPTER 4. MASTER EQUATION APPROACH

yields as a master equation

) (1) [2aL (o), — g on (1) — oy (1)as
+0u(t) [2,p1 (0}, — aLaspy (1) - pu(®)ala
+95(t) ] o ()8}, + a5, (D) |
—gu(t) [(@})?51(6) + pr(8) (@1)?]
—g5(t) [(@,)%pu(8) + 5, (H)@})?] + O (i) (4:20)
where the functions g,(t) are given by

0l = §—§s<t> {C(OENY+1) - N -1},
w(t) = 580 {cwENg+1) - N3},
B0 = LACW+8%0 - 0} N+ 1),

gi(t) = ;‘—g {[C*(t) + 8*(t) - C(t)] Ny +C*(t) — C(1)}

95(t) = >2<_§ [C*(t) + 8*(t) — C(t)] Np + S*(1) } - (4.21)
Above differential equation is quite different from the one used in [43, 44] which was not derived
starting from first principles. The effective statistical operator p; () whose time dependence
is governed by above equation obeys a non-unitary time-evolution (see also [49, 39]), which in
general leads to a changing entropy S, (t) = —Tr, {p.(t)Inp,(t)}. By inspection of the right
hand side of (4.20) one can easily verify that the time evolution preserves the hermiticity and
the trace of p;. A more persuasive indication for the correctness of the master equation can be
found by taking the limit of no squeezing, i.e. £ — 0. With

. _ 2 0 . 2 0
gr(l)gl(t) = X'tNg, gr(l)gz(t)—xt(NRH),

1imgi:3,4,5(t) =0 (4.22)
£—0

one arrives at a simplified master equation

8[5 £—0 NO At A A A AT A A A A
B—tL = ’YDTR [QCLEPLGL - aLaTL/’L - PL“LGTL]
Ny +1

+7p [Q&LﬁL&E — alapy — ﬁLdE&L} . (4.23)
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where the damping coefficient y, is given by v, = 2x%t. Apart from the time-dependence of the
damping coefficient above equation is exactly the well-known master equation for a harmonic
oscillator coupled to a thermal bath, see e.g. [52]. This time-dependence of 7, is a remnant of

the dynamic master equation describing the time-dependent system in the limit & — 0.

4.4 Solution Of The Master Equation

The simplified master equation (4.20) is a linear operator equation. However, the occurrence of
p; (t) on the right hand side complicates the calculation of a solution for the effective statistical
operator. Since the functions g;(t) are of O (x?) = O (n?) the level of accuracy is maintained
by applying the additional approximation p;(t) ~ p,(0) on the right hand side, which can be
interpreted as an additional Markov approximation. (Thereby terms of O (n*) were neglected.)
Consequently, an effective density operator is finally found via integration of the master equation
(4.20)

/3L (T) = ﬁL (0

)

+G,(T) 28} 1,0y, — 3,15, (0) — py (0)az

+Gy(T) (20,5, (0)af, — afaypp (0) — py (0)agiy,

+G3(T) a,py(0)a], + ar,p(0)ay,

—G,(T) [(a})?p,(0) + (0 (a,)?]

—G(T) [(@)*1,(0) + A (0)(@L)?] + 0 (n?) . (4.24)

The time-integrated coefficient functions G,(T) = fOT g;(t)dt are given by

61 = S {lem-am) v+ e e+ 1

Gy = S{lew-canngsjem -},

G4(T) = 4X—;{[QC(T)S(T)—28(T)]N%+C(T)8(T)—8(T)},
G = 2 iemsm - s g+ jemsm - s +er,

G(T) = X {[C(T)S(T) — S(T)] NS + %C(T)S(T) - gT} . (4.25)
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With this statistical operator for the leaky system one can now calculate the number of created

particles in all modes accounting for the left cavity (the system with losses).

4.5 An Example: Particle Creation

Obviously, all other modes than the fundamental resonance mode L do not show a quadratic
response since their creation and annihilation operators commute with those of the resonance
mode. Note that in the used squeezing interaction picture one will have to use the squeezed

particle number operator N, .(T). Therefore one finds for the lowest order
(NO(T)) = 8*(T) + [1 4 28*(T)] N?.. (4.26)

This result is in complete agreement with subsection 3.4.1 and therefore also consistent with
the conclusions found in other publications. According to (4.25) the functions G,(T) are all of

O (n*) which automatically leads to the vanishing of the linear response
(N(T)) = 0. (4.27)
The quadratic response can be brought into the form

(NPU(T) = SHT)G(1)Te {2a]5, (0

(@])2 + (@,)%) [(@,)%6,(0) + 5 (0)(a})?]
= (1+28%(T)) G\(T) [2N. + 2] + (1 +28*(T)) G,(T) [-2N}]
+=8(2T)G,(T) :QNE +OTy {(a}aL)%H

- S(ET)G,(T) [6N] + 4 +2Th {(a}aL)QﬁOH

_~8(21)G(T) :—2N2+2Tr{(&TL&L)2ﬁO}] . (4.28)
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At a first glance the occurrence of terms with Tr {(&TL&L)QﬁO} seems to be in contradiction
with the results obtained via the response theory approach in subsection 3.4.1 but due to the

relation
G3(T) — G4(T) = G5(T) =0 (4.29)

following from (4.25) these contributions cancel. The terms linear in 7" in G, 5(T') lead to the
terms proportional to £7'S(27T) in the expectation value (N, (T)). Finally, one finds complete
agreement with the quadratic response of Section 3.4.1, i.e.

(NL(T)) = ST)+ [1+28%(T)] N
+4X—; [3C*(T) — 2C(T) — 1 — 26T S(2T))
+4X—; [4C*(T) — 2C(T) — 2 — 4T S(2T)| N}
X D) — 2] N+ O () (4:30)

For the derivation of particle creation effects of right-dominated modes one would have to derive
an effective statistical operator for the reservoir. In this case another projection super operator

~

B’ would have to be defined such that it would project onto the corresponding right-dominated
modes

Ph(t) = pr(0)Tr, {p(2)} - (4.31)

The general procedure however, would be the same as for left-dominated modes.
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Chapter 5

A Non-Perturbative Approach

In the previous chapters it turned out that the particle occupation number of the resonance
mode L would become negative at some time 7. This unphysical result poses a contradiction
with the positive definiteness of the particle number operator and roots in the immanent failure
of perturbation theory at large perturbation times 7. Note that the expansion had not been
done in the squeezed effective velocity Hamiltonian 7—1;’3 but rather in fOT ﬁgfdt which can
always grow very large even if ’;ft(‘;f is a small quantity. This problem is therefore only solved

by including all orders of 7.

5.1 General Procedure

The most general form for a quadratic and possibly time-dependent Hamiltonian containing
the creation and annihilation operators of K modes is given by
K K
=iy [aCya; —alcyal| +i > alDa,, (5.1)
i,j=1 .j=1
where the factor ¢ has been separated for convenience. The matrix elements C;; € C and
D;; € C are complex-valued and can depend on time. Due to the commutation relations (2.21)

and the hermiticity of H the matrices have to obey

Cij = Cji: Dz’j =-D;

Jio

(5.2)

which means that the squeezing matrix C' is symmetric and the hopping matrix D is anti-

hermitian. Suppose the time-dependence of an arbitrary operator A is given by

A(T) = exp(iHT)A(0) exp(—iHT). (5.3)

95
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Since A(T) can be expressed in ladder operators one finds with the unitarity of exp(iHT) that

their time-dependence is also governed by
a(T) = exp(iHT)a(0) exp(—iHT), (5.4)

with H being possibly T-dependent. This possible time-dependence makes the introduction of
an auxiliary parameter 9 while keeping the time 7" fixed necessary

i(9) = exp(iHTY)a(9 = 0) exp(—iHTY) . (5.5)

Above expression can be evaluated via introducing the 2K dimensional column vector

[ @) )

p)=| % — exp(iHT9)2(0) exp(—i HTY) . (5.6)

\ al(v)

To obtain the vector Z(19) at time T one is therefore interested its value at 9 = 1. Differentiation

with respect to ¥ yields
dz(9)
dy

where Z(0) just contains the initial creation and annihilation operators whose commutator with

— T [H , @(19)] — Texp(iHTY) [ZH , @(0)} exp(—iHT9), (5.7)

the Hamiltonian can easily be calculated. Two cases need to be distinguished

e 1 <] < K In this case one finds

i1 ,3,(0)] = |ifl 4] = i |Dya, —2Cyal] = 2zK:Aljaej(o), (5.8)
Jj=1 j=1

where A;; stands for the corresponding coefficient matrix.

e K +1<[<2K For such values of [ one obtains

[if],:ﬁl(o)} - [u&r,a}] - ([iﬁ,&l_KDT

= 3 [ DLy} — 20 se ;] = 3 Ay,(0). (5.9)
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Accordingly, the matrix elements of the coefficient matrix A are given by

D, ifl<j<Kand1<I<K
"] 20k, if1<j<Kand K+1<I1<2K ’ '

D;“_K,j_K ifK+1<j<2Kand K+1<I<2K

or, equivalently

A= D -7 (5.11)
-2C D°

Here the fact has been used that H is only quadratic: The commutation relations (2.21) lead
to a linear combination of creation and annihilation operators that can always be written as
a (possibly time-dependent) matrix A acting on z(¢). The time evolution of Z(¥) is therefore
governed by the differential equation
d2(9)
dv
The matrix A can be diagonalized if C D = D* C holds. In any case, the complete solution of

= Texp(iHTVY)AZ(0) exp(—iHTY) = AT#(9). (5.12)

the aforementioned differential equation can be obtained via

(V) = exp (ATV) £(0), (5.13)
and hence
i(T) = z(d=1)=exp(AT)2(0) = U(T)z(0), (5.14)

which reduces the problem to find the exponential matrix of A, i.e. the time evolution matrix
U(T,0) = exp(AT), (5.15)

that can always be calculated, regardless on the particular form of A.

5.2 Generalized Expectation Values

For the calculation of particle number expectation values the following generalized expectation
value is helpful. An expectation value of an arbitrary product of creation and annihilation
operators at time 7" can be evaluated via

<$i(T)$j(T)> = Tr{ji(T)ij(T)ﬁo}

= > Ui @)U (T)Tr {,(0)3,(0)0} - (5.16)

m,n=1
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where the initial trace (see also appendix 7.2) is found to yield

Accordingly, one finds for the quadratic expectation value
2K

(z;(T)z;(T)) = Z [Ui,n+K(T)N7(z) + Ui x(T) (1 + Nng)] U;n(T)

n=1

_ Z Up(T) (1 4+ N2_g) +Z insx(T) Uy (T)N,,

n= K+1

= Z{ ] n+K T)
U0 (1) + Uy TV (1] N2} (5.18)

Therefore any quadratic expectation value can always be reduced to the initial particle occu-
pation numbers. If one considers the expectation values of particle number operators, the first
term in above sum accounts for the vacuum contributions, whereas the other terms include the

temperature effects.

5.3 An Example: Particle Creation

Having simplified the Hamiltonian describing the complete system via applying the RWA in
subsection 2.6.1 the effective interaction Hamiltonian was found to be

Il = B+ Bl = i€ [(@])? = (a,)*] + ix [afag — aaf] - (5.19)
This expression occurs in the time evolution operator in the interaction picture, i.e. to calculate

the expectation value of an observable Y one has to evaluate
(Y/(T)) = Tr {Ye il e+zg;ﬁT} - Tr{ il T =il fero} . (5.20)

Since Y can be expressed by ladder operators one just has to evaluate the time-dependence
of the creation and annihilation operators d, (T) = eteTg_e~eaT. The effective interaction
Hamiltonian (2.81) involves only K = 2 different modes, the vector Z(¢) will therefore be

four-dimensional

iy () #.(9)
M oaw || s
=1 |7 &0 | (5:21)
i (9) ,(0)
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Accordingly, one can identify the diagonal real squeezing matrix

_[ €0
e (£0) o

resulting from the effective squeezing Hamiltonian and the antisymmetric real hopping matrix

[ 0 x
Q_(_X 0)’ (5.23)

which results from the effective velocity Hamiltonian in the case of © coupling. Equivalently,

the coefficient matrix is given by

0 x 2 0

a=| X0 00 (5.24)
2 0 0 x
0 0 —x O

This matrix can easily be diagonalized, for the eigenvalues of A one finds

A= EHVE =Y,
ho= E-VE-,
Ay = —E+/E -2,
Ay = - VE =X (5.25)

Note that in the coupling assumed in subsection 2.6.3 x = O (m, z) = O (), i.e. that x* < &2
holds. Therefore the eigenvalues ); are real. The matrix U(T) = exp(AT') can be calculated
using some computer algebra system and is given in appendix 7.5. Since one wants to calculate
the expectation values of particle number operators the following two generalized expectation

values are of special interest

(NL(T)) = (2321) = (UpsUsy + UpaUs,)
+(U13Us; + Uy Ugy) N7
+(U19Usy + Uy,Usy) Ny
(Np(T)) = (8425) = (UpUy + UpUyy)
+(UsyUyy + UpUgs) Ny,
+(UpyUyy + UpyUyy) Ny (5.26)
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The first lines in above equations therefore denote the vacuum contribution to the particle
creation, whereas the rest is induced by temperature corrections. Accordingly, one finds for the

particle creation in the fundamental resonance mode L
WD) = e {econ o7 (64 vE )] [+ vE— ]
+cosh [27 (6~ V&= 2] [e - vE —¢]

ﬂxmwmﬂ—Qﬁ—x}

+2(52N7—2X?) {fcosh [QT (§ + W)] [§ + \/62—7]
+¢cosh [27 (€ — V&= )| [é -V —¥]

—x? cosh [2T¢] [cosh <2T ) + 1}

N3
@)

The number of created particles due to the dynamical Casimir effect is therefore growing ex-

{XQCOSh[ZTf][coﬁl(QY’ 52—-x2)-—1}} . (5.27)

ponentially with the perturbation time 7. Depending on the initial particle content of the
cavity (which is equivalent with the initial temperature) the temperature effects will enhance
the dynamical Casimir effect. Inserting the corresponding matrix elements for the coupling

right-dominated mode R one finds for its expectation value
(Ne(T)) = m {ﬁcosh [QT <§ + m)} [5 _ XQ]
+¢ cosh [QT (5—@)} [§+ fQ—X]

—2x% cosh [2T°¢] — 2 (52 - X2)}

[\

+N72 {X2 cosh [2T°¢] [COsh (QT\/W> - 1] }

208 - x?)
+2(§2N7_102Xz) {fcosh [QT (5 + mﬂ [g _ M]
+£ cosh [QT (5 — \/52—7)} [g + \/52_7]

+1

—x? cosh [2T¢] [cosh (2T £ — XZ) ] } . (5.28)
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Accordingly, also outside the leaky cavity particles are produced due to the dynamical Casimir
effect. The remarkable agreement of coefficients of N% in (N;) and of N? in (Ng) as had
already been noticed in the quadratic answer is preserved for all orders in 7. Therefore these
terms seem to fit the classical picture of particle transportation through a permeable membrane
where the particle flux is proportional to the number of particles on the other side. The other
terms therefore seem to resemble pure quantum effects.

Considering the effects of detuning it is visible that — following the naive approach of subsection
2.6.4 — the effect of substituting & — |A[& and x — |A|x in the expectation values is the
introduction of an effective time scale

V2 — 2cos(6wT) e (690T)2

0] w 6

Te=|A|T = +0((691)) ]| . (5.29)

Since (5.27) and (5.28) are monotonously increasing functions of T4, the effect of particle

creation would be largest when T4 reaches its maximum at

oT, RWA
aTﬁ (Trna.x) = 0 ?
16| Wl "2 216 QT =, (5.30)

see also figure 6.1. Such a maximum is unphysical and inconsistent with the results obtained
in the literature [40, 41, 43, 44] where an exponential growth is found as long as § < €/2.
This might indicate that the neglect of time-ordering within the RWA is not applicable in
the case of a non-vanishing detuning. In addition, so far a constant detuning 0 has been
assumed. This assumption is justified only in the beginning, when the back-reaction of the
field is still small, but in general the detuning will depend on the back-reaction and therefore
also on the perturbation time 7. The experimentalist will therefore always find a maximum
number of created particles. In the RWA the particle number can in any case be expressed by
exponentials (N (7)) o exp(A; |A|T) which suggests that parametric excitation can only occur
if the arguments of the exponentials become large, i.e. \;|A|T > 1. Neglecting the velocity
effect (x = 0) the only positive eigenvalue is given by A; = 2£. Accordingly, the corresponding

exponent
1 /0Q20\? ¢

2|A|T =~ =) —1/2—2c0s(2020T 5.31

1817 =1 () /2 - 2eost2ontT) (531
is found to be bounded by

1e [0\
<UIANT< —— | &) . 5.32
0<2lalT < 5 (o) (5.32)
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The upper boundary should exceed 1 in order to gain larger values in the exponent, i.e. the

effect of particle production will only be considerable if

1 QmO 2
\5|<—< L) € (5.33)
2 \ 9

holds. This upper bound for the detuning is similar to the results in [40, 41, 43, 44]. However,

here the criterion is not strict — due to the neglect of time-ordering in the case of a non-vanishing

detuning and in addition one would always find a maximum number of created particles.

5.4 Comparison With Known Results

Consistency of the results obtained via the non-perturbative approach with the perturbatively
obtained earlier results can be checked by expansion around x = 0 up to second order. However,
even for larger values of n with moderate perturbation times 7" the quadratic approximation is
a very good one. The figures 5.1 and 5.2 shall illustrate the quality of the approximation.
Note that at least the quadratic answer is necessary to treat particle creation effects outside
the leaky cavity. In figures 5.1 and 5.2 the effects of temperature have already been included. At
room temperature these effects enhance the pure vacuum effect by several orders of magnitude
(see also [38, 39, 40]).
To compare these results with those obtained by other authors one does not only have to look
at the lowest order results, but can also consider a different scenario. It has been predicted
in [40] that in an ideal cavity the number of produced particles will exhibit oscillations in the
case of strong inter-mode coupling. This case can easily be reproduced if one considers a case
outside the initial intentions where x assumes large values, in particular y > £. In view of the
arising imaginary eigenvalues in (5.25) it is obvious that the particle numbers in (5.27) and
(5.28) will exhibit oscillations. It can be checked explicitly that the imaginary parts of the
particle number cancel as they have to (the particle number is a physical observable). This
scenario is unrealistic if one considers the coupling between left- and right-dominated modes
as was done in subsection 2.6.3, since x is then relatively small. However, in the case of strong
inter-mode coupling of left-dominated modes (in analogy to [40]), i.e. if R stood for another
left-dominated mode, x may very well become large enough to cause oscillations, see also figure
5.3. Remarkably the phase of the two modes is exactly half the period: When (N, (T')) is at
its maximum, then (N,(T)) is at its minimum and vice versa. This fits nicely with the picture
of mode hopping mediated by the inter-mode coupling x. One even observes a decrease of the
particle number in the L-mode for small times. When defining an effective temperature (see
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Figure 5.1: Particle creation in the fundamental resonance mode N, for N = 1000, N9 = 100,
¢ =1 Hz, and x = 0.5 Hz. An exponential growth is found in all cases. The lowest order
result corresponds to the assumption of an ideal cavity, whereas higher orders resemble the

corrections due to leakage.
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Figure 5.2: Particle creation in the right-dominated coupling resonance mode N, for N? = 1000,
N =100, £ =1 Hz, and x = 0.5 Hz. The lowest order result (ideal cavity) just corresponds to
a constant initial particle number. The particle production in the reservoir due to the NSCE

is a much smaller effect compared with figure 5.1.
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Figure 5.3: Another scenario. The particle numbers in the resonance modes N; and Ny show
oscillations for NY = 1000, N% = 100, £ = 1 Hz and y = 11 Hz. This scenario is possible if

exceeds &, i.e. in the case of strong inter-mode coupling of equally-dominated modes.
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e.g. [39]) this would correspond to an effective cooling of the L-mode. An extreme case of the
© coupling scenario would be the limit of no diagonal squeezing, i.e. £ — 0. In this case one
would (within the RWA) just obtain oscillations of the particle numbers with the total particle
number being constant (N, (T)) + (Nx(T)) = NP + N}. Therefore this case can not be used
to induce resonant particle production with comparably low external vibration frequencies.

5.5 Multi-Mode Squeezing

In Section 2.6.1 a special case of coupling had been assumed. Since the scenario of & coupling
leads to a non-diagonal multi-mode squeezing velocity Hamiltonian, also the consequences
arising from this combination would be of interest. In this case the squeezing matrix C does
also contain non-diagonal elements. Assuming the effective interaction Hamiltonian to be given
by

Al = i€ [(a])? - (a,)?] + ixe |ahak — azag] . (5.34)

one finds that the hopping matrix D vanishes, since no hopping operators are involved. The

coefficient matrix A consequently reads

0 0 28 x4

0 0 xg O
26 xg 0 O
X 0 0 0

[
|

(5.35)
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The solutions one finds for the full response function of the resonance modes are slightly mod-

ified. The expectation value of the fundamental resonance mode L determines as

H

UM = ey feomor (er o) [es
+& cosh [ZT (5— &+x )} [f
2T\/£2+7x@) 2 (&

Np {gcosh [2T<§+ +Xea> [f ]

GRS }
+£ cosh [ZT ( 24+ X@)} [& £+ Xé]
—|-X§B cosh [2T°¢] [cosh <2TW/§2 + Xé) + 1] }
NO
+2(§27'f)<é) {X@ cosh [2T°¢] [cosh (QT\/EQ + X@) 1:| }

H
j

+2x2 cosh [2T€] cosh

N\

x)}

?
>
S

(5.36)

In contrast to equation (5.27) the limit of no diagonal squeezing, i.e. & — 0 does still induce
an exponential growth of the particle number. Any resonant creation of particles therefore
requires a non-vanishing squeezing matrix C, see also [39, 38]. Accordingly, the @ coupling
configuration can be employed for particle creation without fulfilling the single-mode squeezing
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resonance condition w = 292. For the corresponding coupling mode R one finds as a result

(Np(T)) = m {gcosh {QT (§+ m)} [5_ € +x2
)

+§cosh[2T(§— &2+ x ][f-i- 2+ x4

K

+2x2 cosh [2T¢] cosh <2Tm> —o(e2+ Xé)}

NO
+m {Xé cosh [2T°¢] {cosh (2Tﬂ§2 + Xé) — 1]

NO 2 2
“ree o (e e )| e e
+& cosh [ZT (& — /&2 +Xé>} [f—l— \/ &%+ Xé}
+x5 cosh [27°¢] [cosh (QT\/é“2 + xé) + 1} } . (5.37)

Again one finds an agreement of the coefficients of NY in (N, (T)) and of N? in (N,(T)) but
since the effective interaction Hamiltonian does not contain hopping operators this must be
credited with multi-mode correlation effects.
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Discussion

The aim of this thesis was to find an application for the canonical approach to vibrating cavities
with losses. It could be demonstrated explicitly that this is possible — provided the complete
system including the reservoir is solved. The canonical approach has proven to be applicable
also for this kind of system. Within the RWA the employed methods (response theory, master
equation ansatz, and a non-perturbative approach) were found to lead to consistent results. For
the example of a rectangular cavity in the case of parametric resonance the particle number has
been demonstrated to exhibit an exponential growth if the effective interaction Hamiltonian
contains squeezing generators. However, it turned out that the RWA does not seem capable of
including the effects of detuning.

Comparing the three basic procedures it must be mentioned that the response theory approach
and the master equation ansatz do require about the same effort. However, these methods only
hold to quadratic order in fOT HY () dt which leads to the restriction that the obtained results
are only valid within a certain time limit. The non-perturbative approach presented in chapter
5 is not subject to this restriction and is therefore favorable. The required effort is comparably
low, since the necessary calculations can be performed using computer algebra systems. How-
ever, considering the possibility of more complicated mode couplings the computing time could
become quite large. In special cases it might therefore be advantageous to employ the response
theory approach.

6.1 Estimates

In view of a possible experimental observation of quantum radiation it is perhaps helpful to

gain an impression of the relevant parameters.

69
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A leaky cavity with a typical size of [; = b — a; = 1 cm would have a fundamental resonance
frequency of QY ~ 150 GHz. Accordingly the external vibration frequency would have to be
around w = 300 GHz. Note that one can always adjust the size of the cavity to lower these
values. The corresponding coupling right dominated mode must have a frequency of about 9, =
309 ~ 450 GHz. Currently a cavity quality factor of @ ~ 10® and a dimensionless vibration
amplitude € ~ 1078 are within the range of experimental possibilities, see also [43, 44, 40] and
references therein. At room temperature 1/5 = 300 K one finds for the initial particle content
N? = 240 in the leaky cavity and N§ = 80 in the reservoir (independent of its size). For
the calculation of the velocity parameter y a reasonable value for the ideality of the internal
mirror is needed — strictly speaking the perturbation parameter 7. This can be achieved via

the quality factor @ of a resonator as defined in [53]

Q=2 Energy in Cavity
=27

. 6.1
Energy loss per period (6.1)

For the model system in section 2.4 a classical estimate yields

Q:?r—ﬂfzzw <1+(Ql%>2> :0(%> , (6.2)

where 7 denotes the transmission amplitude through the internal dispersive mirror. Accord-
ingly the corresponding perturbation parameter 7 = Q%°/y fulfills n = O (10*).

Using these values the squeezing parameter of subsection 2.6.1 determines as & ~ 150 Hz and
a reasonable value for the velocity parameter can be given by x ~ 2 mHz. Since x? < &2 the
quadratic response completely suffices for moderate duration of the vibration.

With these parameters the exponential particle production in the fundamental resonance mode
(in the left cavity) is calculated in figure 6.1. The dynamical Casimir effect would therefore
be enhanced significantly [of about O (10?)] at room temperature, see also figure 6.1. This
is in agreement with other results, see e.g. [38, 39, 40]. In a possible experiment one would
consequently have to match the resonance conditions within the range of detuning (here as-
sumed to be §2Q% ~ 200 Hz) for only some milliseconds to yield measurable results. However,
the assumption of a constant detuning is unphysical, since the detuning will depend on the
back-reaction of the created field on the moving mirror in an experiment. Finding a maxi-
mum number of created particles at a constant detuning — see also figure 6.1 — might indicate
that the neglect of time-ordering is not applicable in the case of non-vanishing detuning. A
heated cavity might then even be advantageous — provided the cavity is still nearly ideal at its
characteristic thermal wavelength. Generally the external frequency will have to coincide with
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Figure 6.1: Comparison of the particle production rates in the fundamental resonance mode
(N.(T)). Temperature effects do dominate the pure vacuum effect already at very low tem-
peratures. At room temperature (300 K) one finds the initial occupation numbers N? = 240
and N9 = 80. The curves were calculated using £ = 150 Hz for the squeezing parameter
and y = 2 mHz for the velocity parameter. The external vibration frequency would have
to be w = 300 GHz. In this case the (unphysical) assumption of a constant detuning of
dw = 200 Hz would already induce considerable deviations. The maximum is then reached at
T, ..« = 7/(200Hz) ~ 0.015 s and indicates that one has left the region where the neglect of
time-ordering in the RWA is applicable. However, initially the two room-temperature curves
are in agreement. Finite temperature effects enhance the pure vacuum effect by several orders

of magnitude.
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the resonance frequency within the range of for several oscillations, which typically implies an
initial detuning of || < €/2 [43, 44, 40].

Note that the shift of the eigenfrequencies of the cavity induced by the finite transmittance of
the internal mirror — as given in equation (2.44) — of order n = O (10™%) > |§| needs to be
considered since it constitutes a comparably large effect.

An experimental verification of the dynamical Casimir effect with the configuration of a rectan-
gular cavity seems to be a challenging problem but within the reach of the current experimental

apparatus.

6.2 Conclusions

In order to produce measurable effects the cavity would have to vibrate for only some mil-
liseconds, see also figure 6.1. But even after only one millisecond (= 10® periods) a classical
estimate (6.2) based on a cavity quality factor of Q@ = 10® (or equivalently n = 10~%) would
result in drastic energy losses. However, as has been shown in the present thesis, the calcula-
tions based on a quantum treatment of the dynamical Casimir effect show that the effects of
losses are almost negligible compared to the rate of particle creation in the resonance case. The
calculations in this thesis are based on the simplifying assumption that the surrounding cavity
— including both the reservoir and the leaky cavity — is an ideal system. The error made by
this presumption is of O (Q ') (with @ being the quality factor of the surrounding cavity) and
therefore certainly negligible. In addition any back-reactions of the created field on the mirror
were neglected. This will certainly lead to a varying and therefore time-dependent detuning
§(T'). Therefore, if the perturbation time 7" becomes too large, back-reaction effects need to be
considered, since the detuning will eventually exceed its critical value [43, 44, 41, 40] § > ¢/2
above which resonant particle creation is impossible.

In some cases cavities with quality factors as large as Q = 10® may not be available or one will
not be satisfied with the error of a surrounding cavity. In such situations however, an experi-
mental verification of the dynamical Casimir effect could be facilitated by a configuration where
the vibrating cavity is enclosed by a slightly larger one (or even a series) as is demonstrated in
figure 6.2. This would increase the ideality (or Q-factor) of the complete system and therefore
minimize the error made by the assumption of a surrounding ideal cavity. For some cavity
configurations it will be possible to resonantly create particles via multi-mode squeezing (&
coupling, see subsection 2.6.3) induced by the effective velocity Hamiltonian. However, for a
complete understanding of the spectrum of the produced particles the complete eigenfrequency



6.3. OUTLOOK 73

Figure 6.2: Sketch of a vibrating cavity enclosed by a larger one. This configuration may
facilitate the experimental verification of the dynamical Casimir effect inside the smaller cavity.

spectrum of the involved modes must be known. In this case particles would be produced due

to the velocity term.

6.3 Outlook

In this thesis the trajectory of the mirror has been assumed to be prescribed, i.e. the mirror has
not been treated as a dynamical variable. This simplification is justified, if the quantum effects
of the field are comparably small with the mirror’s inertia. But just in the case of parametric
resonance these quantum effects accumulate in time and at some point constitute a large effect,
see the particle number in figure 6.1. To predict the long-time-behavior of the system, the
back-reaction of the field (i.e. the created particles) will have to be examined, see e.g. [45, 46].
This can also be achieved by a Hamiltonian formulation [28].

For the experimental observation of quantum radiation it will be necessary to place some kind
of detecting device (represented by a two-level atom, an ionized gas, etc.) in the cavity. This
will have considerable consequences (see e.g. [33, 34, 55]), since the presence of a detector will
also influence the field.

A further step towards a realistic experiment will be to consider the electromagnetic field instead
of massless scalars. In this case several new difficulties arise:

1. The boundary conditions on the field cannot just simply be described by Dirichlet (or
Neumann) conditions. Especially for moving walls their form will be more complicated
due to Ampere’s law (mixing of the electric (E) and magnetic (B) fields). This would
complicate the time-dependence of the eigenfrequencies and eigenfunctions but these can
still be obtained, since the corresponding differential equation is linear.
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2. As the electromagnetic field is a gauge field, one has to eliminate the unphysical degrees
of freedom in order to quantize it. Again, for dynamic external conditions this requires

special care, see e.g. [54].

3. The different polarizations of photons need to be taken into account. This is of special
interest concerning the fulfillment of the resonance conditions, since these modes will in

general be degenerated which will increase the number of involved frequencies.

The interaction Hamiltonian is determined by the eigenfrequencies and eigenfunctions of the
cavity. For several stationary geometries (rectangular, cylindrical, spherical) these are well-
known and can be divided into transversal electric (TE) and transversal magnetic (TM) modes,
see e.g. [53]. In order to consider losses which will influence the effective velocity Hamiltonian it
will be necessary to find an appropriate model for a dispersive mirror. This can be achieved by
using an arbitrarily thin dielectric model slab with an infinite permittivity: e(z) = 1 + ad(x),
see also [48]. As was shown there, this leads to a similar eigenmode equation. Accordingly, it
can be expected that the formalism presented in this thesis also holds for photons and that in

a corresponding experiment photons would be detected.
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Appendix

7.1 Eigenfunctions

The insertion of the eigenfrequencies into the ansatz (2.37) leads to the normalized eigenfunc-

tions f,(z). These split up into two classes of solutions. In the case of left-dominated modes

one finds for their z-dependence

;
2 z—a) z—a

m{sin (n,mi=2) — Mot [% cos (n,mi=2) =2

#azsin (n =) 4+ 012,

ffw Jeft (z) =

ﬁ(_l)nﬁl c—z
sin (

\ 2 sin (nwwg)

ifa<z<b

nxwm) UMES (@) (nflm,l) fb<z<e

whereas for right-dominated modes the eigenfunctions determine according to

g(—l)nwﬂ . r—a 2
sin |\ n,mw nnm,r + O (nnx,l)

2sin (nwwﬁ%‘;) c—b
Q{Sm (nwﬂ-%) ~ Mg r [5 cos (nxwﬁ) %

b sin (n,75)] } o2,

\

if a<z<b

ifb<zx<e

(7.1)

(7.2)

Accordingly, the corresponding coupling factor between a left- and a right-dominated mode is

of O (n).
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7.2 Traces Of Ladder Operators

Some rules shall be provided here to enable a convenient calculation of traces involving a
diagonal statistical operator p, with combinations of initial creation and annihilation operators.

The unperturbed Hamiltonian I:IO is diagonal, i.e.
. i 1
o
With the definition of the initial statistical operator

exp <_5f{0)

" e fow (i)}

it follows that its series expansion will contain arbitrary powers of N W= &L&u' The trace can

(7.4)

be performed in the Fock-space, where

allny = Vn+1n+1)

a;ln) = +/njn—1) (7.5)
holds. Since the states are orthonormal

(nlm) =14,,,, (7.6)

it is obvious that the only non-vanishing traces may arise from terms where the creation and
annihilation operators — contained in the operator A — do not create orthogonal states

o0

Tr {A} = Z (ny,ng, ... |Alng,ny,...), (7.7)

Ty sTgyee =0
where n, denotes the particle occupation number of the " mode. As a consequence, only
the ”balanced” traces where the number of creation operators of a particular mode equals the
number of annihilation operators of that mode yield non-vanishing results. Together with the
commutation relations (2.21) these traces can be reduced to the initial expectation values of

creation an annihilation operators. For some relevant basic types of traces these calculations
shall be done here.

e All "unbalanced” traces where the number of creation operators of a certain mode does
not equal the number of corresponding annihilation operators must vanish. This also
implies the vanishing of traces with an odd total number of ladder operators.
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e The statistical operator is normalized
Tr{p,} =1. (7.8)

e The initial expectation value NB is defined as

b
Tr{ala,po} =0, N = —*— (7.9)

Iz pys it e,BQg -1 ’
if p, describes a thermal equilibrium state.

e Via the commutation relations this also implies
A oAt oA 0
Tr{a,a}py} =0, (1+N)) . (7.10)
e Some higher order traces are of special importance

— NO_NO
7 v
= 1+N,+N,. (7.11)

7.3 Properties Of Time Ordering

The following relation of time- and anti-time ordering is often useful

7o |A() Aglta) ]| + T [Ar (1) Ag(to)| = {A(t), Aglts) | (7.12)

to eliminate anti-time ordering in the time-evolution operator. The time-ordered product of

two operators can also be rewritten as

~ ~

T At Ay (t)| = A1) As(t) + Ag(t) A, (1)O(t — 1) + Ay (1) Aaty) [O(t — 1) — 1]

= At)Ay () + |Ay(t) A,(1)] O(t, — 1), (7.13)

where the relation ©(z) — 1 = —O(—=x) has been used. Note that the commutator of two
hermitian operators is anti-hermitian. Above identity can be generalized to arbitrary time-

ordered products. The time-ordered product of n operators is given by

~

T Ai(ty) An(tn)] = Z AP(I) (tP(l)) o 'AP(n) (tP(n)) X

Pes,,
O(tpay = tr) - - Oltpm_t) = tpm)) ; (7.14)
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where S, denotes the permutation group of the numbers {1,2,3,...,n}. Obviously every
permutation P € S, of the operators has to occur and the Heaviside functions regulate when

the particular permutation has to be employed. Separating the identity permutation P, yields

O(tpay —trw)) - Olpm_1) = tpm)) ; (7.15)

where the first term already has the expected structure. Any given permutation P € S, can
be rewritten using the following scheme. Supposing P(l) = 1 for a certain permutation and

omitting the time-dependencies one finds

AP(l) e AP(n) == AlAP(Z) . AP(l—l)AP(H—l) “ e AP(n)
- [A1 aAP(l)] Ap@)---Apu-1)Apar1) - - - Apw)

A

_AP(I) - 'AP(l—Q) [A1 ’AP(l—l)] AP(l+1) . AP(n)

— (All necessary terms with commutators) , (7.16)
where in the last step the scheme has been carried on with P(m) =2, P(n) =3, .... Accord-

ingly, any permutation P € S,, can be rewritten as

A A A

AP(I)AP(H) == AIA

— 3 6P AR ) Apgy - [Ap(k) ,Ap(l)] e Apy (7.17)
sets{k,l}

n

where 0(P, {k,[}) projects onto the relevant terms in the sum to yield an identity

1 if {k,1} d in (7.1
5(P, [k, 1}) = if {k, } oes occur in (7.16) (7.18)
0 otherwise
Together with the relation
Z Otpay — tp)) - Oltp_r) — tpm)) =1 (7.19)

Pe€S,
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it follows that the time-ordered product of n operators can be written as

Z O(tpay — tpa) - - Oltpm) — tpm)) X

Z 0 {kal})AP(l)(tP(l)) e X
sets{k,l}
[Ap(z) (tpqy) 7121P(lc) (tpwy)| - - 'AP(n) (tpm)) - (7.20)

7.4 Integrals

Some integrals used in this thesis are listed here. The time-integration of the squeezed effective

velocity Hamiltonian requires integrals of the hyperbolic sine and cosine functions
r 1 T 1
/ Clt)dt = ~S(T), / Syt = = e(r) —1] . (7.21)
0 0
The time-ordering in the quadratic response can be reduced to integrals of the form

I = / i, [ an6it, - 1) [S0)C(0) - SE)C)

= 452 26T — S(T)] . (7.22)
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7.5 Time Evolution Matrix

For reasons of completeness the full time evolution matrix U (7,0) = exp(A7) with A being
the coefficient matrix (5.24) shall be given here explicitly.

1
Q(T,O) = :_1%105

[1T2 X2 (%9 — %8 + %7 — %6 + %5 + %4 + %3 + %2)

4 (TE+R1) /-T2 (-2 +x°) (TE—%1)

1T (%3 + %2 — Nod — %5 + %9 — %8 + %6 — %) 1%11}
4 (TE+%1)/=T% (=2 +x*) (T€ - %1)

[ 1T x* (%9 — %8 + %7 — %6 — %5 — %4 — %3 — %2 )
4 (TE+%1)/=T% (=2 +x*) (T &~ %1)

172 x* (%9 — %3 — %8—%2+%4+%6—%7+%5)]

4 (TE+RL)/-T? (2 +x>) (TE—%1)

[_1T2 x? (%3 + %2 — %4 — %5 + %9 — %8 + %6 — %7) 1
4

1

4

1
—1%11,

7_W11:
(TE+RL)/-T? (-2 +x) (TE—%1) 4"

T x? (%9 — %8 + %7 — %6 + %5 + %4 + %3 + %2) _1%10]
(TE+RL)/-T? (€2 +x») (TE—%1) T4
_1%11 177 2(%9 %3 — %8 — %2 + %4 + %6 — %7 + %5 ) 1%10
4774 (TE+%1)\/=T2 (=€ + x2) (T€ —%1) T4
1T (%9 — %8 + %7 — %6 — %5—%4—%3—%2)} (7.23)
4 (TE+%L) /-T2 (- +x2) (T € —%1) ’

where the shorthand notations %1 ...%]11 are given by

%l = -T? (- +x?),
%2 = e "TEHR) /T2 (€24 y2),
%3 = T /I (@),

%4 = (T&%l)\/ T? (—€2 + x2),
%5 = e(T§+%1)\/ T? (—€2 + x2),
%6 = eT¢ATe,

%7 = eTeHA) e

%8 = el TERITE,

%9 = el"TERI e
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%10 X(e(—Tg—%l) — o ~TE+%1) | o(TE-%1) _ o(TE+%1) )T
0 = ’
V-T? (=€ + x?)
X ( _e(Tf—%l) + e(T{-i—%l) + e(_Tg_%l) . e(_T§+%1) ) T
o= \/—TQ (=€ + 2) : (7.24)

As was anticipated, the arguments in the exponentials are linear combinations of the eigenvalues
(5.25).
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7.6 Employed Symbols

symbol

AT A
a,,a,

)
—~

~
~

D= an 9 c = o,

(r;t)

Q==
At
N

)
T
<

EaJISSE

e~

explanation

creation/annihilation operators for the mode p
parameter for the moving boundary

an operator

2K x 2K dimensional coefficient matrix
position of the dispersive mirror

position of the ideal reservoir boundary
hyperbolic cosine function cosh(2£t)

K x K dimensional squeezing matrix

the complex numbers

thickness of the dielectric slab

K x K dimensional hopping matrix

suitable set of eigenfunctions to diagonalize H,
the domain characterizing the cavity

metric

Hamilton function

Hamiltonian

number of modes in the quadratic Hamiltonian
Lagrange function

Lagrange density

Lagrangian

Liouville super operator

characteristic length of the cavity

coefficient of the left part of the mode f,
inter-mode coupling matrix

particle number operator for the mode p
initial particle occupation number of the mode L
initial particle occupation number of the mode R
permutation € S,

canonical conjugated momentum

coefficient of the right part of the mode f,

projection super operator
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symbol

=

NN RO
3=

3

S e
=

<l < QB
S T D =
\_/\_%_ H‘\\? MH.
A S
N—

> B
<

N

explanation

generalized coordinate

quality factor of a resonator

reflection amplitude

hyperbolic sine function sinh(2£t)

squeezing operator exp (iﬁfﬂ7>

permutation group of the numbers {1,2,...,n}
transmission amplitude

duration of a disturbance

effective time |A|T

ordering operator with respect to the variable ¢
time evolution operator

reduced time evolution super operator

2K x 2K dimensional time evolution matrix
external potential

2K dimensional column vector of ladder operators
an observable

cavity length in y-direction

cavity length in z-direction

parameter for the model of ¢(x)

initial inverse temperature

coupling strength of the potential

deviation of the eigenfrequencies () — (€2)?
discrete Kronecker symbol

Dirac’s delta distribution

detuning parameter |A| e

dimensionless deviation from the exact resonance
relative permittivity

relative permittivity of the dielectric slab
dimensionless vibration amplitude
perturbation parameter Q2°/~

fundamental perturbation parameter Q%

33
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symbol
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explanation

Heaviside step function

auxiliary parameter

eigenvalues of the coefficient matrix A
squeezing parameter

detuned squeezing parameter |A|&

statistical operator

time evolution operator in the squeezing interaction picture
massless scalar field

complex phase of the detuning parameter A
velocity parameter

detuned velocity parameter |A|x

velocity parameter for the @-coupling scenario
perturbed eigenfrequency

unperturbed eigenfrequency

frequency deviation €22 (t) — (2)?

external vibration frequency

Laplace’s differential operator

differentiation with respect to z*

identity operator
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