
Theory of Nanostructures

Clive Emary

February 16, 2009



2



Contents

1 Introduction 7

1.1 What is a nanostructure? . . . . . . . . . . . . . . . . . . . . 7

1.2 Mesoscopic transport . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Why study nanostructures? . . . . . . . . . . . . . . . . . . . 8

1.4 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Semi-classical transport theory 11

2.1 Physical length scales . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The Boltzmann Equation . . . . . . . . . . . . . . . . . . . . 13

2.3 Electrical conductivity . . . . . . . . . . . . . . . . . . . . . . 15

2.4 The Hall effect . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Other scattering mechanisms . . . . . . . . . . . . . . . . . . 21

3 Quantum confinement 23

3.1 Two-dimensional electron gas and lateral quantum dots . . . 23

3.2 Single-particle, single-band effective mass approximation . . . 24

3.3 Effects of confinement . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Transverse modes in 2DEG . . . . . . . . . . . . . . . . . . . 27

3.5 Quantum dots: Fock-Darwin Spectrum . . . . . . . . . . . . . 30

4 Scattering theory 33

4.1 Resistance of a ballistic conductor . . . . . . . . . . . . . . . 33

4.2 Electron scattering . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 The scattering matrix . . . . . . . . . . . . . . . . . . 36
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Chapter 1

Introduction

1.1 What is a nanostructure?

Strictly speaking, a nanostructure is any structure with one or more di-
mensions measuring in the nanometer (10−9m) range. Various definitions
refine this further, stating that a nanostructure should have a characteristic
dimension lying between 1nm and 100nm, putting nanostructures as inter-
mediate in size between a molecule and a bacterium. In this lecture, we will
take a slightly more flexible definition and allow “nanostructure” to include
larger structures — providing that the object’s size of the plays an essential
role in determining its physical properties.

Experimentalists now have access to a huge array of nanostructures, both
self-assembled (e.g. fullerenes, nanotubes, ...), and directly fabricated (e.g.
quantum wires, lateral quantum dots, ...). The picture set in the lectures
should give an idea of the diversity of such structures, as revealed through
the techniques of electron and atomic-force microscopy.

1.2 Mesoscopic transport

Nanostructures are typically probed either optically (spectroscopy, photo-
luminescence, ...) or in transport experiments. In this lecture series we will
mainly concentrate on the latter (we will, however, discuss the optics of
quantum dots; in particular in the context of quantum computation). This
field of investigation is often given the name mesoscopic transport, and the
following considerations give an idea of the significance of this term.

We would expect that the resistance R of a bulk 3-dimensional sample
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8 CHAPTER 1. INTRODUCTION

of a material to be given by

R =
L

σA
, (1.1)

where L and A are the length and cross-sectional area of the sample, and
σ is the conductivity. A sample for which Eq. (1.1) holds is said to be
Ohmic, and this behaviour is well described by (semi-)classical transport
theory (such as the Boltzmann Equation of Chapter 3 2 ).

If, however, the sample is small enough that the considerations leading
up to Eq. (1.1) do not hold, non-Ohmic behaviour can result. This typically
occurs when the characteristic dimension of the device is smaller than one
or more of the following length scales:

• the de Broglie wavelength of the electrons (given by their kinetic en-
ergy)

• their mean free path, (distance between collisions)

• and their phase coherence length (distance over which an electron can
interfere with itself).

Such a sample, or device, is then described as being mesoscopic — one that
is bigger than atomic, or ‘microscopic’, dimensions but yet small enough
not to exhibit the Ohmic properties of bulk, or ‘macroscopic’ materials.
The important length scales listed above vary considerably with material
properties, temperature, applied voltage, etc, and so the size-scale at which
mesoscopic effects occur is highly variable, and not ridgedly fixed at the
literal nano-scale.

A mesoscopic device may also be thought of as one being big enough
to be successfully manipulated in experiment, and yet small enough to be
interesting!

1.3 Why study nanostructures?

Understanding the nanoworld makes up one of the frontiers of modern
science. One reason for this is that technology based on nanostructures
promises to be hugely important economically. Nowhere is this more evi-
dent than in semiconductor industry. Moore’s law makes the observation
that the number of transistors that can be inexpensively placed on an inte-
grated circuit doubles approximately every two years. If the size of IC chips
stay approximately the same, then the linear dimension of the transistors
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must half every four years. Current transistor fabrication already runs at
45nm, and Intel claim that they will have 32nm technology in commercial
devices by 2009. Understanding how electrons behave over such tiny distant
scales is therefore of very obvious importance to the electronics, communi-
cation and computation industries. One potentially game-changing future
application that we will discuss in this course is the use of nanostructures to
perform quantum information processing tasks, and in particular to build a
quantum computer.

Nanostructures and nanomaterials are having real-world impact else-
where. For example, the Quantum Hall effect, for which K. von Klitzing
earned the Nobel prize, now serves as a measurement standard for resis-
tance. Quantum dots are making quite a name for themselves in many
modern application areas such as Photovoltaic devices, QD lasers, and as
even as fluorescent tracers in biological and medical settings.

The theory of nanostructures is an intellectually very rewarding topic.
There are fundamental questions: what is the origin of resistance? what can
we tell about an structure just by counting the electrons flowing through it?,
and what role does information play in the nanoworld? Their pursuit in-
volves a broad range of physical concepts and theories, from simple confine-
ment effects familiar from introductory quantum mechanics through to the
complex many-body physics of the Kondo and fractional quantum Hall ef-
fects. Furthermore, analogies to atomic and molecular physics abound, as do
formal similarities between mesoscopic transport and quantum optics. More
traditional condensed matter and quantum many-body theory all have the
role to play in understanding, an learning how to control, nanostructures.
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Chapter 2

Semi-classical transport

theory

In this course, we are primarily interested in transport through nanostruc-
tures. However, it is instructive, to first review the semi-classical Boltzmann
theory of transport in bulk materials to become familiar with some concepts
and language, and also have a benchmark with which to compare.

2.1 Physical length scales

The transport properties of a device are determined by a set of characteristic
length scales and their relationship to the physical dimensions of the device.
As presaged in the introduction, we expect a conductor to shows Ohmic
behaviour only when its dimensions are greater than all of these length
scales, which vary widely from material to material and also with temper-
ature, applied field, impurity concentration etc. The relevant length scales
are: (following E. Schöll in Theory of Transport properties of semiconductor

nanostructures, Chapman & Hall 1998)

• Mean free path, lm: The average distance an electron travels be-
fore it experiences elastic scattering which destroys its initial momen-
tum. The dominant elastic scattering mechanism is impurity scat-
tering. The mean-free path is related to the (transport) momentum
relaxation time τtr by lm = vτtr where v is the average carrier speed.

• Phase-relaxation length, lφ: The average distance an electron trav-
els before information about its initial phase is lost. Inelastic scatter-
ing, such as occurs in electron-phonon interactions, is responsible for

11



12 CHAPTER 2. SEMI-CLASSICAL TRANSPORT THEORY

this dephasing, since in such collisions the energy of the electron is
changed, and its quantum-mechanical phase is randomised. Impu-
rity scattering may also contribute to phase relaxation if the impurity
has internal degrees of freedom. In high-mobility semiconductors, the
phase relaxation time τφ can be of the same order or shorter than the
momentum relaxation time, and lφ = vF τφ with Fermi velocity vF . In
low mobility samples, however, τm can be considerably shorter than
τφ and diffusive motion may occur over a phase coherent region; then
l2φ = Dτφ with diffusion constant D = vF τm/2.

• de Broglie wavelength, λ: An electron with wavenumber k has a
de Broglie wavelength of λ = 2π/k. In three-dimensions, this can be
expressed in terms of the electron energy E as λ =

√
h2/2m∗E with

m∗ the effective electron mass. The de Broglie length defines the scale
on which quantum-mechanical effects become important.

• Magnetic length, lB: In the presence of a magnetic inductance B,
electron energy is quantised in integer multiples of ~ωc, where ωc is the
cyclotron frequency. The magnetic length lB =

√
~/eB characterises

the extent of the electron cyclotron orbit.

Depending on the relation of system size L to the above lengths, different
transport regimes can be distinguished:

• Classical diffusive transport: For macroscopic dimensions L ≫
lm, lφ, carriers experience frequent elastic and inelastic collisions such
their momentum and phase are relaxed. The average velocity of the
electron is given by its drift velocity v = −µF with mobility µ =
eτm/m

∗ from Drude theory.

• Coherent transport: For system sizes smaller that the phase relax-
ation length lφ, quantum-mechanical wavefunction of the carriers has
a well-defined phase throughout the system. Quantum interference
effects such as Aharonov-Bohm oscillations or universal conductance
fluctuations may observed in transport.

• Ballistic transport: If the size of the system L is smaller than lm,
carriers can cross the device without scattering.

• Quantum size effects: If the de Broglie wavelength is greater than
one or more of the system dimensions, size quantisation of the car-
rier wave functions will occur. Propagation in those directions is not
possible and the density of states of the system is modified accordingly.
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2.2 The Boltzmann Equation

A transport theory include must include not just the dynamics of carriers
under the influence of external fields, but also stochastic effects arising from
carrier interactions with impurities, phonons, contacts, etc. The Boltzmann
Equation is a transport theory that operates in the classical diffusive regime
in which the electrons are described by a distribution function f(r,p, t),
which gives the local concentration of carriers in state p in the neighbour-
hood of point r in space. The dynamics of f(r,p, t) under an applied Lorentz
force are governed by Newton’s laws, and the dissipation is incorporated via
a scattering or collision integral, Ir,p,t [f ]. The Boltzmann equation is a semi-
classical theory since f(r,p, t) is a classical distribution function in phase
space, with well defined r and p coordinates, but the scattering integral,
as well as the equilibrium function f (0)(r,p, t), are obtained from quantum
mechanical considerations. The consistency of this approach requires that
the distribution function varies little over the de Broglie wave length of the
electron. Furthermore, in order that collisions may be treated in a simple
way, we require a low carrier density (only binary collisions), that the time
between collisions is much greater than the durations of the collisions, and
that density gradients are small over the range of the interparticle potential.

The Boltzmann equation posits that the total rate of change of the elec-
tronic distribution is given by scattering

d

dt
f(r,p, t) = Ir,p,t [f ] (2.1)

This is made more intuitive by separating the dependencies of f(r,p, t) such
that, by the chain rule, we can write

∂

∂t
f(r,p, t) = − ∂r

∂t

∣∣∣∣
p

· ∇rf(r,p, t) − ∂p

∂t

∣∣∣∣
r

· ∇pf(r,p, t) + Ir,p,t [f ] . (2.2)

We now see that the time-dependence of the distribution function is given
by three terms: a diffusive term, a term arising from the applied fields and
the collision term. The behaviour of f(r,p, t) can thus be pictured in terms
of these three contributions acting on a small phase-space volume centred
at r,p.

We will consider only elastic scattering here and restrict ourselves to
a single band in a three-dimensional sample. In this case, the scattering
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integral can be written as

Ir,p,t [f ] =

∫
d3p′

(2π~)3
W
(
p,p′

)

×
{
f(r,p′, t) (1 − f(r,p, t)) − f(r,p, t)

(
1 − f(r,p′, t)

)}

= −
∫

d3p′

(2π~)3
W
(
p,p′

) {
f(r,p, t) − f(r,p′, t)

}
(2.3)

Scattering from state p to p′ decreases f(r,p, t) and the probability of this
process is proportional to f(r,p, t) and 1−f(r,p′, t), as the final state must
be empty. Furthermore, there is a basic transition probability W (p,p′) that
we must calculate from a microscopic model of the collision process, typically
with Fermi’s golden rule. The scattering integral also includes the reverse
process of scattering fromp′ to p and from the principle of microscopic

reversibility, we know that W (p,p′) = W (p′,p), whence the second line
above. This integral has the property that

∫
d3p

(2π~)3
ǫpIr,p,t [f ] = 0, (2.4)

illustrating energy-conserving nature of the scattering.
We now write Eq. (2.2) in more familiar terms. We first identify ∂r/∂t|p

as vp, the velocity of an electron in state p. Then, from Hamilton’s equations
of motion with Hamiltonian H, we have

∂p

∂t

∣∣∣∣
r

= −∂H
∂r

, (2.5)

which is nothing other than the force acting on the electron. With this force
arising from applied electric and magnetic fields, we have

∂p

∂t

∣∣∣∣
r

= e (E + vp × B) . (2.6)

Putting this altogether, we obtain

∂

∂t
f(r,p, t) + vp · ∇rf(r,p, t) + e (E + vp × B) · ∇pf(r,p, t) = Ir,p,t [f ]

(2.7)

This is the Boltzmann equation. It is an integro-differential equation and in
general very difficult to solve.



2.3. ELECTRICAL CONDUCTIVITY 15

Normally we are interested in the steady state, ∂f(r,p, t)/∂t = 0. Fur-
thermore, it is usually sufficient to treat the applied electric field as inducing
only a small perturbation in the electron distribution, such that we can work
to first order in the field — or in other words, calculate the linear response
of the system to an applied electric field. We therefore assume that the
distribution function can be written as

f(r,p) = f (0)(r,p) + f (1)(r,p), (2.8)

where f (0) is equilibrium distribution and f (1) is response term of order E.
For the equilibrium distribution, we take the Fermi-Dirac distribution

f (0)(r,p) =
1

exp ((ǫp − µ)/kBT )) + 1
(2.9)

with chemical potential µ, temperature T and Boltzmann’s constant kB . We
allow both µ and T to be functions of r (we should therefore, speak of quasi-
chemical potential). Inserting these forms into Eq. (2.7) and linearising, we
obtain

(
−∂f

(0)(r,p)

∂ǫp

)
vp ·

{
−ǫ− µ

T
∇T + e

(
E− 1

e
∇µ
)}

= −Ir,p [f ] + vp · ∇rf
(1)(r,p) + e (vp × B) · ∇pf

(1)(r,p) (2.10)

which is the linearised steady-state Boltzmann equation.

One typically is interested in a homogeneous sample, in which there are
no T or µ gradients, and the distribution function is a function of p only.
In this case, we have

−e
(
∂f (0)(p)

∂ǫp

)
vp ·E = −Ip[f ] + e (vp × B) · ∇pf

(1)(p). (2.11)

2.3 Electrical conductivity

Equation (2.11) allows us to derive the conductivity of the sample as deter-
mined by impurity scattering. In zero magnetic field, we have

e

(
∂f (0)(p)

∂ǫp

)
vp · E = Ip[f ] (2.12)
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We assume the scattering to be elastic and that the impurity potential is
spherically symmetric. This means that

W
(
p,p′

)
= W

(
p̂ · p̂′, ǫp

)
δ
(
ǫp − ǫp′

)
, (2.13)

where p̂ is a unit vector in the direction of p. One way of making fur-
ther progress (see Jammer, Ch 5.4) is to expand W in terms of Legendre
polynomials, Pl:

W
(
p̂ · p̂′, ǫp

)
=
∑

l=0

Wl(ǫp)Pl(p̂ · p̂′). (2.14)

Making an analogous expansion for the distribution function,

f (1)(p) =
∑

l=1

f
(1)
l (ǫp)Pl(p̂ · Ê), (2.15)

the collision integral becomes

Ip[f ] = −D(ǫp)
∑

l=0

f
(1)
l (ǫp)Pl(p̂ · Ê)

{
W0(ǫp) − 1

2l + 1
Wl(ǫp)

}
, (2.16)

where D(ǫ) is the density of electronic states at energy ǫ. Substituting these
results into linearised Boltzmann equation Eq. (2.12), we obtain the solution

f
(1)
l (ǫp) = 0; ∀l 6= 1

f
(1)
1 (ǫp) =

{
1

3
W1(ǫp) −W0(ǫp)

}−1 eEvp
D(ǫp)

∂f (0)(ǫp)

∂ǫp
. (2.17)

This result may be written as

f (1)(ǫp) = −eE · vpτtr(ǫp)
∂f (0)(ǫp)

∂ǫp
(2.18)

with the transport relaxation time

τ−1
tr (ǫp) = D(ǫp)

{
W0(ǫp) − 1

3
W1(ǫp)

}

= D(ǫp)

∫
dp̂′

4π
W
(
p̂ · p̂′, ǫp

) (
1 − p̂ · p̂′

)
(2.19)

The factor (1 − p̂ · p̂′) can be expressed as (1 − cos θ) where θ is the angle
between the two vectors. It weights the contributions of scattered vectors.
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If p′ is parallel to p then θ = 0 and this weighting factor is zero — elas-
tic forward scattering does not, obviously, relax the electron momentum.
Conversely, with p′ anti-parallel to p, this weighting factor is maximal, and
correspondingly, backscattering is seen to be the most effective.

Let us write

f(p) = f (0)(ǫp) + p · g(ǫp), (2.20)

with

g(ǫp) = −eEτtr(ǫp)

m

∂f (0)(ǫp)

∂ǫp
. (2.21)

Then f (1)(p) = p · g(ǫp) and the collision integral becomes

Ip[f ] = Ip[f0 + p · g] = −p · g(ǫp)

τtr(ǫp)
= −f(ǫp) − f (0)(ǫp)

τtr(ǫp)
. (2.22)

From this we can see the significance of the relaxation time. Consider
Eq. (2.1); let system reach steady-state and then switch off all fields. We
have

∂

∂t
f(ǫp, t) = −f(ǫp, t) − f (0)(ǫp)

τtr(ǫp)
(2.23)

which we solve to give

f(ǫp, t) = f (0)(ǫp) + f (1)(ǫp)e−t/τtr(ǫp), (2.24)

showing that, starting from the transport steady-state, the pth-component
of the distribution relaxes back to its equilibrium distribution with a time
constant τtr(ǫp).

Now we are in possesion of the steady-state distribution, we can simply
calculate the stationary current density:

j =
2e

m

∫
d3p

(2π~)3
pf(p) (2.25)

=
4e2

3m

∫
dǫD(ǫ)ǫτtr(ǫ)

(
−∂f

(0)(ǫ)

∂ǫ

)
E. (2.26)

The derivative of the Fermi function is peaked at the Fermi surface with a
width ∼ kBT Since the rest of the integral is slowly varying over this scale,
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we can can approximate
(
−∂f (0)/∂ǫ

)
∼ δ(ǫ − ǫF ) and take the remaining

quantities in the integral to be evaluated at the Fermi energy ǫF . With help
of the 3D density of states, D(ǫ) =

√
2m3ǫF /(2π

2
~

3), Fermi energy ǫF =
~

2k2
F /(2m), and Fermi wavenumber kF = (3π2n)1/3, the current density can

be evaluated as

j =
e2nτtr(ǫF )

m
E (2.27)

The relationship between the components of the current density and the
electric field can be written as

jα =
∑

β

σαβEβ (2.28)

where σ is the conductivity tensor. For the isotropic model that we are
discussing here, the tensor is diagonal

σαβ = σ0δα,β (2.29)

with

σ0 =
ne2τtr(ǫF )

m
, (2.30)

which is Drude’s result. From this, we obtain Ohm’s law

R =
m

ne2τtr(ǫF )L
. (2.31)

It is customary to express the conductivity as

σ = n|e|µ, (2.32)

in terms of the carrier mobility

µ =
|e|τtr
m

. (2.33)

Entertainingly, this same result for the conductivity can be obtained from
three very different theoretical analyses — semiclassically as above, within
the classical considerations of the Drude model, and also in the full quantum-
mechanical calculation via the Kubo formula.
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2.4 The Hall effect

We now want to understand transport in the presence of both electric and
magnetic fields. Let us start with Eq. (2.11) with the assumption of a
relaxation time

e

(
∂f

(0)
p

∂ǫp

)
vp · E + e (vp × B) · ∇p (p · g(ǫp)) = −p · g(ǫp)

τtr(ǫp)
(2.34)

Omitting the details (see, e.g. Rammer Ch 5.4.2, Ziman Ch 7.12), this
equation can be solved for the linear response function g. We obtain

g(ǫp) = −eτtr(ǫp)

m

∂f (0)(ǫp)

∂ǫp

1

1 + (ωcτtr(ǫp))2

×
[
E + (ωcτtr(ǫp))2 E‖ +

eτtr(ǫp)

m
E × B

]
,

(2.35)

where E‖ is the electric field parallel to B and ωc = |e|B/m is the cy-
clotron frequency. From this result and the expression for the current density
Eq. (2.25), we obtain the conductivity tensor for B = Bẑ as

σ =
σ0

1 + (ωcτtr)
2




1 −ωcτtr 0
ωcτtr 1 0

0 0 1 + (ωcτtr)
2


 (2.36)

This conductivity obeys the Onsager relations

σαβ(B) = σβα(−B) (2.37)

which stem from fundamental considerations about the behaviour of systems
under time-reversal. Inverting Eq. (2.36), we get the resistivity tensor

ρ = σ−1 = ρ0




1 ωcτtr 0
−ωcτtr 1 0

0 0 1


 (2.38)

with ρ0 = σ−1
0 . An isotropic sample, therefore, shows no magnetoresistance,

i.e. ρxx does not depend on magnetic field for an isotropic dispersion ǫp =
ǫ(|p|).

In a Hall bar experiment, a current flowing the x direction, say, gets
deflected by the magnetic field in the z direction, say, leading to a voltage
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appearing in the y-direction. This voltage is known as the Hall voltage and
is determined by state state condition conditions, jy = 0, such that

Ey

Ex
= −σyx

σyy
. (2.39)

The Hall coefficient is then

RH ≡ Ey

Bjx
=

1

ne
, (2.40)

and the Hall voltage is

VH ≡ EyLy = LyBjx
1

ne
. (2.41)

A hall bar experiment therefore probes both sign and density of charge
carriers.

2.5 Thermal Conductivity

The Boltzmann equation, Eq. (2.7), can also be used to investigate the be-
haviour of conduction electrons under the influence of a thermal gradient.
Omitting the details here (Rammer Ch5.4.3 or Ziman Ch7.8), we note that
linearising Eq. (2.7) in terms of both the applied electric field and the ther-
mal gradient applied across the sample, we can derive a relationship between
electrical (σ) and thermal (κ) conductivities:

κ =
π2

3
k2

BT
σ0

e2
. (2.42)

This is known as the Wiedemann-Franz law and holds quite generally pro-
viding that we only have elastic scattering. This result can be easily under-
stood: In electrical conduction each electron carries a charge e and is acted
on by the field eE. The current per unit field is therefore proportional to e2.
In thermal conduction, each electron carries an energy kBT , and is acted
on by a thermal force kB∇T . The heat current per unit thermal gradient
is then k2

BT . The ratio of the two transport coefficients must be there be
proportional to k2

BT/e
2 and the numerical factor arises because we are only

considering electrons near the Fermi surface.
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2.6 Other scattering mechanisms

At low temperatures, elastic scatting from impurities is the dominant form
of electron scattering. However, there are many other scattering mecha-
nisms that can play an important role in transport. For example, surface
roughness leads to additional elastic scattering, whereas interactions with
lattice vibrations (both acoustic and optical phonons) gives rise to inelastic
scattering. To some extent, all these mechanisms can be incorporated in a
relaxation time approach as described in Ferry and Goodnick, Section 2.7.
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Chapter 3

Quantum confinement

3.1 Two-dimensional electron gas and lateral quan-

tum dots

Many important developments in mesoscopic transport have taken place
in the two-dimensional electron gas (2DEG), and are likely to continue to
do so in the future. The 2DEG typically used in transport experiments is
formed at the interface in an AlGaAs-GaAs semiconductor heterojunction,
as described in Fig. 3.1. The AlGaAs is doped with Si donors using a process
known as modulation doping, which allows the donors to be situated a small
distance from the interface (spacer layer width ∼ 5nm) . This has the
important consequence that the 2DEG is physically separated from the the
donor ions, which minimises the scattering from these ions and facilitates the
very high mobilities obtainable in the 2DEG. Table 3.1 gives some typical
mobilities for comparison.

Quantum dots (and other more exotic structures) can be created in a

material temperature µ (cmd/(Vs))

organic semiconductor room < 101

Si room 102-103

C-nanotube room 105

graphene low 105

2DEG low 105-107

Table 3.1: Some example electron mobilities. Here, a “low” temperature
means ∼ 20mK, a temperature typical of mesoscopic experiments.

23
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ΕF

n−AlGaAs GaAs
∆Ε

2DEG

Figure 3.1: Formation of a 2DEG in AlGaAs–GaAs heterojunction. Left
picture shows the conduction band just after the two materials are brought
into contact with one another (or so we imagine). AlGaAs has a wider gap
than GaAs and the conduction band edges are offset by an amount ∆E.
Electrons from the donors in the n-doped AlGaAs move across junction
to lower energy states in GaAs, leaving charged donor ions behind. The
combination of the band edge offset with the potential due to donor ions
produces the band edge in the right-hand sketch — a narrow triangular well
is formed at the interface and it is here that the 2DEG is located.

2DEG through the use of top gates — metal electrodes deposited on the
semiconductor surface. Application of a negative voltage to these gates
deforms the electrostatic potential at the 2DEG, and can deplete the electron
gas underneath the gate. These depleted zones can be used to define QDs.
Figure 3.2 shows samples with single and double QDs. Lateral QD size
ranges from ∼ µm at the large end, down to 10s of nm — small enough to
contain just a few (0,1,2,...) electrons.

Example numbers from Hanson, et al., Rev. Mod. Phys. 79, 1217
(2007); cond-mat/0610433: The 2DEG is situated 50-100nm below surface,
and has a width of 10nm. Electron mobility and density: 105-107 cm2/(Vs)
and (1-5)×1015m−2 respectively. Fermi wavelength of the electrons: 40nm.
Temperature: ∼ 20mK.

3.2 Single-particle, single-band effective mass ap-

proximation

Before discussing the effects of confinement, we should make explicit the
approximations with in which we shall work. Although transport in semi-
conductors can be mediated by both electron and hole flow, in mesoscopic
experiments it is usually just the electrons that are involved. Mesoscopic
samples are usually degenerate, which means that the conduction band is
highly populated with electrons. Furthermore, transport energy scales are
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Ohmic
contact

depleted
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GaAs

AlGaAs

200 nm

c)

IQPC IQPC

IDOT

a)

b)

200 nm

IDOT

Figure 3.2: Definition of lateral quantum dots in a 2DEG with top gates.
From Hanson, et al., Rev. Mod. Phys. 79, 1217 (2007); cond-mat/0610433

low cf. the band gap and therefore inter-band transitions are avoided. Thus
we need only consider only a single band — the conduction band (CB) —
and the electrons that reside in it.

We describe an electron moving in the CB with the effective mass equa-

tion:
[
Ec +

1

2m∗
(i~∇ + eA)2 + U(r)

]
Ψ(r) = EΨ(r) (3.1)

Here m∗ is the effective mass, A is the vector potential, and Ec is the bottom
of the CB. The function Ψ(r) is the smooth envelope of the electrons wave-
function, with the effects of the lattice potential having been incorporated
in the effective mass, which we assume isotropic and homogeneous. The po-
tential U(r) describes then the large-scale confinement potential experienced
by the electron.
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We consider the electrons to be non-interacting. Strict justification of
this comes from the Landau theory, in which an interacting electron gas
is re-described in terms of non-interacting quasi-particles with renormalised
energy (as compared to original particles) and a finite lifetime. Providing
this lifetime is long compared to any experimentally relevant processes, the
quasi-particle picture is a valid one, and this is generally the case in semi-
conductors. We may also appeal to a posteriori justification, as we will see
that this simple treatment is sufficient to describe a wide range of interesting
mesoscopic transport experiments.

3.3 Effects of confinement

In the triangular quantum well of Fig. 3.1, confinement in one spatial di-
mension is much stronger than in the other two. With z singled out as the
strongly confined dimension, we may therefore approximate the confinement
potential as U(r) = U(z)U(x, y). With magnetic field in the z direction, i.e.
perpendicular to the plane of the interface, the effective mass Schrödinger
Equation, Eq. (3.1), admits the separable solution Ψ(r) = φn(z)ψ(x, y),
with φn(z) the nth quantised solution of the one-dimensional problem in
the z direction. Index n = 1, 2, . . . defines a set of sub-bands; if we consider
the electrons to be unconfined in the plane of the interface, then the full
eigenfunctions of Eq. (3.1) with U(r) = U(z) are

Ψ(r) = φn(z)eikxxeikyy (3.2)

with dispersion

E(n, k) = Ec + ǫn +
~

2

2m∗

(
k2

x + k2
y

)
(3.3)

with ǫn, the eigen-energies from z-confinement.

The density of states (per unit energy, per unit surface area) of such a
quasi-infinite two-dimensional system is

D(E) =
∑

n

m∗

π~2
θ (E − ǫn − Ec) =

∑

n

D0θ (E − ǫn − Ec) , (3.4)

with θ (E) the unit step function and where a factor 2 for spin has been
included. Within the nth subband then, the density of states is constant,
with value nD0. For GaAs, with effective mass m∗ = 0.07me, D0 = 2.9 ×
1010/(cm.meV).
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y

U(y)

x

y

z

L

Figure 3.3: Sketch of a 2DEG, establishing co-ordinate system. Strong
confinement is in the z direction, and much weaker parabolic confinement
in the y direction. The extent of the sample in the x-direction is large cf.
extent in y and z directions.

Confinement in the z direction is strong enough that experiments are
usually restricted to the lowest n = 1 sub-band. In both 2DEGs and SAQD
the z-confinement is ∼ 10 times that in the x-y plane. Thus, sub-bands
n ≥ 2 play no significant role and we can neglect the z direction altogether
— reducing the original 3D problem to a two-dimensional one with effective
2D Schrödinger equation

[
Es +

1

2m∗
(i~∇ + eA)2 + U(x, y)

]
ψ(x, y) = Eψ(x, y) (3.5)

with Es = Ec + ǫ1, and 2D vector operators.

3.4 Transverse modes in 2DEG

Consider a uniform 2D conductor, much longer than it is wide (Fig. 3.3).
We will consider transport parallel to the long axis of the conductor (x direc-
tion), assuming that the motion is essentially unconfined in this direction.
In the transverse (y) direction, we model the confinement with a harmonic
potential, such that we write

U(x, y) = U(y) =
1

2
m∗ω2

0y
2, (3.6)

with ω0 the confinement energy in the y direction. Harmonic confinement
is a convenient mathematical form as it leads to analytical solutions. It also
provides a reasonable approximations to confinements found in experiment.

We consider an applied magnetic field perpendicular to the 2DEG (in
the z direction), and choose a gauge such that the vector potential is written

A = −êxBy; Ax = −By; Ay = 0. (3.7)
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The 2D Schrödinger equation, Eq. (3.5), can then be written

[
Es +

1

2m∗
(px + eBy)2 +

1

2m∗
p2

y + U(y)

]
ψ(x, y) = Eψ(x, y), (3.8)

with px = −i~∂/∂x and py = −i~∂/∂y. This has solution

ψ(x, y) =
1√
L
eikxχ(y) (3.9)

with plane wave in x direction (normalised to length L) and the transverse
function χ(y) given by the solution of the 1D problem

[
Es +

1

2m∗
p2

y +
1

2m∗
(~k + eBy)2 +

1

2
m∗ω2

0y
2

]
χ(y) = Eχ(y). (3.10)

Let us define the cyclotron frequency

ωc =
|eB|
m∗

, (3.11)

and the length

yk =
~k

eB
. (3.12)

We have then
[
Es +

1

2m∗
p2

y +
1

2
m∗ω2

c (y + yk)
2 +

1

2
m∗ω2

0y
2

]
χ(y) = Eχ(y). (3.13)

Completing the square, we have

[
Es +

m∗

2

ω2
0ω

2
c

ω̃2
y2

k +
1

2m∗
p2

y +
1

2
m∗ω̃2

(
y +

ω2
c

ω̃2
yk

)2
]
χ(y) = Eχ(y),(3.14)

with

ω̃2 = ω2
c + ω2

0 (3.15)

This, then, has the form of a displaced Harmonic oscillator, and from ele-
mentary quantum mechanics, we have the solutions

χn,k(y) = un

(
q +

ω2
c

ω̃2
qk

)
, (3.16)
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Figure 3.4: Dispersion relation for a 2DEG with transverse harmonic con-
finement and perpendicular magnetic field. The three plots are for different
choices of ω0 and ωc, the confinement and cyclotron frequencies, respectively.

with un(x) the usual simple-harmonic oscillator eigenfunctions written in
terms of the dimensionless displacements q = y/l̃ and qk = yk/l̃ with length

l̃ =

√
~

m∗ω̃
. (3.17)

The corresponding dispersion relation is

E = Es +
m∗

2

ω2
0ω

2
c

ω̃2
y2

k +

(
n+

1

2

)
~ω̃

= Es +

(
n+

1

2

)
~ω̃ +

~
2k2

2m∗

ω2
0

ω̃2
, (3.18)

with n = 0, 1, 2, . . .. This result is illustrated in Fig. 3.4

The first thing to notice is that due to the confinement in the y-direction,
we obtain a series of sub-bands, labelled with quantum number n. In con-
trast to the z-direction, however, here the confining potential is relatively
weak, and more than just the lowest of sub-band will play a role in trans-
port. In analogy with optical wave guides, these sub bands are known as
transverse modes and they play a crucial role in determining the transport
properties of low-dimensional conductors. We also note that the dispersion
of a given transverse mode is of plane-wave form (i.e. quadratic) but with
a renormalised mass m∗ → m∗

(
1 + ω2

c/ω
2
0

)
— increasing the magnetic field



30 CHAPTER 3. QUANTUM CONFINEMENT

increases this renormalised mass of the electrons and makes the dispersion
relation flatter. Figure 3.4 highlights two limiting cases:

• Zero field: For B → 0, we have ωc → 0 and ω̃ → ω0 such that

E = Es +

(
n+

1

2

)
~ω0 +

~
2k2

2m∗
, (3.19)

as expected.

• Zero confinement For ω0 → 0, we have ω̃ → ωc and

E = Es +

(
n+

1

2

)
~ωc, (3.20)

in which case, quantum number n therefore the familiar Landau levels
with quantisation energy given by the cyclotron frequency. NB: there
is no dispersion in this limit.

3.5 Quantum dots: Fock-Darwin Spectrum

A useful model for the electronic confinement of a quantum dot is the two-
dimensional, symmetric parabolic potential

U(x, y) =
m∗

2
ω2

0

(
x2 + y2

)
. (3.21)

The corresponding Hamiltonian of an electron in the dot is

H =
1

2m∗
(p + eA)2 +

m∗

2
ω2

0

(
x2 + y2

)
. (3.22)

By using the symmetric gauge for the vector potential A = (−By/2, Bx/2, 0)
it can be shown (homework!) that the energy spectrum the dot is given by

En+,n−
= (n+ + 1) ~Ω +

1

2
~ωcn−, (3.23)

with

Ω2 = ω2
0 +

ω2
c

4
, (3.24)

and quantum numbers

n± = nx ± ny; for nx, ny = 0, 1, 2, . . . . (3.25)
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Figure 3.5: Fock-Darwin spectrum of symmetric quantum dot up to quan-
tum number n = 7.

This result is known as the Fock-Darwin spectrum after the physicists who
initially discussed the problem in the 1930s (nothing to do with quantum
dots). This spectrum is plotted in Fig. 3.5. For B = 0 we have the regularly-
spaced spectrum of a two-dimensional symmetric harmonic oscillator. In the
high-field limit, the spectrum goes over into that of the Landau levels with
the effects of the dot confinement playing an ever decreasing role.
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Chapter 4

Scattering theory

4.1 Resistance of a ballistic conductor

Consider a small conductor (length L, cross section A) connected to two
contacts which, by necessity, are large compared with the sample. Ohm’s
law states that the conductance of the sample will be G = σA/L, where the
conductivity σ is a size-independent material property. If Ohm’s law were to
hold as we decreased the length of the sample, we would therefore expect the
conductance to diverge as L−1. This is consistent with the Drude picture,
in which the resistance arises from electron scattering within the sample; if
the sample length is much shorter than the mean-free path lm, the electrons
are not scattered at all, whence an infinite conductance.

A conductor with L ≪ lm is said to be ballistic and experimentally, an
infinite conductance is not what is observed. Rather, as L is decreased,
the resistance saturates to a finite value G−1

c , the contact resistance. As
the name suggests, the contact conductance arises from the contact of the
mesoscopic sample and the outside world. Essentially, electronic motion
within the mesoscopic conductor is quantum confined (as discussed in the
previous chapter) such that, for a given voltage bias, only a finite many
transverse modes are supported in the sample. Each channel can only carry
a finite current and thus the conductance of the sample saturates. The
resistance occurs naturally as a consequence of trying to drive a current
from the large electron reservoirs of the contacts into and through a very
narrow constriction.

In this chapter we learn how to calculate this conductance not just for
ballistic conductors but more generally, using the scattering or Landauer-

Büttiker formalism. We follow here the treatment in the review by Blanter

33
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Figure 4.1: Scattering. (a) Incident photons (I) are scattered at a beam-
splitter into transmitted (T) and reflected (R) components. (b) Similarly
scattered are electrons incident on a potential barrier. (c) In general, par-
ticles can impinge on a scatterer from both the left and right. Incoming
amplitudes (or mode annihilation operators in the second quantised ver-
sion), aL, aR are related to the outgoing modes bL, bR through scattering
matrix S.

and Büttiker.

4.2 Electron scattering

In this chapter we will consider devices that are smaller that the phase-
relaxation length L < lφ, such that transport through the device is phase

coherent. This is important as it means we can consider electronic wave-
functions coherent across the whole device, along the lines of those discussed
in Chapter 3.

The Landau er Büttiker approach treats the mesoscopic sample simply
as a scatterer of electron waves. This makes a rather direct analogy between
the phase coherent transport of electrons through a mesoscopic device and
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the scattering of photons in optics by a beamsplitter, for example. Fig. 4.1a
shows an incident light beam (labelled I) impinging on an optical beam
splitter. A component of the incident beam is transmitted (T), and a com-
ponent is reflected (R). A similar situation occurs in Fig. 4.1b, where an
electron beam is partitioned into reflected and transmitted components as
it impinges on a finite potential barrier.

This idea of an incoming particle being scattered into reflected and trans-
mitted components is fruitfully described by the scattering matrix S. For
definiteness, let us consider Fig. 4.1b and assume that energy and momen-
tum are conserved in the scattering. Allowing an incident electron plane-
wave to strike the barrier from the left, the total wave function of the system
including scattering is

ψL(L) = eikx + re−ikx; x < 0

ψL(R) = teikx; x > 0 (4.1)

where coefficient r and t are the (complex) amplitudes for reflection and
transmission, respectively. Similarly, an electron incident from the right
gives

ψR(L) = t′e−ikx; x < 0

ψR(R) = e−ikx + r′eikx; x > 0 (4.2)

where the coefficients r′ and t′ need not be the same as r and t (although
they will be for a symmetric barrier). These states are called scattering

states. A general input state aLe
ikx + aRe

−ikx with initial amplitudes aL,R

therefore gives rise a total wave function:

Ψ(L) = aL

(
eikx + re−ikx

)
+ aRt

′e−ikx

= aLe
ikx +

(
aLr + aRt

′
)
e−ikx; x < 0

Ψ(R) = aLte
ikx + aR

(
e−ikx + r′eikx

)

= aRe
−ikx +

(
aLt+ aRr

′
)
eikx; x > 0 (4.3)

Introducing coefficients bL,R to describe the amplitudes of the outgoing
modes, we can write these wavefunctions simply as

Ψ(L) = aLe
ikx + bLe

−ikx

Ψ(R) = aRe
−ikx + bRe

ikx (4.4)
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Comparison of these two forms shows that the input and output coefficients
are related as

(
bL
bR

)
=

(
r t′

t r′

)(
aL

aR

)
= S

(
aL

aR

)
. (4.5)

This defines scattering matrix S which relates output mode amplitudes to
input ones.

Where does the S matrix come from? Or rather, how are the coefficients
r,t,r′ and t′ determined? Well, the answer is that they must be determined
by a precise quantum mechanical calculation of the behaviour of the elec-
trons at the scatterer. An illustrative example is the scattering matrix of
the potential barrier of Fig. 4.1b, for which one must invoke the continuity
of the wavefunction and its first derivative at the interfaces of the potential
barrier to determine S.

4.2.1 The scattering matrix

The preceding scattering matrix just describes a single outgoing and a single
incoming mode in each of the left and right regions. We can easily generalise
to the multimode case, with NL modes on the left and NR on the right.
Labeling an incoming amplitude in mode m on the right as aLm and so on,
we can collect all such amplitudes into vectors, writing.

b =




bL1
...

bLNL

bR1
...

bRNR




; a =




aL1
...

aLNL

aR1
...

aRNR




(4.6)

We then relate input and output modes with a scattering matrix

b = Sa. (4.7)

The scattering matrix S is of dimension (NL + NR) × (NL + NR) and has
the block structure

S =

(
sLL sLR

sRL sRR

)
=

(
r t′

t r′

)
, (4.8)

where, in the second form, the subblocks represent transmission (t and t′)
and reflection (r and r′) processes.
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bL

aL bR

aR(   ,T)µ L (   ,T)µ R

Right leadLeft lead

Sample

Mesoscopic Right
reservoir

Left
reservoir

Figure 4.2: In the scattering theory of a two-probe mesoscopic transport
experiment, five components of the set-up are identified: left and right reser-
voirs, left and right leads, and the sample itself. The reservoirs act as a sink
and thermalised source for electrons. The left and right leads are considered
to be narrow ballistic conductors with NL and NR transverse modes respec-
tively within in the transport window. Finally, the mesoscopic sample itself
is considered as scatterer, with scattering matrix S.

Flux conservation requires that S is unitary. This has the consequence
that

r†r + t†t = r′
†
r′ + t′

†
t′ = 1, (4.9)

r†t′ + t†r′ = t′
†
r + r′

†
t = 0,

rt† + t′r′
†

= tr† + r′t′
†

= 0. (4.10)

If time-reversal symmetry applies, S is also symmetric. Since the transfor-
mation between a and b is unitary, the canonical commutation relations for
b and the same as those for a.

4.3 The Landauer-Büttiker formalism

We will use a scattering matrix to relate states entering and leaving our
mesoscopic sample. In order to describe transport, however, we need more
ingredients than just the scattering matrix. As Fig. 4.2 shows, we identify
five components of the set-up: the sample itself, left and right leads, and the
left and right reservoirs. This is a two-probe set-up (L and R), but we will
generalise to the multi-probe case later. We will use the indices α, β = L,R
to label the left and right leads and reservoirs.
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4.3.1 Reservoirs

The reservoirs are assumed to be macroscopic conductors, large and in ther-
mal equilibrium. Each is described by a temperature Tα and chemical po-
tential µα, set by the external circuit. Normally, we set the temperatures
equal. The electrons in reservoir α are distributed according to the Fermi
distribution:

fα(E) =
1

exp ((E − µα)/kBTα) + 1
. (4.11)

Electrons entering the reservoirs are completely thermalised to this distribu-
tion before being returned to the leads and the only role that the reservoirs
play is to provide thermalised electrons.

4.3.2 Leads

Sign convention (after M. Büttiker, Phys. Rev. B 46, 12485 (1992)): In
each lead α, we define a local coordinate xα such that the positive sense
of xα is taken towards the sample. Incoming plane waves are always eikxα ,
outgoing waves e−ikxα . 1 This convention makes particular sense when we
consider multi-probe geometries. We also define the vector r⊥α perpendic-
ular to xα in lead α.

The leads are assumed to be perfect (ballistic) conductors, and narrow
compared with the reservoirs. We describe electrons in lead α with the
Hamiltonian

Hα =
1

2m∗
p2

xα +
1

2m∗
p2
⊥α + U(r⊥), (4.12)

with U(r⊥) the perpendicular confinement potential, as in the previous chap-
ter. The eigenfunctions of Hα are

φ±αnkn
(xα, r⊥α) = χαn(r⊥α)e±knxα , (4.13)

with χ satisfying the transverse problem:
{

1

2m∗
p2
⊥α + U(r⊥)

}
χαn(r⊥α) = ǫαnχαn. (4.14)

The dispersion relationship is then

Eαn(kαn) =
~

2k2
αn

2m∗
+ ǫαn, (4.15)

1This is different to the convention of Eqns. (4.1) to (4.4) in which the left to right is
fixed as the positive x direction for both incoming and outgoing waves.
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with ǫαn the energy of the transverse mode n in lead α. Although index n
is in principle unbounded, for our purposes we need only consider a finite
number of modes in each lead, Nα, since higher modes will lie outside the
energy range of interest. This energy range, or ‘transport window’ is given
approximately by the bias across the sample.

The contact between the leads and the reservoirs is assumed to be re-

flectionless, which means that any electron impinging on the reservoir is
fully absorbed by it. In practise, this can be realised with the ‘horn’ shaped
contacts along the lines of Fig. 4.2.

4.3.3 Scattering states

We will describe the mesoscopic sample is described solely in terms of its
scattering matrix S, which describes phase-coherent elastic scattering be-
tween the NL electron modes of lead L and the NR modes of lead R. The
scattering matrix is taken as an input to our theory, and as such must be
calculated by other means, such as the wave function matching mentioned
in the previous section.

Proceeding as before, let us now construct the scattering states of our
problem. Injecting an electron into modem of lead α, the total wavefunction
is, in lead α,

ψαm(α) =
∑

n

δmnφ
+
αnkαn

+

√
vαm

vαn
sααnmφ

−
αnkαn

, (4.16)

and in lead β,

ψαm(β) =
∑

n

√
vαm

vβn
sβαnmφ

−
βnkαn

. (4.17)

Here, sαβnm are elements of the scattering matrix which, in general depends
on the wavenumber/energy at which scattering takes place. These expres-
sions have been written such that the electron velocity in mode (α,m):

vαm =
dEαm

d(~kαm)
=

~kαm

m∗
=

√
2m∗

Eαm − ǫαm
(4.18)

appears explicitly. This may be thought of as a consequences of the normal-
isation of our wavefunctions, or of a free choice we make about the definition
of S — when we move to an energy representation, these factors will conve-
niently cancel.
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The scattering states ψαm, together with any possible bound states in
the conductor, form a complete set of states for a single electron (J. E. G Fa-
rina, Quantum theory of scattering processes, Pergamon, Oxford, 1973). A
general electronic state in the device-lead system can therefore be written
as

Ψ(r, t) =
1√
2π

∑

αm

∫
dkαmψαm(kαm, r)e

−iωαm(k)taαm(kαm) (4.19)

with ωαm(k) = Eαm/~ and aαm(kαm), the amplitudes of the incoming wave
components.

4.3.4 Second Quantisation

We now move to a second-quantised formalism through the introduction
of fermionic creation and annihilation operators for incoming and outgoing
modes. Still in momentum space, the canonical anti-commutation relations
for the incoming operators read

{
âαm(k), â†βn(k′)

}
= δαβδnmδ

(
k − k′

)
. (4.20)

with other anti-commutators equal to zero. Identifying the wavefunction
amplitudes of Eq. (4.19) with these operators , we can write the electron
field operator at (r, t) as

Ψ̂(r, t) =
1√
2π

∑

αm

∫
dkαmψαm(kαm, r)e

−iωαm(k)tâαm(kαm). (4.21)

For all subsequent developments, it is more convenient to work in the
energy (rather than k) representation. For this we need to find the rela-
tions analogous to Eq. (4.20) in energy space. Consider the delta function
δ (k − k′). An important identity for the delta function reads

δ (f(x)) =
∑

i

1

|f ′(xi)|
δ (x− xi) with xi roots of f(xi) = 0. (4.22)

Taking into account the preceding δαβδnm factors, we can thus write

δ
(
k − k′

)
= δ

(√
2m

~

(√
E − ǫαm −

√
E′ − ǫαm

))

=
1

~

√
m∗

2 (E − ǫαm)
δ
(
E − E′

)

=
1

~vαm(E)
δ
(
E − E′

)
(4.23)
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Therefore, in order that the commutation relations preserve their canonical
form in the energy representation, we define

âαm (E) =
1√

~vαm(k)
âαm (k) ; and â†αm (E) =

1√
~vαm(k)

â†αm (k) ,(4.24)

such that
{
â†αm(E), â†βn(E′)

}
= δαβδnmδ

(
E − E′

)
, (4.25)

with the velocities cancelling. In order to convert the field operator of
Eq. (4.21) into the energy representation we introduce the density of states
D(E), such that

∫
dk →

∫
dE D(E). As the motion in both transverse di-

rections is confined, the appropriate density of states is the one-dimensional
result

D(E) =
1

4

1

π~

√
2m∗

E
=

1

2π~vαm(E)
. (4.26)

This value is quarter of the value that one usually expects for a 1D DOS, the
reason being that here we have not included spin (spin up and spin down
count as two separate channels), and we only consider states propagating in
a single incoming direction (i.e. just k and not ±k). These results allow us
to write the field operator as

Ψ̂ (r, t) =
∑

αm

∫
dEαm√
2π~vαm

ψαm(Eαm, r)e
−iωαm(E)tâαm(Eαm). (4.27)

In second quantisation, we can relate outgoing operators annihilators b̂βn(E)
to incoming ones via the scattering matrix, just as we did for the amplitudes
in section 4.2.1

b̂βn(E) = sβαnmâαm(E). (4.28)

Arranging the operators into vectors, we have

b̂(E) = Sâ(E). (4.29)

and for the corresponding creation operators,

b̂†(E) = S†â†(E). (4.30)

The scattering matrix here obeys the same properties as discussed in the
previous section.
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4.3.5 The Landauer current formula

Employing the scattering states from Eq. (4.16), we can express the left-lead
field operator Eq. (4.27) as

Ψ̂L (r, t) =
∑

mn

∫
dE√

2π~vLm
e−iωLm(E)t

×
{
δmnφ

+
Ln +

√
vLm

vLn
sLLnmφ

−
Ln(E)

}
âLm(E)

=

NL(E)∑

m=1

∫
dE√

2π~vLm
e−iωLm(E)t

×
{
φ+

Lm(E)âLm(E) + φ−Lm(E)b̂Lm(E)
}
.

(4.31)

Following the standard QM expression, the current operator in the left lead,
far from the sample can be expressed as:

ÎL(x, t) =
~e

2im

∫
dr⊥L

[
Ψ̂†

L (r, t)
∂

∂x
Ψ̂L (r, t) −

(
∂

∂x
Ψ̂†

L (r, t)

)
Ψ̂L (r, t)

]

.(4.32)

Evaluating the derivatives with field operators from Eq. (4.31) yields a
lengthy expression. This expression contains the velocity v(E) and by recog-
nising that this is a slowly-varying functions of energy, we can approximate
the current operator as

ÎL(t) =
e

2π~

∑

n

∫
dEdE′ei(E−E′)t/~

[
â†Ln(E)âLn(E′) − b̂†Ln(E)b̂Ln(E′)

]
.

(4.33)

Setting E′ = E + ~ω and integrating over ω gives

ÎL(t) =
e

2π~

∑

n

∫
dE
[
n̂+

Ln(E, t) − n̂−Ln(E, t)
]
, (4.34)

where n̂+
Ln(E, t) are the time-dependent occupation numbers for incoming

and outgoing electrons in mode n of the left lead. We thus arrive at the
physically appealing result that the current in a given lead is given by the
difference in occupation between left- and right- moving electrons in that
lead.
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Let us define the A matrix for the left lead:

Amn
αβ (L;E,E′) = δmnδαLδβL −

∑

k

s†Lα;mk(E)sLβ;kn(E′), (4.35)

with sLα;mk(E) the scattering matrix element relating b̂Lm(E) to âαk(E).
The current operator then assumes a bilinear form in terms of input opera-
tors only:

ÎL(t) =
e

2π~

∑

αβ

∑

mn

∫
dEdE′ei(E−E′)t/~â†αm(E)Amn

αβ (L;E,E′)âβn(E′).

(4.36)

Inserting the definition of matrix A and comparing with Eq. (4.33), we see
that the δ-function part of A gives number operator for incoming modes and
the second term gives the number operator for outgoing modes.

We are now in a position to use this current operator to obtain an ex-
pression for the average current in the left lead 〈IL〉. Incoming modes are
populated by electrons coming from the reservoirs. We assume that each
incoming mode is in thermal equilibrium with the corresponding reservoir,
and thus the electrons in mode m of lead α are distributed according to the
Fermi function fα(Em). The bilinear product of incoming mode operators
therefore have the following expectation value:.

〈â†αm(E)âβn(E′)〉 = δαβδmnδ
(
E − E′

)
fα(E). (4.37)

Taking the expectation value of the current operator of Eq. (4.36) directly
yields the average current as

〈ÎL〉 =
e

2π~

∫
dE Tr

[
t†(E)t(E)

]
[fL(E) − fR(E)] , (4.38)

where t(E) is the off-diagonal transmission subblock of the scattering ma-
trix.

4.3.6 Linear Response

Equation (4.38) gives the current for a general voltage, but we are often just
interested in small applied fields where a linear approximation will suffice.
Let us set a voltage bias V across sample such that the chemical potentials
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read µL = µ+ eV/2 and µR = µ− eV/2, with µ the equilibrium value. We
have then

fL(E) − fR(E) = f(E − EF − eV/2) − f(E − EF + eV/2) (4.39)

In the limit of small bias, we can approximate this as

eV

(
f(E − µ− eV/2) − f(E − µ+ eV/2)

eV

)

→ eV
(
−f ′(E − µ)

)
(4.40)

with f(E) =
[
1 + eE/kBT

]−1
and f ′(E) = d

dE f(E). The current becomes

〈ÎL〉 =
e2V

2π~

∫
dE Tr

[
t†(E)t(E)

] (
−∂f(E − µ)

∂E

)
, (4.41)

and the corresponding conductance

G =
〈IL〉
V

=
e2

h

∫
dE Tr

[
t†(E)t(E)

] (
−∂f(E − µ)

∂E

)
. (4.42)

At low temperatures, the derivative of the Fermi functions gives us a delta
function, such that at small bias and temperature we have

fL(E) − fR(E) → eV δ (E − EF ) , (4.43)

where, in this last step, we have written µ in its zero-temperature limit of
EF . The linear (or equilibrium) conductance then becomes

G =
e2

h
Tr
[
t†(EF )t(EF )

]
. (4.44)

The matrix t†t has eigenvalues Tn which are real, and these are the trans-

mission probabilities. The corresponding representation is called the eigen-

channel representation. In this representation, the current of Eq. (4.38),
reads

〈ÎL〉 =
e

2π~

∑

n

∫
dE Tn(E) [fL(E) − fR(E)] . (4.45)

and the linear response conductance can therefore be written as

G =
e2

h

∑

n

∫
dE Tn(E)

(
−∂f(E − µ)

∂E

)
. (4.46)
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At low temperatures this becomes simply

G =
e2

h

∑

n

Tn; Tn = Tn(EF ). (4.47)

This is the Landauer conductance formula. It states that each channel con-
tributes a unit of conductance G0 = e2/h multiplied by the transmission
probability of the channel. This is quite a nice picture of what is happening
and somewhat in tune with intuition.

A final version of this result makes use of the probabilities TRL;mn =
|sRL;mn|2 for transmission of a carrier from channel n in the left lead to
channel m in the right. In this basis, the natural basis, the conductance
reads

G =
e2

h

∑

mn

Tmn. (4.48)

Note that linear response is not only valid when the applied bias is small,
but also for the case when the transmission coefficients are only weakly
dependent on energy.

4.4 Examples

4.4.1 Quantum point contact

A quantum point contact (QPC) is a narrow constriction in a 2DEG, see
Fig. 4.3a, through which transport is essentially ballistic. In terms of the
Landauer-Büttiker approach, this means that each channel has transmission
probability equal to unity when the channel lies within the transport win-
dow, and zero otherwise. The total transmission coefficient for the system
is then

T (E) =
∑

n

θ(E − ǫn) (4.49)

where θ(E) is the step-function as usual, and ǫn are the mode energies.
With such a simple scattering matrix, the (linear, low temperature) con-

ductance is simply found from Eq. (4.47) to be

G =
e2

n

∑

n

θ(E − ǫn) =
e2

h
NL, (4.50)
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Figure 4.3: Left: Quantum point contact formed in a 2DEG with top gates.
Right: conductance quantisation in units of 2e2/h. The resulting conduc-
tance steps are smeared out when the thermal energy becomes comparable
to the energy separation of the modes. From H. van Houten and C.W.J.
Beenakker, cond-mat/0512609 (adapted from the experiment of B. J. van
Wees, Phys. Rev. Lett. 60, 848 (1988)).

where NL is the number of modes in the transport window. With zero
magnetic field, spin-up and spin-down channels are degenerate, and we write
NL = 2M , where M is the number of orbital channels. We thus find the
QPC condutnace to be

G =
2e2

h
M, (4.51)

which shows conductance quantisation in units of

2e2

h
=

1

12.5kΩ
. (4.52)

This value, 12.5kΩ, is the resistance of a single channel — and it is certainly
not negligible. The conductance of a QPC from experiment is plotted in
Fig. 4.3b. Clearly seen is a sequence of conductance steps as the applied
bias is increased and more modes are brought within the transport window.
The height of the each steps is always 2e2/h, but the position of the steps
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Figure 4.4: Resonant tunnel barriers. From Ya. M. Blanter, and M. Büttiker,
cond-mat/9910158.

depends on the values of the mode energies and hence on the precise form
of the transverse confinement potential. With a simple harmonic potential,
the positions of the steps will be regularly spaced.

The effects of temperature and the Zeeman splitting on the QPC con-
ductance are discussed in a homework exercise.

4.4.2 Resonant tunnel barrier

We now consider an example in which the interesting behaviour arises from
the structure of the scatterer, and not from the transverse confinement. To
this end we consider that the leads have a single (spin-degenerate) mode
such that, from Eq. (4.47), the conductance is simply

G =
2e

h
T (E), (4.53)

with T (E) the transmission amplitude of the scatterer, and we where we
have included a factor of 2 for both spin directions, which we assume are
scattered identically.

As our scatterer, we take the resonant tunnel barrier structure sketched
in Fig. 4.4, which serves as a model for both quantum wells and quan-
tum dots. If we consider the structure to be purely one-dimensional with
transmission probabilities TL and TR for the L and R barriers, the total
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transmission coefficient of the device is

T (E) =
TLTR

1 + (1 − TL)(1 − TR) − 2
√

(1 − TL)(1 − TR) cosφ(E)
, (4.54)

with φ(E) the phase accumulated in crossing the enclosed region φ(E) =
2w

√
2mE/~. This expression has a series of maxima which occur at resonant

energies Er
n such that the phase is φr(E) = 2πn. NB: this result comes from

a wavefunction matching calculation or something similar: see homework
exercise or Ferry & Goodnick. For simplicity, we expand Eq. (4.54) about
its resonances, assuming that the spacing between the resonances is greater
than their broadening, and obtain

T (E) ≈
∑

n

Tmax
n

Γ2
n/4

(E −Er
n)2 + Γ2

n/4
(4.55)

where

Tmax
n =

4ΓLnΓRn

Γ2
n

(4.56)

is the maximum transmission probability on resonance, Γαn = ~νnTα is the
partial width, with attempt frequency ν−1

n = (~/2)(dφ/dEr
n) = w/vn with

velocity vn =
√

2Er
n/m, and the total width of the nth resonant level is

Γn = ΓLn +ΓRn. T (E) thus consists of a string of Breit-Wigner resonances.

The resulting conductance is shown in Fig. 4.5, from which we clearly
see this resonance structure. Note that the broadening of the peaks is given
by Γ and not temperature. One further interesting point is that, even if the
transmission probability of the individual barriers is very low, if they are
symmetric, the transmission coefficient of the complete structure is unity.
This may be understood in terms of multiple-internal reflections in the inter-
barrier region.

4.5 The Macroscopic limit

We now analyse the predictions of this Landauer result as we increase the size
of the conductor. Let us assume that all M channels are equally transmissive
(probability T ), such that the conductance is

G =
2e2

h
MT. (4.57)
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Figure 4.5: The conductance G/G0 with G0 = 2e2/h for the resonant
tunnel barrier model assumed to have a transmission coefficient given by
Eq. (4.55). We set Γn = Γ, ΓLn = ΓL, ΓRn = ΓR and Er

n = n~ω..
Left: The conductance shows distinct peaks at the resonance energies, with
ΓL = ΓR, ~ω = 20Γ Right: Close-up of a single resonance for ΓL = 1/2(red),
ΓL = 1/4(blue), ΓL = 1/10(green). The transmission is unity on resonance
for symmetric barriers, regardless of the magnitude of ΓL = ΓR.

4.5.1 Wide conductor

For a wide conductor we can estimate M , the number of modes by assuming
periodic boundary conditions, for which the allowed values of ky are spaced
by 2π/W , with conductor width W . At energy EF = ~

2k2
F /2m a wave can

only propagate if its wavevector lies in the range −kF < ky < kF , and the
number of such states is therefore 2kF /(2π/W ) = kFW/π. Strictly, we have
to take the integer part

M = int(kFW/π) = int(W/(λF /2)). (4.58)

Assuming a Fermi wavelength of 30nm, the number of modes in a 15 µm
wide FET is of the order 1000, such that the contact resistance is ∼ 12.5Ω.

4.5.2 Ohm’s law

What happens if we now increase the length of the conductor? Using result
Eq. (4.58), the conductance of our wide sample is

G =
2e2

h

kFW

π
T = e2WD0

vFT

π
(4.59)
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with D0 = m/π~
2, the 2DEG DOS. The transmission probability for a

conductor of length L is

T (L) =
L0

L+ L0
, (4.60)

where L0 is a length of the order of the mean-free path. Proof of this relation
is left for the homework set. It therefore follows that the conductance is

G =
W

L+ L0
e2D0

vFL0

π
. (4.61)

This result can be understood in terms of the diffusive theory of (classical)
transport in which the current density arises from a gradient in electron
concentration

J = −eD∇n, (4.62)

with D the diffusion coefficient. Comparison with J = σE yields the rela-
tionship between D and the Ohm’s law conductivity:

σ = e2D0D (4.63)

This is the Einstein relation for degenerate semiconductors. Returning to
Eq. (4.61), we can identify vFL0/π with the diffusion coefficient D, and use
the Einstein relation to write

G =
σW

L+ L0
. (4.64)

Separating out two contributions, we have

G−1 = G−1
Ω +G−1

c =
L

σW
+

L0

σW
, (4.65)

where the first term is the Ohm’s law resistance, which scales with the length,
and the second is the contact resistance, which has value independent of the
length of the conductor. In the macroscopic limit G−1

Ω ≫ G−1
c , and we

recover Ohm’s law.

4.6 Multiterminal conductance

The Landauer-Büttiker formalism can be extended to devices with multiple
contacts. Consider a number of reservoirs labelled with index α, each with
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its own equilibrium Fermi distribution fα(E). At a given energy, lead α
supports Nα(E) transverse modes. Introduce annihilation operators âαm

and b̂αm for incoming and outgoing modes in mode m of channel α, which
are once again related by a scattering relation which, in terms of components,
reads

b̂αm(E) =
∑

βn

sαβ;mn(E)âβn(E). (4.66)

The matrix s is of course unitary. As in Eq. (4.35) we introduce the matrix:

Amn
βγ (α;E,E′) = δmnδαβδαγ −

∑

k

s†αβ;mk(E)sαγ;kn(E′), (4.67)

such that the current operator in lead α becomes

Îα(t) =
e

2π~

∑

βγ

∑

mn

∫
dEdE′ei(E−E′)t/~â†βm(E)Amn

βγ (α;E,E′)âγn(E′).

(4.68)

The signs of currents are chosen so that they are positive for incoming
electrons.

Consider a voltage Vβ applied to reservoir β such that µβ = µ + eVβ

with µ the equilibrium chemical potential of all leads. The average current
in linear response is then

〈Iα〉 =
e2

2π~

∑

β

Vβ

∫
dE

(
− ∂f

∂E

)[
Nαδαβ − Tr

(
s†αβsαβ

)]
, (4.69)

where the trace is taken over the channel index of lead α. Defining the
differential conductance matrix Gαβ via

Gαβ =
d〈Iα〉
dVβ

∣∣∣∣
Vβ=0

, (4.70)

we have, in linear regime,

〈Iα〉 =
∑

β

GαβVβ (4.71)

with elements of the conductance tensor

Gαβ =
e2

h

∫
dE

(
− ∂f

∂E

)[
Nαδαβ − Tr

(
s†αβsαβ

)]
, (4.72)
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At low temperature we have

Gαβ =
e2

h

[
Nαδαβ − Tr

(
s†αβsαβ

)]
. (4.73)

In both Eq. (4.72) and Eq. (4.73), the scattering matrix is evaluated at the
Fermi energy.

4.6.1 Three-terminal device

As an example, let us consider a three terminal device. From Eq. (4.71) the
currents are related to the voltages via




I1
I2
I3


 =




G11 G12 G13

G21 G22 G23

G31 G32 G33






V1

V2

V3


 (4.74)

At low temperatures, and with Mi spin-dependent channels in each channel
i, Eq. (4.73) means that this can be written




I1
I2
I3


 =

2e2

h




M1 − R̄11 −T̄12 −T̄13

−T̄21 M2 − R̄22 −T̄23

−T̄31 −T̄32 M3 − R̄33






V1

V2

V3


 , (4.75)

with

R̄αα = Tr
(
s†ααsαα

)
; T̄αβ = Tr

(
s†αβsαβ

)
(4.76)

To find the resistances, we could in principle invert the conduction ma-
trix. However, we can make life simpler for ourselves by first noting that
Kirchoff’s law implies that I1 + I2 + I3 = 0, and that, since the results can
only depend on voltage differences, we can, without loss of generality, set
V3 = 0. We then have

(
I1
I2

)
=

(
G11 G12

G21 G22

)(
V1

V2

)
, (4.77)

which we can easily invert to give

(
V1

V2

)
=

(
R11 R12

R21 R22

)(
I1
I2

)
. (4.78)
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If we drive a current from terminal 3 to terminal 1 and measure the voltage
across terminals 2 and 3, the resistance is

R3t =
V

I
=
V2

I1

∣∣∣∣
I2=0

= R21

=
−G21

G11G22 −G12G21

=
T̄21

(M1 − R̄11)(M2 − R̄22) − T̄12T̄21
. (4.79)

If we instead drive the current from terminal 3 to terminal 2, and measure
the voltage across terminals 1 and 3, we find

R′
3t =

V ′

I ′
=
V1

I2

∣∣∣∣
I1=0

= R12, (4.80)

which yields the same as before but with T̄12 in the numerator instead of
T̄21.
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Chapter 5

The quantum Hall effect

Consider a 2DEG in a perpendicular magnetic field of flux density B. Ac-
cording to the semi-classical (Ohmic) prediction of Chapter 2, we should
expect the longitudinal resistance RL to be independent of magnetic field
strength, and the transverse, or Hall, resistance RH to increase linearly with
B. However, if this experiment is carried out at high B-field strength, with
a high-mobility sample at low temperature the experimentally measured
resistances appear as shown in Fig. 5.1. The significant features are

• At low fields, there is agreement with Ohmic predictions

• As B is increased, longitudinal resistance RL shows oscillations with
frequency ∼ 1/B.

• The Hall resistance RH shows a series of pronounced plateaus.

• Within these plateaus at high fields, the longitudinal resistance is ex-
tremely close to zero . This is particularly surprising because the
terminals between which this resistance is measured can be some mil-
limeters apart!

The latter of these two points go under the name of the quantum Hall effect,
for which Klaus von Klitzing won the 1985 Nobel prize.

5.1 Shubnikov-de Haas oscillations

The oscillation of the longitudinal resistance with increasing B-field is known
from bulk materials, and is called the Shubnikov-de Haas effect after its dis-
coverers in 1930 (in a Bismuth sample, incidentally). The explanation of

55
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Figure 5.1: Shubnikov-de Haas oscillations and the integer quantum Hall
effect. Experimental results for the longitudinal and Hall resistances of a
2DEG as a function of magnetic field. Figure from Ferry & Goodnick.

these oscillations relies on the concept of the Landau level (LL) introduced
in previously. In Chapter 3 we saw that in the presence of a perpendicular
B-field, the electronic states in a 2DEG split into a series of Landau lev-
els. These we label with an index nLL = 0, 1, 2, . . . (corresponding to the
first,second, third,... LL), such that the dispersion is

En = Es + ~ωc

(
nLL + 1

2

)
, (5.1)

with ωc = eB/m, the cyclotron frequency. How many electronic states are
there is a Landau level? To find out, first consider the density of states of a
single-subband 2DEG:

D(E) = D0θ(E − Es); D0 =
m

π~2
. (5.2)

The corresponding density of states consists of a set of discrete peaks, as in
Fig. 5.2. We can write

D(E) ≈ DLL
0

∑
δ
(
E − Es − ~ωc

(
nLL + 1

2

))
, (5.3)
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Figure 5.2: Density of states of a 2DEG in magnetic field. By comparing
the DOS with and without magnetic field, we can calculate the number of
states within each Landau level. From Ferry & Goodnick.

where the forefactor DLL
0 is the number of states per unit area in a single

Landau level. By comparison of the density of states with and without
magnetic field, Fig. 5.2, this forefactor can be determined as

DLL
0 =

2eB

h
. (5.4)

In reality, and as drawn in Fig. 5.2, the delta-functions are broadened by
scattering into peaks of finite width. At low B, this broadening is greater
than the separation of the peaks and we recover the Ohmic results.

We first imagine a situation in which B is kept constant,and the electron
density n is altered by changing a gate voltage. Due to the discrete form
of the DOS, the Fermi level of the system will undergo a series of jumps as
we change the electron density. Increasing n when EF is inside a Landau
level simply increases the number of electrons in that level, with only a very
small change in EF . However, once the Landau level is full, the Fermi level
jumps to the next LL where the process begins over. We say that the Fermi
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level is ‘pinned’ within the LL. The highest occupied LL is

M = int

(
hn

2eB
+ 1

)
, (5.5)

which obtained as the integer part of the number-density of electrons divided
by the number-density DLL

0 of a single LL, plus one since we count the state
centered around ~ωc/2 as the first (not the zeroth) LL. The jumps associated
with the discrete values of M as the density is increased is what imparts the
oscillatory behaviour on the magentoreisitance.

Whilst we have considered what happens with increasing electron den-
sioty, the same arguments apply if we consider the density n to be fixed,
and vary the magnetic field. In this case, Eq. (5.5) still holds, but now the
Fermi level jumps between Landau levels with a frequency ∼ 1/B.

Shubnikov-de Haas oscillations provide a useful tool for determining the
carrier density, which can be extracted by plotting the positions of subse-
quent current maxima as a function of 1/B ( Homework).

5.2 Edge channels

Naively, one might expect that the maxima in the longitudinal conductance
occur when the Fermi level lies in the middle of a LL, where the density of
states is high. This is, however, absolutely not what is actually happens!
The reason is that the states described by the Landau levels are completely
localised: from Eq. (5.1), their velocity is v(n, k) = ~

−1∂En/∂k = 0, and
they thus carry no net current. Classically, the motion of cyclotron electrons
is in simple closed orbits with no net translation and no transport.

The conductance maxima (resistance minima) actually occur when the
Fermi energy lies between the LLs — but what states exist here? The answer
is the so-called edge states. In our description up to now we have considered
a bulk 2D sample, but to properly understand the magneto-resistance of
Fig. 5.1, we must also take into account quantum confinement. As we now
show, this confinement gives rise to a set of states near the edges of the
conductor that extend the length of the sample and are current-carrying.

The properties of these edge states also explain the sequence of remark-
ably flat plateaus in the Hall resistance. Although the QPC, for example,
shows conductance quantisation with steps of height 2e2/h, experimentally
the height of these steps is constant only to within a few percent, since a
conductor will never be perfectly ballistic. In contrast, the plateaus of the
QHE are measured to be flat to some 1 part in 108 and this amazing degree
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y

U(y) E(n,k)

k, yk

EF

Figure 5.3: Formation of edge channels. Left: The confinement potential
U(y) is flat near the middle of the sample. Right: The dispersion E(n, k) as
a function of k or yk the centre of wavefunction with wavenumber k. Near
the centre, the spectrum is that of the unperturbed Landau levels. The
lowest two are shown. Near the edges of the sample, the dispersion turns
upwards due to the perturbation of the confinement. The Fermi energy EF

is shown lying two Landau levels. The only states in the vicinity of the
Fermi energy are the two sets of edge channels two on either side of the
conductor.

of flatness implies that the effect is not simply the result of good sample
preparation, but rather something of a more fundamental nature, which we
now outline. This flatness is what allows the QHE to be used as a resistance
standard.

5.2.1 Origin of the edge states

In Section 3.4 we considered the exact eigenfunctions of a system with both
magnetic field and transverse confinement. We chose parabolic confinement
and obtained an exact analytic solution. Here we take a different approach
and consider the potential sketched in Fig. 5.3. For most of the conductor
width, the potential is flat; only near the edges do the electrons feel the
effects of the confinement. Here we will treat the effects of the confinement
as a perturbation of the Landau levels.

With confinement in y direction and gauge choice of Sec. 3.4, the effective
mass equation reads

[
Es +

1

2m∗
(px + eBy)2 +

1

2m∗
p2

y + U(y)

]
ψ(x, y) = Eψ(x, y). (5.6)
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We first analyse the solutions with zero confinement by setting U(y) = 0.
As discussed previously, the eigenfunctions of the system can be written as

ψnk(x, y) =
1√
L
eikxun(q + qk) (5.7)

with

un(q) = e−q2/2Hn(q); Hn(q) = nth Hermite polynomial. (5.8)

We have introduced the two dimensionless distances

q =
√
mωc/~y and qk =

√
mωc/~yk (5.9)

and the displacement

yk =
~k

eB
. (5.10)

The Landau level wavefunction of Eq. (5.7) is extended in the x direction
but localised to within a few times the magnetic length about the point yk

in the transverse direction.
As in Eq. (5.1), the energy of these states is given by

E(n, k) = En = Es + ~ωc

(
n+ 1

2

)
. (5.11)

Consequently, the velocity of the electron with quantum numbers (n, k) is

v(n, k) =
1

~

∂E(n, k)

∂k
= 0 : (5.12)

As discussed above, electrons in a LL carry no net current. 1

Now let us include the effects of confinement through perturbation the-
ory. Writing |n, k〉 as the ket corresponding to ψnk(x, y), the change in
energy of the LLs to lowest-order in the confinement potential is simply

E(n, k) ≈ Es + ~ωc

(
n+ 1

2

)
+ 〈n, k|U(y)|n, k〉. (5.13)

Assuming that the potential U(y) is smooth on the scale of variation of the
wavefunction ψnk(x, y), we can write

E(n, k) ≈ Es + ~ωc

(
n+ 1

2

)
+ U(yk), (5.14)

1This may seem strange given the plane-wave form of Eq. (5.6). However, this form ac-
tually depends on the gauge chosen for the vector potential. Each LL is highly degenerate,
and these states can be combined to give a set of localised wave functions. Perturbation
by e.g. the confinement removes this degeneracy and we obtain non-degenerate solutions
with plane wave form.
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where yk is the centre of wave function in the transverse direction. We
thus obtain a dispersion relation that is dependent on the location of the
electron (strictly: the centre of the electronic wave function). This result is
illustrated in Fig. 5.3: Near the centre of the conductor, the potential U(yk)
is approximately zero, and the bulk Landau level dispersion applies. Only
near the edges of the conductor does the perturbation term U(yk) contribute
significantly, where it causes the energies to bend upwards. Near the edges
there is a continuous distribution of energies.

The velocity of an electron with the dispersion of Eq. (5.14) is

v(n, k) =
1

~

∂E(n, k)

∂k
=

1

~

∂U(yk)

∂k
=

1

~

∂U(y)

∂y

∂yk

∂k
=

1

eB

∂U(y)

∂y
(5.15)

Electrons away from the edges are largely unperturbed and thus have v(n, k) =
0 and carry no current. In contrast, states near the edges will have finite
∂U(y)/∂y and thus be capable of carrying a current. Moreover, states near

the two edges of the conductor carry currents in different directions, since
∂U(y)/∂y is of opposite sign at the two edges of the conductor.

This last observation has a remarkable consequence: since the wavefunc-
tions of states with different momentum directions reside on opposite sides
of the conductor, there can be virtually no back scattering, since this would
involve scattering a carrier from one side of the conductor to the other and
the overlap between these two wavefunctions is exponentially small. Thus,
even in the presence of impurities, transport within an edge channel will be
almost completely ballistic since the back-scattered states are inaccessible
(and of course, elastic forward-scattering leaves momentum unchanged).

5.2.2 Transport in the edges channels

Now we understand the nature of the edge states, it is time to see how they
effect transport. If, as in the plateau regions of Fig 5.1, the Fermi level
lies between Landau levels, the only states in the vicinity of the Fermi level
are the edge states, as Fig 5.3 makes clear, and we therefore we expect any
current to be carried by the edge states.

A conductor in the Quantum Hall regime is shown in Fig. 5.4 connected
between two reservoirs. Since there is an absence of backscattering, right-
moving states, which are localised at the top of the conductor, originate
solely from the left reservoir; left-moving carriers originate solely from the
right. The electrons in each edge channel will therefore be in equilibrium
with the reservoir from which they are sourced. It is then clear that two
voltage probes on the same side on the sample will measure the same voltage
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µ L µR

In eqm with left reservoir

In eqm with right reservoir

Figure 5.4: Two terminal conductor in Quantum Hall regime. Right moving
channels are spatially separated from left moving channels. Left-moving
channels can only be populated by electrons in the left reservoir, Left-moving
channels from the right reservoir.

regardless of their position. Conversely, voltage probes on opposite sides of
the sample will measure a voltage drop given by µL − µR. Whence

VL = 0 and eVH = µL − µR. (5.16)

A more comprehensive analysis suitable for complex Hall geometries can
be undertaken by treating the individual edge channels in the exactly the
same way as we did the the quantised conductance channels within the
Landauer-Büttiker approach. Figure 5.5 shows a typical set up: a multi-
probe experiment with a number of edge channels forming a set of discrete
conductance channels between the probes. In such a set-up there is essen-
tially no back-scattering and the transport is ballistic. Thus the transmission
probability of a single edge channel connecting two terminals is approxi-
mately unity. The total conductance between two terminals connected by
M edge states is therefore

G =
2e2

m
M, (5.17)

where M is the number of channels connecting the terminals, assumed to be
spin-degenerate. Thus, whenever the Fermi level of the system lies between
LLs, we expect the longitudinal resistance to be zero RL = VL/IL = 0, and
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Figure 5.5: Hall bar with five terminals each with chemical potential µi.
The Fermi energy is set in the Quantum Hall regime such that there are two
edge-channels connecting the terminals. Picture from Ferry & Goodnick.

the Hall resistance to be given by

RH = G−1 =
h

2e2M
=

25.8128kΩ

2M
, (5.18)

with M the number of edge channels at the Fermi energy. As is clear from
Fig. 5.3, the number of edge channels is simply the number of LL below the
Fermi level, and recalling Eq. (5.5) this is just

M = int

(
hn

2eB
+ 1

)
. (5.19)

Note that M can be used to index the plateaus, as in Fig. 5.1 and that this
index decreases as the field increased.

5.2.3 Resistance in Hall bar geometry

Having established the connection between edge states and conductance
channels, we may apply the approach of Büttiker to multi-terminal problems
such as the five-terminal Hall bar geometry shown in Fig. 5.5. We assume
that contacts 1 and 3 are current contacts, and that contacts 2,3, and 4 are
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voltage probe contacts that draw no current. From Eq. (4.71) and Eq. (4.73),
we have




I
0
−I
0
0




=
2e2

h




M 0 0 0 −M
−M M 0 0 0

0 −M M 0 0
0 0 −M M 0
0 0 0 −M M







V1

V2

V3

V4

V5



. (5.20)

The first two and last two lines gives

I =
2e2

h
(V1 − V5) ; V1 = V2; V3 = V4; V4 = V5. (5.21)

The four-terminal Hall resistance in this set-up is then

RH = R13,24 =
V4 − V2

I
=

h

2e2
1

M
, (5.22)

where we have introduced the notation Rii′,vv′ = Vvv′/Iii′ , and the longitu-
dinal resistance is

RL = R13,45 =
V4 − V5

I
= 0, (5.23)

in line with expectations.
It should be noted that the above results only apply in the quantum Hall

regime i.e. when the Fermi level is in between Landau levels. When this
is not the case and the Fermi level lies within a Landau level, edge states
still exist, but since a continuum of other non-edge states exist between
the edge states at the same energy, back scattering will occur out of and
between edge states. This increased backscattering (relative to QH regime)
is why the longitudinal resistance reaches a maximum when the Fermi level
is within the Landau level.

5.3 Back scattering

We can intentionally introduce back-scattering into the QH system by nar-
rowing the conductor such that the left-moving and right moving channels
come in close proximity to one another. This is typically accomplished
through the addition of a split-gate QPC to the device, as shown in Fig. 5.6.
As in the previous Chapter, we can describe the scattering that occurs at
the junction with a scattering matrix containing amplitudes for scattering
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a

b

b

a

1

1 2

2

(a) (b)

Figure 5.6: A QPC acting as a beam-splitter for electrons in QH edge-states.
(a) The effect of the QPC can be modelled with a scattering matrix relating
outgoing (bi) to incoming states (ai). (b) Special case in which one edge-
channel is completely transmitted, whilst the other is completely reflected.

between all incoming and outgoing edge-channels. Figure 5.6 shows a single
edge-channel being scattered, for which the scattering relation would be

(
b̂1(E)

b̂2(E)

)
=

(
r(E) t′(E)
t(E) r′(E)

)(
â1(E)
â2(E)

)
. (5.24)

Such a set-up has a direct analogy to the beam-splitter in optics, with well
defined input and output “beams”(here, edge-channels) and a scattering
matrix between them.

Figure 5.6 shows a two-channel example in which one channel is perfectly
transmitted through the QPC and the other is perfectly reflected. The
consequences of this type of scattering for the Hall measurement are easily
calculated within the Landauer-Büttiker approach. In the set-up of Fig. 5.7,
a QPC has been inserted in the Hall bar set-up discussed previously. If M
is again the total number of (spin-degenerate) edge-channels and K is the
number of edge channels reflected at the QPC, then the current-voltage
relation for the system is




I
0
−I
0
0




=
2e2

h




M 0 0 0 −M
−(M −K) M 0 −K 0

0 −M M 0 0
0 0 −M M 0

−K 0 0 −(M −K) M







V1

V2

V3

V4

V5



,(5.25)
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Figure 5.7: Five-terminal QH bar with QPC barrier (black) in middle. The
QPC reflects K channels and transmits M − K. Picture from Ferry &
Goodnick.

where we have assumed the same roles for the probes as previously. Invert-
ing, we find the longitudinal resistance is now

RL = R13,45 =
h

2e2M

K

M −K
, (5.26)

which is non-zero. If the Hall resistance is measured with both probes on one
side of the scatterer, RH is found to be the same as without the scatter. If,
however, we measure on opposite sides of the scatterer (between terminals
2 and 5 in Fig. 5.7), we obtain

RH = R13,52 =
h

2e2
1

M −K
, (5.27)

which is increased with respect to the value without back-scattering.

We conclude by noting that in modern experiments, the edge states can
be addressed individually, thus allowing selective population and current
detection.
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5.4 Fractional Quantum Hall effect

We have seen that the Hall resistance is given by

RH =
h

e2
1

N
(5.28)

where N is the total number of filled LLs which we previously wrote as
N = 2M for spin-degenerate levels. At high fields, the electrons are also
Zeeman-split and if B is high enough, all the electrons will eventually be in a
single spin-polarised LL. Based on the foregoing, we would then expect there
to be no further plateaus in the Hall resistance. However, experimentally,
just such plateaus are found, and these occur at Hall resistances of

RH =
h

e2
1

p/q
(5.29)

where p/q is a rational fraction, like 1
3 , 2

5 , etc, see Fig. 5.8. This effect is
referred to as the fractional quantum Hall effect, with the “normal” QH effect
referred to as the integer QHE. These plateaus arise due to the formation
of many-body electronic states, far removed from the simple single-particle
approach we have been discussing here. The wavefunctions of these states
are named after Laughlin, who first postulated their form.
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Figure 5.8: Fractional quantum Hall effect. The diagonal line (dashed)
represents the ”classical” Hall resistance and the full line with the steps
are the observed quantum Hall effects. Magnetic fields at which the steps
appear are marked with arrows. The step first discovered by Störmer and
Tsui and Gossard was at 1/3. This picture from Störmer and Tsui



Chapter 6

Transport through Quantum

Dots

We have encountered quantum dots (QDs) several times now in the lecture
course. They are one of the most widely studied (and useful) of nanostruc-
tures and this level of interest shows no sign of waning. QDs have been
defined in many different physical systems. Examples include

• lateral quantum dots defined by electrodes (top gates) in the 2DEG in
a semiconductor heterostructure. This is an example of ‘bottom up’
QD construction.

• 2DEG patterned in other ways, e.g., etching, scratching, milling, local
anodic oxidation.

• self-assembled quantum dots (SAQD) The lattice mismatch between
two different semiconductors promote the spontaneous formation of
QD ‘islands’ of e.g. InAs on a GaAs substrate. This is an example of
‘top down’ growth.

• kinks in nanotubes, nanowires: combination of top down and bottom
up QD formation.

QDs of the first type are the most-often encountered type in transport ex-
periments at the moment, as these allow a high degree of control and the
formation of rather elaborate structures.

A useful classification of quantum dots, based not on their physical con-
strution but rather on their behaviour, is as being either open or closed:
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• An open QD is connected to the bulk electron gas (reservoirs) via
leads that carry several transverse modes Nα ≫ 1 for lead α. The
conductance is correspondingly G≫ e2/h.

• A closed QD is coupled to the reservoirs via narrow contractions: so
narrow that just a single mode is supported in each lean. Furthermore,
the transmission amplitudes of these modes is very low. The conduc-
tance is correspondingly G ≪ e/h and proceeds via the tunnelling of
electrons between the bulk and the dot.

In this chapter and the next we will focus on closed dots,for which a
tunnelling picture of transport is appropriate. For open dots, strongly-
coupled to the reservoirs, scattering theory is more appropriate and we
can directly employ the LB formalism. Open dots show many interest-
ing features, such as providing a realisation of chaotic cavities (billiards) in
quantum mechanical system. (I am not sure if we have time for this: If you
are interested see C.W.J. Beenakker, Random-Matrix Theory of Quantum
Transport, Rev.Mod.Phys. 69, 731 (1997); cond-mat/9612179).

6.1 Single-electron tunnelling and charging effects

Given the results for the resonant tunnelling barrier of Section 4.4.2, we
might conclude that the (linear) conductance through a QD should show
a series of peaks whenever one of the dots single-particle energy levels lies
within the transport window. As far as the dot potential can be modelled
as being parabolic, sweeping a magnetic field would then yield conductance
peaks at positions given by the Fock-Darwin (FD) spectrum of Fig. 3.5.
Mapping the energy spectrum of a device (here, a QD) in this way is a
process known as tunnelling magneto-spectroscopy.

However, whilst this analysis may hold for open QDs, for closed dots it
is not the full story, as the experimental results of Fig. 6.1 show. Fig. 6.1b
shows the relevant portion of the FD spectrum (in the first LL), and Fig. 6.1c
shows the corresponding experimental results. Superficially, these two spec-
tra look totally unrelated. We have clearly failed to take into account some-
thing very important here, and that something is single-electron charging
effects, or the Coulomb blockade.

The measurements of Fig. 6.1 were obtained for a small semiconducting
dot (width ≈ 500nm) weakly coupled to the leads, and both of these facts
play a role in explaining the discrepancy between our simple FD theory and
experiment. Since the dot is only weakly coupled to the leads, electrons
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(b)

(a)
(c)

(d)

Figure 6.1: Tunnelling magneto-spectroscopy experiment reported by
McEuen et al., Phys. Rev. Lett. 66 1926 (1991). (a) The system con-
sists of a lateral QD connected to 2DEG leads. At high perpendicular mag-
netic field, edge channels are expected to form. (b) Revelant section of the
Fock-Darwin spectrum. If a single-particle picture was appropriate here, the
dot conductance should show peaks at the energies shown in this diagram.
(c) Actual peak positions measured in the experiment. There appears to
be little resemblance with the Fock-Darwin prediction. (d) However, if we
subtract a constant charging energy from the peak positions, a very FD-like
spectrum is recovered.

enter and exit via infrequent tunnelling events. Fluctuations in the number
of electrons occupying the QD are suppressed and in this way, we arrive at a
picture of the dot as an almost isolated island on which there resides a well-
defined integer number of electrons n = 0,±1,±2. In this way, the discrete
nature of charge on a microscopic scale is seen to enter our considerations.

What makes this discreteness able to play a role in transport is the
second important characteristic of the QD, namely its small size. Moving
even a small amount of charge (even just a single electron) to or from the dot
will therefore result in a large redistribution of the electric field and hence
the energy of the system. This can be described in terms of a (macroscopic)
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capacitance. Modelling the QD as a disc of radius R, a distance d above
a conducting gate electrode, a standard classical electrostatic calculation
yields the capacitance of the dot to be C ≈ 8ǫR for R ≪ d. The energy
scale associated with moving a single electron to the dot is therefore

EC =
e2

2C
, (6.1)

which sets the natural scale for charging effects. Typical values of this
capacitance and single-electron charging energy (for dielectric constant ǫr =
13 for GaAs) are

R (nm) C (F) EC (meV)

1000 10−15 0.09
250 2 × 10−16 0.35
10 10−17 8.7

We can now offer an explanation of the difference between parts (b)
and (c) of Fig. 6.1. With QDs of size R ∼ 250nm, the charging energy
associated with adding an electron to the dot is, from the above table,
EC ≈ 0.35meV, which compares well with the experimentally determined
value of 0.274meV. This is significant compared with the typical energy scale
associated with the single-particle spectrum ∆E ∼ 0.05meV. The peaks in
the tunnelling spectra occur then, not at the single-particle energies as in
part (a), but at these energies plus contributions from the single-electron
charging, since we must also expend that extra energy to bring the electron
onto the QD. This results in a conductance plot as in Fig. 6.1b, with traces
spaced, by single-particle energies plus charging energies. If we assume that
the charging energy is constant (the so-called constant interaction method,
see later), then we should be able to obtain the FD spectrum by simply
subtracting the charging energies. This was performed for the experimental
data, Fig. 6.1d, where it is observed that we recover a spectrum very similar
to the FD.

6.1.1 When is single-electron charging important?

In small, closed QDs, charging effects can be very important in determining
transport properties. For charging effects to be visible, we require:

• First that quantum fluctuations do not smear out the discreteness of
the electron charge. For this to be the case, the tunnel resistance of
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the contacts, Rt, must be high:

Rt ≫
h

e2
. (6.2)

If the junction between dot and reservoir possesses this property, it is
known as a tunnel junction.

• And secondly that thermal fluctuations are not able to overcome charg-
ing effects, which implies

e2

2C
≫ kBT. (6.3)

6.1.2 The constant interaction model

Finding the actual charging energy associated with the transferal of a single
electron from the leads to the dot is a complicated many-body problem.
Often we ignore this difficulty and assume that the constant interaction

model provides a good description of the physics. In this model we assume
that the energy required to transfer an electron to the dot is independent of
the number of electrons on the dot, and that this process can be described
by a single number C the total capacitance of the dot. Despite its simplicity,
this model provides a reasonable description of experiments.

6.2 Single-electron box

To gain an appreciation of single-electron charging effects, lets consider the
single-electron box, as illustrated in Fig. 6.2. We have a QD island connected
to a ideal voltage source (VG) through a tunnel junction on the left and a
simple capacitor on the right. The tunnel junction may effectively thought
of as tunnel resistance Rt in parallel with a capacitance CJ . This tunnel
resistance is so large that, in the limit, the effects of the tunnel junction acts
as an ideal capacitor through which charge is slowly leaked.

Tunnelling allows n excess electrons to accumulate on the island such
that the net island charge is −n|e|. This charge will be divided between the
two capacitor plates as

−n|e| = QL +QR. (6.4)

From Kirchoff’s law, the total voltage drop around the circuit is

VG =
QL

CL
− QR

CG
, , (6.5)
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Figure 6.2: The effective circuit for a single-electron box, and for the tunnel
junction it contains.

and the electrostatic energy stored by the capacitors is

Es =
Q2

L

2CJ
+

Q2
R

2CG
. (6.6)

The total energy to add n electrons to the box is called the charging energy

and is given by the free energy

Ech = Es − L, (6.7)

where L is the work done by external forces on the system; in this case it is
the work done by the voltage source L = −VGQR. Elimination of QL and
QR gives

Ech =
(n|e| −QG)2

2C
(6.8)

where C = CG+CJ is the total capacitance of the island, QG = CGVG is the
so-called gate charge, and where we have dropped an unimportant constant
independent of n.

This result is plotted in Fig. 6.3. In the interval −e/2 < QG < e/2,
the lowest energy is obtained with no excess electrons on the dot. When
QG = e/2, states with n = 0 and n = 1 electron becomes degenerate
(and we can expect number fluctuations). Then for e/2 < QG < 3e/2, the
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Figure 6.3: Charging energy of the single-electron box as a function of gate
charge (gate voltage) for different numbers of excess electrons n on the
island.

stability of the system changes, such that n = 1 electron is the lowset energy
configuration. And so on. As QG increases then, the number of electrons
on the dot increases in discrete steps.

6.3 Coulomb blockade in the single electron tran-

sistor

To see how this discreteness of charge can affect transport, we now consider
the single electron transistor (SET), in which the island is connected to the
external circuit through two tunnel junctions (left and right), and capacita-
tively coupled to a back gate voltage (VG). The equivalent circuit diagram
is shown in Fig. 6.4. We assume that the single-particle energy level spacing
is much smaller that the charging energy, such that charging effects alone
determine the behaviour of transport through the system. Note that this is
the case when the island is a metallic grain instead of a quantum dot — since
the Fermi wavelength in metals is much smaller than in semiconductors, size
quantisation plays much less of a role.

Following a calculation similar to the above and defining the total island
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VG
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Figure 6.4: Equivalent circuit for the single-electron transistor.

capacitance,

C = CG +CL + CR, (6.9)

and the gate charge,

QG = CGVG + CLVL + CRVR, (6.10)

the charging energy is found to be

Ech(n,QG) =
(n|e| −QG)2

2C
, (6.11)

which has the same form as for the box.
In a tunnelling event the number of electrons in the box changes by one,

and the change in energy is accordingly

Ech(n+ 1, QG) − Ech(n,QG) =

(
n+

1

2
− QG

e

)
e2

C
. (6.12)

This energy difference is known as the addition energy of the n+1th electron.
Figure 6.5a shows these addition energies plotted alongside the chemical po-
tentials of the reservoirs. Tunnelling can only occur when one of these ener-
gies lies within in the transport window, i.e. when the chemical potential of
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Figure 6.5: Linear transport through SET. (a) Transport can occur occur
whenever the transport window contains the addition energy En+1 − En =
Ech(n+1, QG)−Ech(n,QG). (b) As the gate voltage VG is altered, transport
levels enter and leave the bias window giving rise to Coulomb oscillations in
the conductance.

the electrons in the leads is sufficiently high to overcome this charging en-
ergy. If the addition energy lies outside the bias window, transport through
the dot is blocked — this is known as the Coulomb blockade.

In the linear regime, µL ≈ µR = µ, we will obtain a finite conductance

when Ech(n + 1, QG) − Ech(n,QG) =
(
n+ 1

2 − QG

e

)
e2

C = µ. Choosing the

energy axis such that µ = 0, transport occurs whenever the state with n
electrons is degenerate with the state with n+1. This situation is analogous
to the single-electron box where, for specific choices of gate voltage, two
state with different electron number became degenerate and the number of
electrons in the box could fluctuate. Here, we have the same thing but in
this case, fluctuating electron number yields transport through the dot.

Altering the gate voltage moves the ‘ladder of states’ up an down, bring-
ing successive states into the bias window. As the addition energies are
regularly spaced (see Eq. (6.12)), this results in oscillating in the current
that is periodic in VG as sketched in Fig. 6.5b. The spacing between the
peaks is easily seen to be ∆VG = e/CG.

6.3.1 Nonlinear transport and Coulomb diamonds

These results for the conductance through the QD can be extended to the
non-linear transport regime, where we apply a finite source-drain voltage
across the sample, eVSD = µL − µR. The standard method to investigate
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Figure 6.6: A stability diagram for a SET. The blue shaded regions are the
Coulomb diamonds, where the number of electrons on the dot is fixed at n
and transport through the dot is blocked. Red lines indicate voltages where
the number of addition energies within the transport window changes by
one. We have set e = 1 here for convenience.

such situation is with the help of a stability diagram, as shown in Fig. 6.6.
The two axes are the gate and source-drain voltage and we then plot the
differential conductance G = dI/dVSD at each point using a colour scale
(or some 3D representation). In Fig. 6.6, we just sketch the key features.
For VSD = 0 we obtain the linear response results with finite conductance
located only at CGVG = n/2. In between, the conductance is zero. As
Fig. 6.6 shows, these regions of zero conductance extend for finite VSD and
close to form a sequence of so-called Coulomb diamonds. In these diamonds
the number of electrons on the dot is fixed, and there is no transport through
the dot. Increasing VSD further increases the number of levels within the
transport window, giving rise to the extended diamond pattern of Fig. 6.6.

A set of experimentally-determined stability diagrams is shown in Fig. 6.7
for several different experimental realisations of a single-electron transistor.
The Coulomb diamonds are very pronounced. Note that in some cases, the
Diamonds are not all the same size and that there is a lot more structure to
these diagrams than expected from Fig. 6.6. This is because the quantum
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dots themselves are far more intersting that the simple circuits we have been
considering so far — in particular they have internal structure. In addition,
the constant interaction model is also a huge simplification.

6.3.2 Single particle spectrum

So, what about the single particle spectrum? How does this affect these
results? Well, in a non-interacting picture at zero temperature, and n elec-
tron state is obtained simply by filling up the single-particle states from the
ground-state up, such that the total energy of an n-electron state in the dot
is, from Eq. (6.11),

Ech(n,QG) =
(n|e| −QG)2

2C
+

n∑

m=1

ǫm, (6.13)

where ǫm are the single-particle energies. The addition energy of the n+1th
electron will therefore be

Ech(n+ 1, QG) − Ech(n,QG) =

(
n+

1

2
− QG

e

)
e2

C
+ ǫn+1. (6.14)

This means that the conductance peaks will no longer be evenly spaced
(∆VG = e/CG), but rather will have a spacing

∆VG(n) =
C

eCG

(
∆ǫ(n) +

e2

C

)
, (6.15)

where ∆ǫ(n) is the difference in successive single-particle energies. There-
fore, providing that the constant interaction model holds, we can indeed
recover the single-particle energies from the stability diagram.
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Figure 6.7: The low temperature conductances of (a) a metal single-
electron transistor (SET), (b) a semiconducting SET, (c) a carbon nan-
otube SET, and (d) a superconducting SET are plotted as a function of
gate voltage and bias voltage. The diamond shaped regions along the
zero bias voltage axis are regions of Coulomb blockade. The conductance
is a periodic function of gate voltage for the metal SET and the super-
conducting SET where the confinement energy is negligible. The conduc-
tance is not a periodic function of gate voltage for the semiconductor SET
and the carbon nanotube SET where the confinement energy is impor-
tant. From: P. Hadley and J.E. Mooij, Delft University of Technology,
http://qt.tn.tudelft.nl/publi/2000/quantumdev/qdevices.html



Chapter 7

The quantum master

equation in transport

Simple circuit models of devices like the SET give a reasonable account of the
transport properties — but only up to a certain point. Although the circuit
theory predicts well the positions of the conductance peaks, it says nothing
about their heights, i.e. the conductances themselves. Furthermore, modern
experimental techniques are sophisticated enough to allow the fabrication
of rather complicated structures such as double, triple quantum dots, QD
interferometers, etc., in which quantum effects play an important role. It is
clear that the classical theory of the preceding chapter can not hope to give
a full account of such systems.

To address these issues, we now introduce a more advanced theory of
transport through quantum dots. — the quantum master equation (QME).
This is a very powerful, flexible and popular method of handling transport
through Coulomb blockade systems.

Master equation techniques have their origins in quantum optics. There
are many good books on this topic, for example

• Howard Carmichael, An Open Systems Approach to Quantum Optics

(Lecture Notes in Physics New Series M) (Springer 1993).

• Claude Cohen-Tannoudji, Jacques Dupont-Roc, and Gilbert Gryn-
berg, Atom-Photon Interactions: Basic Processes and Applications,
(Wiley-Interscience 1998).

• Karl Blum, Density Matrix Theory and Applications, (Springer 1996).

The presentation I follow here is somewhat different to the standard
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approach — I employ here perturbation theory in Liouville space, a technique
based on the references

• H. Schöller, Schladming lecture notes, http://physik.uni-graz.at/itp
/iutp/iutp 08/lecture notes part 1.pdf

• M. Leijnse and M. R. Wegewijs, arXiv:0807.4027 .

These works themselves borrow on the real-time diagrammatic approach pi-
oneered by Gerd Schön’s group in Karlsruhe.

This Liouville perturbation approach has several advantages. Firstly, we
work consistently in a language in which the description of current statistics
is most conveniently expressed – this is one of the central areas of current
mesoscopics research (inc. at the ITP Berlin). Flexibility — we will derive
here expressions for completely arbitrary mesoscopic system which could be
as simple as a single quantum dot or as complex as a large molecule (think:
molecular electronics!). Furthermore, this approach offers possibilities to
go beyond the standard QME — e.g. to include cotunnelling, resonant
tunnelling approximation, or even renormalisation group approach. Again,
this is a cutting-edge area of research.

7.1 A simple QME example

Before we get into the details of the QME derivation, let us begin by con-
sidering a simple example of a QME in practise. Let us consider a quantum
dot with a single level in the bias window. This level is populated with an
electron from the left lead and emptied to right (see Fig. 7.1a). We will
assume that Coulomb blockade effect is strong enough to prevent double
occupation on the level. Furthermore, we assume that spin is unimportant
here and neglect it from our discussion. We then ask: what is the current
through the dot?

To answer this, let us posit two rates ΓL and ΓR for hopping to and from
the level. We can then immediately write down a set of coupled rate equa-
tions for the probabilities P0 and P1 of finding the level empty or occupied,
respectively. These equations read

Ṗ0 = −ΓLP0 + ΓRP1

Ṗ1 = −ΓRP1 + ΓLP0. (7.1)

It is convenient to write this is matrix form as

d

dt

(
P0

P1

)
=

(
−ΓL ΓR

ΓL −ΓR

)(
P0

P1

)
(7.2)
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Figure 7.1: Two important quantum dot models discussed in the text (a)
Single resonant level. (b) Double quantum dot. In both cases, strong
Coulomb blockade is present which prevents more than one excess electron
entering the dot system at any one time.

This is a rate equation, which is a particularly simple type of QME. To find
the stationary solution we set

d

dt

(
P0

P1

)

stat

= 0, (7.3)

which admits the solution
(
P0

P1

)

stat

=
1

ΓL + ΓR

(
ΓR

ΓL

)
, (7.4)

where we have taken into consideration the conservation of probability

P0 + P1 = 1. (7.5)

The current through the level can simply be obtained by multiplying the
probability of finding the dot occupied, P1, with the rate at which a full dot
transfers electrons to the right lead:

I = eP1ΓR = e
ΓLΓR

ΓL + ΓR
(7.6)
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In the full quantum-mechanical treatment the populations Pi are ob-
tained from the diagonal elements of the system density matrix Pi = ρii. In
this simple example the state of the dot is simply described by populations.
However, for a more complicated system, there can be internal coherences, in
which case we need also to take into account off-diagonal elements. A good
example is the double quantum dot (DQD) in the strong Coulomb blockade
regime, see Fig. 7.1b. Here, five numbers are required to describe the quan-
tum state of the device: the three probabilities of finding the dot empty, of
in the left or right dot, plus the two coherences between the left and right
states. Coherences between states of different charge are not required, as we
later show.

In general, the aim of the QME approach is to derive an equation similar
to Eq. (7.2) for the reduced density matrix of the system in question. In the
Markov approximation (see later), this equation will have the general form

ρ̇ = Lρ (7.7)

where L is the Liouvillian of the system. Clearly ρ is a matrix, and the
Liouvillian therefore maps matrices onto other matrices; or rather operators
onto operators. For this reason L is known as a superoperator. Eq. (7.2)
however suggests a useful way of looking at these superoperators: if we
arrange the elements of the density matrix into a vector, superoperator L
becomes a matrix mapping these “density matrix vectors” onto one another.
This representation of L as a matrix is very useful, as we will see.

7.2 Generic Transport Model

We consider now a generic model of quantum transport specified by the
Hamiltonian

H = HS +Hres + V (7.8)

where HS describes the system, Hres the electron reservoirs (leads), and V
the system-reservoir coupling.

7.2.1 System

Although we will mainly discuss quantum dot systems here, we will derive
the maser equation in a general way, such that the system can be of arbitrary
complexity. This formalism can therefore be directly applied to e.g. QD
networks, molecules, nanomagnets.
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Regardless of how complicated this system is, we assume that we can
diagonalise its Hamiltonian exactly — let us write the eigenvectors as |a〉
where index a describes all quantum numbers necessary to specify the state
uniquely. We write

HS =
∑

a

Ea|a〉〈a|, (7.9)

where Ea is the energy of eigenstate. For transport through the system to be
possible, the system itself must be capable of existing in a number of different
charge states — recall the ‘empty/filled’ basis of our simple example. The
eigenkets |a〉 are therefore defined in Fock space, with state |a〉 having Na

electrons. The states |a〉 form an orthonormal set in Fock space.

We normally consider a relatively small subsector of the full Fock space
— typically an ’empty’ state plus states with just a few excess electrons.
This is permissible since the Coulomb blockade excludes states with higher
electron numbers on energetic grounds. For example, in our single resonant-
level model, we neglect the doubly-occupied level because the charging en-
ergy of this state is assumed high enough that this state lies well outside the
transport window.

7.2.2 Reservoirs

We consider a set of N reservoirs that we label with α; if spin is important we
can include the spin index in α. We assume the reservoirs can be described
with a noninteracting Hamiltonian

Hres =
∑

k,α

ωkαa
†
kαakα, (7.10)

with ωkα the energy of the kth mode in lead α. In the absence of interaction
with the system, the lead electrons are described by the equilibrium Fermi
functions. We us define

f (+)
α (ω) =

1

e(ω−µα)/Tα + 1
(7.11)

as the Fermi-function of lead α with chemical potential µα and temperature
Tα. For convenience, we also define

f (−)
α (ω) = 1 − f (+)

α (ω) =
1

e−(ω−µα)/Tα + 1
, (7.12)
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as well as the function without superscript:

fα(ω) =
1

eω/Tα + 1
, (7.13)

which makes no reference to the chemical potential. We assume that the
reservoir states lie within a band with band edges at ±D.

7.2.3 Tunnel coupling

Tunnelling between system and reservoirs is described by the hopping Hamil-
tonian

V =
∑

αkm

tαkma
†
kαdm + t∗αkmd

†
makα, (7.14)

where akα is a lead operator, dm is the annihilation operator for single-
particle level m in the system and tαkm is a tunnelling amplitude. To trans-
late this Hamiltonian into the same many-body language of Eq. (7.9), we
twice insert a complete set of many-body states to obtain

V =
∑

αkm

∑

aa′

tαkma
†
kα|a〉〈a|dm|a′〉〈a′| + h.c.

=
∑

αkm

∑

aa′

a†kαtαkm〈a|dm|a′〉|a〉〈a′| + h.c.

=
∑

αk

a†kαgkα + g†kαakα, (7.15)

with the many-body system operator

gkα =
∑

maa′

tαkm〈a|dm|a′〉δ (Na −Na′ + 1) |a〉〈a′|. (7.16)

Here we have explicitly written in the delta-function since the action of dm

is to reduce the number of system electrons by one. It is convenient to write
these system operators as

gkα =
∑

m

tαkmjm (7.17)

with operator

jm =
∑

aa′

〈a|dm|a′〉δ (Na −Na′ + 1) |a〉〈a′|, (7.18)

which is just the annihilation operator dm written is the many-body basis.
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7.2.4 Notation

To ease the book-keeping here, we introduce an ultra-compact single index
“1” to denote the triplet of indices (ξ1, k1, α1). The first index ξ1 = ±
describes whether a reservoir operator is a creation or annihilation operator:

a1 = aξ1k1α1
=

{
a†k1α1

, ξ1 = +

ak1α1
, ξ1 = − . (7.19)

The anti-commutation relation then reads

{a1, a1′} = δ1,1′ (7.20)

with 1 = (−ξ1, k1, α1). We will leave all sums as implicit, such that the bath
Hamiltonian becomes

Hres = ωkαa+kαa−kα. (7.21)

In the compact notation, the interaction Hamiltonian becomes

V = a+kαg+kα + g−kαa−kα

= ξ1a1g1. (7.22)

Note that whereas, in this convention, the “ξ = +” subscript corresponds
to “†” for the lead operators, “ξ = +” on a system operator denotes an
annihilator. Starting from Eq. (7.17), the interaction can also be written as

V = ξ1t1ma1jξ1m (7.23)

with coefficients

t+kαm = tkαm; t−kαm = t∗kαm (7.24)

and operators

j+m = jm; j−m = j†m (7.25)

Note that although these operators only depend on ξ, we shall label them
with the full “1” index for convenience: j1m = jξ1m.
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7.2.5 Example: single resonant level

In the single resonant level model, there are just two relevant many body
states: “empty” |0〉 and “full” |1〉. Taking the energy of the empty state to
be zero and the energy of the occupied dot to be ǫ, the system Hamiltonian
is

HS = ǫ|1〉〈1|. (7.26)

The tunnel coupling is simply

V =
∑

αk

tαka
†
kαd+ t∗αkd

†akα, (7.27)

with d the annihilation operator for the single level. The corresponding
jump operators are given by

j+ = jα =
∑

aa′

〈a|d|a′〉δ (Na −Na′ + 1) |a〉〈a′|

= 〈0|d|1〉|0〉〈1|
= |0〉〈1|;

j− = |1〉〈0|. (7.28)

7.2.6 Example: double quantum dot

Another important transport model is the double quantum dot model Fig. 7.1b
with its internal quantum-mechanical degree of freedom (qubit). The system
Hamiltonian is

HS = ǫL|L〉〈L| + ǫR|R〉〈R| + Tc (|L〉〈R| + |R〉〈L|) , (7.29)

where we have chosen the energy of state |0〉 to be zero again. With single-
electron levels arranged symmetrically about zero, we obtain

HS =
1

2
ǫ (|L〉〈L| − |R〉〈R|) + Tc (|L〉〈R| + |R〉〈L|) . (7.30)

Both ǫ and Tc are important in determining transport properties. However,
for simplicity here, let’s assume ǫ = 0. Diagonalising, we find

HS = Tc (|+〉〈+| − |−〉〈−|) , (7.31)

with

|±〉 = 2−1/2 (|L〉 ± |R〉) . (7.32)
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With the left dot coupled only to the left lead and similarly on the right,
the tunnel coupling is

V =
∑

k

tLka
†
kLdL + t∗Lkd

†
LakL +

∑

k

tRka
†
kRdR + t∗Rkd

†
RakR, (7.33)

with dL|L〉 = |0〉 and so on. This means that

j+L =
∑

a′=±

〈0|dL|a′〉|0〉〈a′| = 2−1/2 (|0〉〈+| + |0〉〈−|) = |0〉〈L|

j+R =
∑

a′=±

〈0|dR|a′〉|0〉〈a′| = 2−1/2 (|0〉〈+| − |0〉〈−|) = |0〉〈R|

(7.34)

and thus we can write

V =
∑

k

tLka
†
kL|0〉〈L| +

∑

k

tRka
†
kR|0〉〈R| + h.c.. (7.35)

This obviously holds true for ǫ 6= 0 as well.
It might be said that the forms Eq. (7.28) and Eq. (7.35) are obvious

and that the preceding discussion in terms of many-body states, etc, is
superfluous. However, whilst this may be the case for simple models (0 and
1 electrons), it is not for more complex systems, where we have to be more
careful.

7.3 Liouville space

Let ρ(t) and ρS(t) denote the density matrices of the full system and the
dot only respectively at time t. At time t = t0 let us posit a separable full
density matrix with reservoirs in thermal equilibrium:

ρ(t0) = ρS(t0)ρ
eq
res, (7.36)

with arbitrary initial state of the dot. Note that this form implies that at
t0 there are no charge-superpositions between system and reservoir.

The full density matrix evolves under the von Neumann equation:

ρ̇(t) = −i [H, ρ(t)] (7.37)

We rewrite this in terms of the total Liouvillian super-operator

ρ̇(t) = Lρ(t). (7.38)
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The Liouvillian L is defined by its action on an arbitrary operator O: LO =
−i [H,O], which we write as

L = −i [H, •] . (7.39)

The matrix elements of a general super-operator are obtained by considering
its action on arbitrary operator:

(LO)nm =
∑

n′m′

Lnm,n′m′On′m′ . (7.40)

With L = −i [H, • ], we have

(LO)nm = −i [H,O]nm

= −i
(
∑

n′

Hnn′On′m −
∑

m′

Onm′Hm′m

)
,

⇒ Lnm,n′m′ = −i (Hnn′δmm′ − δnn′Hm′m) . (7.41)

With the Hamiltonian of Eq. (7.8), the full Liouvillian can be written as the
sum of three parts

L = Lres + LS + LV , (7.42)

with Lres = −i [Hres, • ], LS = −i [HS, • ], and the all-important interaction
Liouvillian

LV = −i [V, • ] = −iξ1 [a1g1, • ] . (7.43)

7.3.1 Free system Liouvillian

Without coupling to the leads, the system evolves under the action of the
free system Liouvillian LS = −i [HS, • ].

At this point it makes sense to start thinking of the Liouvillian as a
matrix that acts on vectors that correspond to density matrices. A density
matrix is converted into a vector via a mapping of the double index aa′ to
a single index. The elements of the Liouvillian (or another superoperator)
are then obtained via Eq. (7.41) and application of the index mapping.

A general system density matrix can be written ρS =
∑

aa′ ρaa′ |a〉〈a′|.
In vector notation, we will write this as |ρS〉〉 =

∑
(aa′) ρaa′ |aa′〉〉 with “ket”

|aa′〉〉 corresponding to |a〉〈a′|.
The action of LS on vector |aa′〉〉 is simply obtained as

LS |aa′〉〉 = −i
[
HS , |a〉〈a′|

]
= −i(Ea − Ea′)|a〉〈a′| = −i∆aa′ |aa′〉〉 (7.44)
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which defines the Bohr frequencies ∆aa′ . Vectors |aa′〉〉 are therefore the
right eigenvectors of Liouvillian LS . Let us denote the left eigenvectors of
Ls as 〈〈aa′| such that

〈〈aa′|LS = −i∆aa′〈〈aa′| (7.45)

with

〈〈aa′|bb′〉〉 = δ(aa′),(bb′). (7.46)

It is crucial to make the distinction between left and right eigenvectors
because, in general, the Liouvillian will not be Hermitian, and the left and
right eigenvectors are not adjoint. Computationally, the left eigenvectors
are most easily found by first determining the right eigenvectors, forming a
matrix of them and then inverting this matrix. We have the completeness
relation in Liouvillian space1 =

∑

aa′

|aa′〉〉〈〈aa′|. (7.47)

Example: single resonant level

With just two system states (0 and 1), the system density matrix is ρS =∑
i,j=0,1 ρij |i〉〈j|, which can be represented by a vector of length four: |ρ〉〉 =

(ρ00, ρ1, ρ01, ρ10)
T , where, by convention, we list the populations first and

then coherences. The action of the Liouvillian on the four right basis states
in Liouville-space is LS |00〉〉 = LS |11〉〉 = 0, LS|01〉〉 = iǫ|01〉〉, and L|10〉〉 =
−iǫ|10〉〉.

7.3.2 Interaction Liouvillian

Define superoperators in Liouville space corresponding to the action of g
and a on both Keldysh branches (i.e. both parts of the commutator):

LV = −iξ1
∑

p

Ap
1G

p
1, (7.48)

with p = ± are Keldysh indices and from now on, we leave the sum over
them implicit. The actions of superoperators G and d are defined via

Gp
1O =

{
g1O, p = +
Og1, p = − , (7.49)
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and

Ap
1O =

{
a1O, p = +
Oa1, p = − . (7.50)

With these definitions, the action of LV on O is simply

LVO = −iξ1 (a1g1O −Oa1g1)

= −iξ1 [a1g1, O] , (7.51)

which is as required.

It is also useful to define super-operators corresponding to Eq. (7.23)

Gp
1 = t1mJ

p
1m, (7.52)

with jump operator defined as

Jp
1mO =

{
j1mO, p = +
Oj1m, p = − . (7.53)

7.3.3 Example: single resonant level

In Fock space, the jump operators for the SRL model were found to be

j+ = |0〉〈1|; j− = |1〉〈0|. (7.54)

We can then write their Liouville-space counterparts as

J+
+ = |0 · 〉〉〈〈1 · |; J+

− = |1 · 〉〉〈〈0 · |
J−

+ = | · 1〉〉〈〈 · 0|; J−
− = | · 0〉〉〈〈 · 1 | (7.55)

where the “·” denotes that the index at that location is left unaltered (really
a sum over all possible indices).

7.4 Perturbation theory in Liouville space

We now derive an effective Liouvillian which describes the time-evolution of
the reduced system density matrix under the influence of the coupling to the
leads. Our approach is to expand the propagator of full system+reservoir
to second order in the coupling and then trace out the reservoirs.
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7.4.1 Laplace transform

We will work in Laplace space defined through the transform

ρ(z) ≡
∫ ∞

t0

dte−z(t−t0)ρ(t). (7.56)

Our starting point is the full von Neumann equation, Eq. (7.38), which
Laplace-transforms as

zρ(z) − ρ(t0) = Lρ(z), (7.57)

which we solve as

ρ(z) =
1

z − L
ρ(t0). (7.58)

The object (z − L)−1 is the full propagator in Laplace space.

7.4.2 Perturbative expansion

The reduced density matrix of the dot is given by

ρS(z) = Trres

{
ρ(z)

}
. (7.59)

Inserting Eq. (7.58) and the initial condition Eq. (7.36), we have

ρS(z) = Trres

{
1

z − L
ρS(t0)ρ

eq
res

}
. (7.60)

Expand propagator, Dyson-like, in powers of LV to obtain

1

z − L
=

1

z − Lres − LS − LV

= Ω0(z) + Ω0(z)LV Ω0(z) + Ω0(z)LV Ω0(z)LV Ω0(z) + . . .

(7.61)

with free propagator

Ω0(z) =
1

z − Lres − LS
. (7.62)

Inserting this into Eq. (7.60) we see that terms with an odd number of
LV disappear under the trace. Furthermore, since the coupling with the
reservoirs is assumed to be weak, we can truncate this series at second order
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in LV . This defines the so-called sequential tunneling limit. The RDM is
therefore

ρS(z) ≈ Trres

{ (
Ω0(z) + Ω0(z)LV Ω0(z)LV Ω0(z)

)
ρS(t0)ρ

eq
res

}
.(7.63)

With substitution of LV from Eq. (7.48), the second-order term, which we
denote as Σ̃, becomes

Σ̃ = (−i)2ξ1ξ2Trres

{
Ω0(z)A

p2

2 G
p2

2 Ω0(z)A
p1

1 G
p1

1 Ω0(z)ρS(t0)ρ
eq
res

}
. (7.64)

The next task is to separate dot and reservoir degrees of freedom so we can
perform trace. For this we use the dot-reservoir superoperator commutation
relation

Ap
1G

p′

1′ = −pp′Gp′

1′A
p
1, (7.65)

which may be verified by a translation back to normal operators or by noting
that if the operators reside on different branches, they commute, whereas if
they lie on the same branch, normal fermionic anti-commutation relations
apply. We will also need the following easily verified rules:

TrresLres = −iTrres [Hres, • ] = 0 (7.66)

Lresρ
eq
res = 0

Ap
1Lres = (Lres − x1)A

p
1; x1 = −iξ1ω1.(7.67)

The commutation of the dot-operators through the free propagators there-
fore changes the argument of the propagator:

Ap
1Ω0(z) = Ap

1

1

z − Lres − LS

=
1

z + x1 − Lres − LS
Ap

1

= Ω0(z + x1)A
p
1. (7.68)

When these results are placed into Eq. (7.64) we obtain

Σ̃ = p1p2ξ1ξ2Trres

{
ΩS(z)G

p2

2 ΩS(z + x2)G
p1

1 ΩS(z)A
p2

2 A
p1

1 ρS(t0)ρ
eq
res

}
(7.69)

with −p1p2 coming from commutation, and with free dot propagator

ΩS(z) =
1

z − LS
. (7.70)



7.5. EFFECTIVE SYSTEM LIOUVILLIAN 95

We then take the trace over reservoir degrees of freedom to obtain

Σ̃ = p1p2ξ1ξ2〈Ap2

2 A
p1

1 〉ΩS(z)G
p2

2 ΩS(z + x2)G
p1

1 ΩS(z)ρS(t0) (7.71)

with

〈Ap2

2 A
p1

1 〉 = Tr {Ap2

2 A
p1

1 ρ
eq
res} (7.72)

the equilibrium reservoir correlation function. It is then straightforward to
show that

〈Ap2

2 A
p1

1 〉 = γp2p1

21 = δ21f
(−ξ1p1)
α1

(ω1), (7.73)

which sees the introduction of the Fermi-function of lead α. Summing over
index 2 and using the delta function we have

Σ̃ = −p1p2f
(−ξ1p1)
α1

(ω1)ΩS(z)G
p2

2 ΩS(z − x1)G
p1

1 ΩS(z)ρS(t0). (7.74)

7.5 Effective system Liouvillian

Quite generally, we can consider the dot RDM as evolving under the action
of an effective Liouvillian. The RDM is then

ρS(z) =
1

z − Leff(z)
ρS(t0), (7.75)

where the effective Liouvillian is a function of Laplace variable z. This is
quite generally the case when degrees of freedom have been traced out.

Such a Liouvillian is called nonMarkovian in the sense that, if we con-
sider the equation of motion for the RDM in time-domain (inverse Laplace
transform of Eq. (7.75)), we have

ρ̇S(t) =

∫ t

t0

dt′Leff(t− t′)ρS(t′) (7.76)

where it is clear that the evolution of the system at time t depends on
all previous times (NB: we have assume no correlations at t = t0). This
stands in comparison with the Markovian evolution of Eq. (7.38) in which
the Liouvillian itself is independent of time and thus the evolution depends
only on the state of the system at time t.

Let us rewrite Eq. (7.75) as

ρS(z) =
1

z − LS − Σ(z)
ρS(t0), (7.77)
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with Σ(z) is the the memory kernel or “self-energy” The effective dot Liou-
villian is thus

Leff
D (z) = LS + Σ(z). (7.78)

Expanding Eq. (7.77) to first order in Σ(z) (which will be second-order in
the tunnel couplings) we obtain

ρS(z) = (ΩS(z) + ΩS(z)Σ(z)ΩS(z)) ρS(t0). (7.79)

Comparing this result with Eq. (7.64) we can identify Σ̃(z) = ΩS(z)Σ(z)ΩS(z),
such that the memory kernel is 1

Σ(z) = −p1p2G
p2

2 ΩS(z + iξ1ω1)G
p1

1 f
(−ξ1p1)
α1

(ω1). (7.80)

We now write out the free system propagator to obtain

Σ(z) = −p1p2G
p2

1̄

1

z + iξ1ω1 − LS
Gp1

1 f
(−ξ1p1)
α1

(ω1). (7.81)

We then insert a complete set of states in Liouvillian space (see Eq. (7.47))
and substitute in for G from Eq. (7.52) to find

Σ(z) = −p1p2J
p2

−ξ1m|aa′〉〉〈〈aa′|Jp1

ξ1m′

(
t1̄mt1m′

f
(−ξ1p1)
α1

(ω1)

z + iξ1ω1 + i∆aa′

)

(7.82)

The term in brackets in essentially a number; The term before the brackets
is a super-operator, which is independent of k. We therefore define

Iaa′(z; ξ1, α1, p1) =
∑

k

tξ̄kα1mtξkα1m′

f
(−ξ1p1)
α1

(ωkα)

z + iξ1ωkα + i∆aa′

, (7.83)

in which we have made explicit the sum over k, such that the memory kernel
can be written

Σ(2)(z) = −p1p2J
p2

−ξ1m|aa′〉〉〈〈aa′|Jp1

ξ1m′Iaa′(z; ξ1, α1, p1) (7.84)

1We have obtained Σ(z) in a simplified manner here, relevant to 2nd order only. More
rigorously, Σ(z) can be obtained as the sum over all irreducible diagrams in the expansion
of Trresρ(z)
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Now perform a trick for going to continuum limit for reservoir: insert 1 =∫D
−D dωδ(ω − ωkα) where D is the bandwidth of the leads (assumed to be

the same for all leads). We have then

Iaa′(z; ξ1, α1, p1) =

∫ D

−D
dω

(
∑

k

tξ̄1kα1mtξ1kα1m′δ(ω − ωkα)

)
f

(−ξ1p1)
α1

(ωkα)

z + iξ1ωkα + i∆aa′

.

(7.85)

Then let us define

Γmm′ξα(ω) = 2π
∑

k

tξ̄kαmtξkαm′δ(ω − ωkα). (7.86)

The diagonal elements

Γmmα(ω) = 2π
∑

k

|tkαm|2δ(ω − ωkα) (7.87)

are the familiar Fermi golden rule rates. We can then write Eq. (7.85) as

Iaa′(z; ξ1, α1, p1) =
1

2π

∫ D

−D
dωΓmm′ξ1α1

(ω)
f

(−ξ1p1)
α1 (ω)

z + iξ1ω + i∆aa′

. (7.88)

It is then convenient to introduce a change of integration variable x =
−ξ1p1(ω−µα). With D ≫ µα such that D±µα ≈ D we obtain the integral

Iaa′(z; ξ1, α1, p1) =
i

2π

∫ D

−D
dx

Γmm′ξ1α1
(µα − ξ1p1x)fα1

(x)

iz + p1[x− p1(ξ1µα + ∆aa′)]
. (7.89)

Flat band approximation

Integrating Eq. (7.89) for reservoirs showing structure can be tricky. Nor-
mally however, we can approximate the rates as flat within the region of
interest, and take Γ outside the integral.

Iaa′(z; ξ1, α1, p1) =
i

2π
Γmm′ξ1α1

∫ D

−D
dx

fα(x)

iz + p1[x− p1(ξ1µα + ∆aa′)]
(7.90)

Markov approximation

As it stands, this integral is a function of z, and hence Σ is nonMarkovian.
If we are interested in the behaviour of the system on time scales much
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greater than the dynamics of the bath (e.g. the stationary current) then we
can take the long-time limit of the integral by replacing z → 0+ where 0+

is a positive infinitesimal. This regularises the integral as

Iaa′(z; ξ1, α1, p1) ≈ Iaa′(0+; ξ1, α1, p1)

=
i

2π
Γmm′ξ1α1

∫ D

−D
dx

fα(x)

i0+ + p1[x− p1(ξµα + ∆aa′)]

(7.91)

Use of Dirac’s identity

(i0+ + x)−1 = −iπδ(x) + P 1

x
(7.92)

where P denotes the principal part, allows us to write

I
(2)
aa′(z; ξ1, p1, µ1) = Γmm′ξ1α1

{
1

2
fα1

(p1(∆aa′ + ξ1µα1
))

+
ip1

2π
φα1

(p1(∆aa′ + ξ1µα1
))

}
(7.93)

in terms of the function

φ(λ) =

∫ D

−D
dω

f(ω)

ω − λ

= ReΨ

(
1

2
+ i

λ

2πkBT

)
− ln

D

2πkBT
(7.94)

with Ψ the digamma function. This is a standard and useful integral (this
is result is correct to order 1/D as we made a large D approximation in

obtaining Eq. (7.89)). The real part of the integral I
(2)
aa′ are rates describing

the transfer of population between system states, whereas the imaginary
parts lead to renormalisation of the system energies.

Rate equation

In general, the reduced density matrix ρS contains both diagonal and off-
diagonal elements — populations as well as coherences. If, however, the
coupling to the leads is weak compared with the free evolution frequencies
of the isolated dot Hamiltonian, Γ ≪ ∆aa′ , it is valid to consider just the
(eigenstate) populations of the system, since the coherences will ‘self-average
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to zero’ on the time-scale of the tunnelling processes in which we are inter-
ested 2. Since the Liouvillian then maps populations onto populations it
must be wholly real and we need not calculate the renormalisation parts, as
they must cancel.

7.5.1 Example: single resonant level

We now derive the (second-order) memory kernel for the SRL in Markov and
flat-band approximations. For each lead α = L,R, expression Eq. (7.84)
has eight terms, given by the various combinations of p1, p2 and ξ1. We
explicitly evaluate just a single term here to illustrate the procedure. Writing
in for the jump operators of Eq. (7.55), the term in Σ corresponding to
(p1, p2, ξ1) = (+,+,+) is

−1

2
Γα|1 · 〉〉〈〈0 · ||aa′〉〉〈〈aa′||0 · 〉〉〈〈1 · |fα(∆aa′ + µ)

= −1

2
Γα|1a′〉〉〈〈1a′|fα(∆0a′ + µ). (7.95)

Other terms are evaluated similarly and from these we can directly build
the Liouvillian. We can also build the Liouvillian by considering the action
of Σ on an arbitrary vector |ρ〉〉 and taking elements. We obtain

〈〈00|Σ|ρ〉〉 = Γα

{
〈〈11|ρ〉〉f (+)(µα − ǫ) − 〈〈00|ρ〉〉f (−)(µα − ǫ)

}

〈〈11|Σ|ρ〉〉 = Γα

{
〈〈00|ρ〉〉f (−)(µα − ǫ) − 〈〈11|ρ〉〉f (+)(µα − ǫ)

}
.(7.96)

Note that the equations for the populations do not couple to matrix elements
in which there is charge-superposition. This is a general feature. Since, for
the diagonal elements, the free system Liouvillian is zero, the total effective
Liouvillian of the system is

Leff = Γα

(
−f (−)(µα − ǫ) f (+)(µα − ǫ)

f (−)(µα − ǫ) −f (+)(µα − ǫ)

)
(7.97)

This should be compared with Eq. (7.2) — it is similar but now we have pre-
cise prescription for the rates Γα and incorporate finite bias and temperature
effects through the inclusion of the Fermi functions.

Note that since the SRL model has no internal quantum degrees of free-
dom, the effective Liouvillian is already of rate equation form without further
approximation.

2This approximation is no longer good if one is interested in the high-frequency noise
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7.6 Infinite bias limit

A very useful limit of the QME is obtained when we assume that biases
applied are large enough that all relevant energy scales lie well within the
transport window, i.e.

|µα| ≫ ∆aa′ , kBT,D. (7.98)

Let us consider a two lead set-up (α = L,R) in the limit µL → +∞ and
µR → −∞. In this case all arguments, including ∆aa′ , can be neglected in
Eq. (7.93). The level renormalisation parts then require the evaluation of
integrals of the form

P
∫ D

−D
dω

f(ω)

ω ± |µ| ∼ log
µ+D

µ−D
, (7.99)

which in the infinite bias limit, vanish. Furthermore, the rate parts become
particularly simple since the temperature dependence of the Fermi functions
is now irrelevant, reducing to step-functions. The Fermi function f (+) then
evaluates to unity on the left and zero on the right and Eq. (7.93) therefore
becomes

I
(2)
aa′(z; ξ1, p1, α1) =

1

2
Γmm′ξ1α1

(δα1,Lδp1ξ1,−1 + δα1,Rδp1ξ1,+1)(7.100)

This can be placed back into Eq. (7.84) to give

Σ = −p1p2J
p2

−ξ1m|aa′〉〉〈〈aa′|Jp1

ξ1m′

1

2
Γmm′ξ1α1

(δα1,Lδp1ξ1,−1 + δα1,Rδp1ξ1,+1)

(7.101)

Then since there is no further dependence on indices aa′, the sum over
projection operators reverts back to the unit operator, whence

Σ = −p1p2J
p2

−ξ1mJ
p1

ξ1m′

1

2
Γmm′ξ1α1

(δα1,Lδp1ξ1,−1 + δα1,Rδp1ξ1,+1)

(7.102)

Summing over ξ1 and α, we obtain

Σ = −1

2
p1p2

{
Γmm′p̄1LJ

p2

p1mJ
p1

−p1m′ + Γmm′p1RJ
p2

−p1mJ
p1

p1m′R

}
. (7.103)

We can then regeneralise this result to a situation where we have a set of
source leads, labelled with αS with µαS

= +∞, and a set of drain leads,
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labelled with αD with µαD
= −∞. The memory kernel is then

Σ = −1

2
p1p2

{
Γmm′p̄1αS

Jp2

p1mJ
p1

−p1m′ + Γmm′p1αD
Jp2

−p1mJ
p1

p1m′

}

. (7.104)

A particularly simple form emerges if each reservoir operator is coupled
to just a single transition in the system. Both examples we have considered
have been of this kind. In the DQD for example, the left lead couples to
the transition |0〉 ↔ |L〉 only, and the right lead couples only to |0〉 ↔ |R〉.
Formally, this means that the m and m′ indices are specified by the revelant
lead index. In this case, we have

Σ = −1

2
p1p2

{
ΓαS

Jp2

p1αS
Jp1

−p1αS
+ ΓαD

Jp2

−p1αD
Jp1

p1αD

}
. (7.105)

We can translate this back into Fock space by considering the action of Σ on
density matrix ρ. Substituting in for super-operators J in terms of operators
j acting to the left and to the right, we obtain

Σρ = −1

2
ΓαS

{
jαS

j†αS
ρ+ ρjαS

j†αS
− 2j†αS

ρjαS

}

−1

2
ΓαD

{
j†αD

jαD
ρ+ ρj†αD

jαD
− 2jαD

ρj†αD

}
(7.106)

Defining

sαS
= j†αS

; sαD
= jαD

(7.107)

we can write this result the action of the full effective Liouvillian as

Leffρ = −i [HS, ρ] −
1

2

∑

α

Γα

{
s†αsαρ+ ρs†αsα − 2sαρs

†
α

}
. (7.108)

This is straightforwardly recognised as having Lindblad form, meaning that
ρ retains its positivity (and hence interpretation as a density matrix) under
time evolution due to Leff .

7.7 Stationary state and average current

The Markovian master equation for the system density matrix reads

ρ̇ = Lρ, (7.109)
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where we have dropped any now-superfluous indices. The stationary density
matrix ρstat is found by taking the limit t→ ∞, such that ρ̇stat = 0, and the
stationary density matrix can be obtained as the null-vector of Liouvillian
3:

Lρstat = 0. (7.110)

7.7.1 Current

The average current through the system can be obtained in a number of ways
— in the next chapter we will discuss the current in the context of electron
counting statistics; here, we take a more standard quantum-mechanical op-
erator approach.

Classically, the current in lead α is defined as being proportionally to the
rate-of-change of the charge in the lead. Quantum-mechanically, this gives
us the current operator

Iα ≡ eṅα, (7.111)

in terms of

nα =
∑

k

a+kαa−kα, (7.112)

the number operator of electrons in lead α. Employing Heisenberg’s equation
of motion, we can rewrite this as

Iα =
e

i~
[nα,H] =

e

i~
[nα, ξ1a1g1]

=
e

i~
a1g1, (7.113)

which is identical to the tunnel coupling operator V except for the forefactor
and the absence of the sign ξ1. The super-operator corresponding to Iα is

Lα
I =

−ie
~
A+

1 G
+
1 , (7.114)

which has a definite p = + Keldysh index, since the operator acts to the
right (actually, irrelevant for calculating the average current, but important
for higher statistics).

3The stationary state need not, in fact, be unique, and we would then talk of a null-
space, rather than a single null-vector. However, in most transport models, including
those we will consider here, this is not the case and ρstat is unique
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The average current flowing into lead α at time t is simply obtained from
the inverse Laplace transform of the expectation value

〈I〉(z) = Tr {Iαρ(z)} , (7.115)

where both trace and ρ refer to full system+reservoir quantities. Procedding
in Liouville-space as before, we have

〈I〉(z) = Tr

{
Lα

I

1

z − L
ρDρ

eq
res

}

= Tr {Lα
I (Ω0(z) + Ω0(z)LV Ω0(z) + . . .) ρDρ

eq
res} . (7.116)

Taking the trace over reservoir degrees of freedom and arranging tunnelling
contributions into an effective Liouvillian, we obtain 4

〈I〉(z) = TrD

{
Σα

I (z)
1

z − Leff(z)
ρD

}
, (7.117)

with Leff as before and Σα
I (z), the same as the irreducible memory kernel

derived before, but with the left-most tunnel-vertex replaced with the similar
current vertex as from Eq. (7.114). In effect, this means we can simply take
Σ(z) of Eq. (7.84), replace p2 with +, drop the p2-sum and add the relevant
forefactor from Eq. (7.114). Making these changes to Eq. (7.84) we obtain

Σα
I (z) = − e

~
ξ1p1J

+
−ξ1m|aa′〉〉〈〈aa′|Jp1

ξ1m′Iaa′(z; ξ1, α1, p1). (7.118)

We are normally interested in the stationary current, which we obtain from

〈Iα〉 = 〈Iα〉stat = 〈Iα〉(z → 0+) = TrD

{
Σα

I (0+)ρstat

}
. (7.119)

7.7.2 Example: single resonant level in infinite bias limit

The effective Liouvillian of the single resonant level in infinite bias limit
reads

Leff =

(
−ΓL ΓR

ΓL −ΓR

)
, (7.120)

the null-space of which is

ρstat =

(
ρ00

ρ11

)

stat

=
1

ΓL + ΓR

(
ΓR

ΓL

)
. (7.121)

4see H. Schöller, Schladming lecture notes, http://physik.uni-graz.at/itp

/iutp/iutp 08/lecture notes part 1.pdf and M. Leijnse and M. R. Wegewijs,
arXiv:0807.4027
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The current super-operator of the left and right leads are

ΣL
I =

(
0 0

ΓL 0

)
; ΣR

I =

(
0 ΓR

0 0

)
. (7.122)

And evaluating the current as in Eq. (7.119) with either of these operators
gives

I = e
ΓLΓR

ΓL + ΓR
. (7.123)

We therefore simply recover the results of the example presented in 7.1.

7.8 The Anderson model

The Anderson model (P. W. Anderson, Phys. Rev. 124, 41 (1961)) was orig-
inally conceived to describe scattering of electrons by a magnetic impurity
within a band of conduction electron states. This same model also serves
to describe the transport through a single-level in a quantum dot. The
critical feature is that electron-electron interactions mean that the doubly-
charged configuration possesses an additional energy U over and above the
non-interacting energy of the system.

The Anderson Hamiltonian (as relevant to dots) reads

H =
∑

σ

ǫσd
†
σdσ + Un↑n↓ +Hres + V, (7.124)

where ǫσ is the energy of a spin-σ electron in the dot, U is the additional
interaction energy. In addition we define, as before,

Hres =
∑

k,α,σ

ωkα,σa
†
kασakασ, (7.125)

and tunnelling term

V =
∑

αkσ

tαkσa
†
kασdσ + t∗αkσd

†
σakασ, (7.126)

where we have made explicit the spin index. Applying the machinery of the
previous section, we find that the effective system Liouvillian can be written

L =
∑

α=L,R

Lin
α + Lout

α (7.127)
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Figure 7.2: Current through the Anderson model with parameters ǫ↓ =
−1.5meV, ǫ↑ = 0.5meV, U = 4meV, ΓL = ΓR ΓL/kBT = 1/4. The levels
involved in transport at various points are sketched below: (a) equillibrium
and (b) small bias — Coulomb blockade; (c) parallel transport through
both single-electron levels; (d) and (e) transport through 1 and then 2 of
the transitions to the doubly occupied state. (After Thielmann et al, Phys.
Rev. Lett. 95, 146806 (2005) ).

with (in the basis of (0, ↑, ↓, ↑↓) populations)

Lin
α = Γα




−f (+)
α (ǫ↑) − f

(+)
α (ǫ↓) 0 0 0

f
(+)
α (ǫ↑) −f (+)

α (U + ǫ↓) 0 0

f
(+)
α (ǫ↓) 0 −f (+)

α (U + ǫ↑) 0

0 f
(+)
α (U + ǫ↓) f

(+)
α (U + ǫ↑) 0




Lout
α = Γα




0 f
(−)
α (ǫ↑) f

(−)
α (ǫ↓) 0

0 −f (−)
α (ǫ↑) 0 f

(−)
α (U + ǫ↓)

0 0 −f (−)
α (ǫ↓) f

(−)
α (U + ǫ↑)

0 0 0 −f (−)
α (U + ǫ↓) − f

(−)
α (U + ǫ↑)




(7.128)
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The current calculated from this theory is plotted in Fig. 7.2 for illustrative
parameters.

7.9 Other current blockade mechanisms

We have seen that the Coulomb blockade provides an extremely important
organising principle for understanding the transport through quantum dots,
describing as it does, regions in which transport is blocked on energetic
grounds. However, additional mechanisms also exist that can block the
current through quantum dot systems, which are very different in nature.
We consider two here.

7.9.1 Spin blockade

(a)

(b)

Figure 7.3: Spin blockade in a DQD. With two electrons in a singlet state
in the dots, tunnelling can occur. With the spins in a triplet state, however,
the Pauli principle prevents tunnelling and blocks the current through the
dots.

Current through a double quantum dot can be blocked through a mecha-
nism known as spin blockade, which arises from the Pauli exclusion principle.
The situation is illustrated in Fig. 7.3. The chemical potentials are arranged
such that singly-occupied states and states with one electron in each dot lie
below the transport window, but the states with two electrons in one dot lie
within the window. On energetic (Coulomb blockade) grounds, one would
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therefore expect transport to proceed through these latter levels. However,
this picture neglects the spin of the electrons. If the system starts occu-
pied with two electrons of different spin in a singlet state (Fig. 7.3a), then
tunnelling can occur between the two dots, making the formation of the
doubly-occupied single-dot state possible. In this case electrons will tun-
nel out of the DQD system. Eventually, however, the stochastic nature of
tunnelling means we will arrive at a situation where the electrons in the
dots have the same spin (or rather, are in one of the three triplet states)
(Fig. 7.3b). In this case, the Pauli principle prevents tunnelling between
the two dots and these two electrons are trapped, since the states in the
transport window are inaccessible. This is the spin-blockade. Note that its
existence relies on the Coulomb blockade, since, if there were no Coulomb
blockade, higher energy, multiple-electron states would become accessible,
enabling transport.

7.9.2 Dark states

Current flow through a QD device may also be blocked by the destructive
interference between quantum-mechanical paths through it (B. Michaelis,
C. Emary, and C. W. J. Beenakker, Europhys. Lett. 73, 677 (2006).) One
example is the triple quantum dot shown in Fig. 7.4. The device is biased
from left to right, and the Coulomb blockade regime is assumed, such that
just a single excess electron can be in the triple-dot-system at any one time.

Essentially, interefence between electron paths through the upper and
lower dots leads to a state in which the electron wave function destructively
interferes at the dot coupled to the collector. With the correct parameters,
this intereference is complete and no current can flow. Formally this effect
is similar to coherent population trapping encountered in quantum optics,
where the state in which the electron is trapped is known as a dark state.
Figure 7.4 shows the current through the device as a function of the detuning
between levels in the dots — the current profile is the transport analogue
of the optical dark resonance. If the system is biased in the other direction,
then the paths no longer interfere and the system conducts. In this way,
quantum interference diodes and transistors can be conceived.

Whilst these blockade mechanisms have been presented here as leading
to a complete suppression of current flow, this is just an idealisation. Ad-
ditional interactions, in particular those with the environmentof teh dots,
which were not included in these simple models can partially remove the
blockade effects,. For example, any interaction which dimishes the phase
coherence of the trapped electron in the triple dot will disrupt the dark
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Figure 7.4: LEFT: Three quantum dots are coupled coherently to one an-
other via tunnel couplings tij, and incoherently to source and drain leads
with rates Γi. Each dot contains a single level and by adjusting the relative
positions of these levels, the system can be prepared in a dark state where
no current flows despite the applied bias. RIGHT: The stationary current
〈I〉 through the three-dot system shows a pronounced anti-resonance with
complete current blocking at a detuning of ∆ = ∆0 where the dark-state
forms. (from Emary Phys. Rev. B 76, 245319 (2007))

state and lead to current flow. This residual current therefore gives us a
method in which to probe electron-environment interactions in quantum
dots.

7.10 Beyond the second-order master equation

The master equation we have described in this chpater is second-order in
the tunnelling amplitude t and therefore first-order in the rates Γ. This
corresponds to the so-called sequential tunnelling limit since it assumes that
the temperature is high enough that the electron’s phase coherence is de-
stroying in between tunnelling events. Electron hops in. Electron hops out.
As temperature is decreased, a certain degree of phase coherence may be
maintained between electron tunnellings, which can lead to new transport
possibilities.

7.10.1 Cotunneling

If, in performing our perturbative derivation of the master equation, we
truncate, not after order Γ, but after order Γ2, we include cotunneling pro-
cesses in the effective Liouvillian. Such processes enable the tunnelling of
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(a) (b) (c)

Figure 7.5: An inelastic cotunneling process. (a) With the bias as shown,
current through the dot is blocked for sequential tunnelling processes. How-
ever, (b) an electron from the left lead can tunnel into the dot to ‘virtually
populate’ the doubly-charged state. Then (c) one of these electrons can then
tunnel out to the right. Either spin can tunnel out and here we have shown
a spin-flip process in which in final state of the electron has opposite spin
to its initial state. Due to the Zeeman splitting, these states have different
energy and the process is therefore also inelastic.

electrons to/from the system via intermediate virtual states. An example of
an inelastic cotunneling process is shown in Fig. 7.5.

Cotunneling is particularly important in regimes where sequential trans-
port is suppressed due to the Coulomb blockade. In such regimes, cotun-
neling transport is dominant as these processes are only algebraically sup-
pressed, compared with the exponential suppression of the sequential ones.
Figure 7.2 shows results for both sequential and sequential+cotunneling
master equation for the Anderson model. In the region of the first current
step, especially, cotunneling plays a significant role.

7.10.2 The Kondo effect

What happens if we decrease temperature further? If we proceed as above
and expand our perturbation series to third order in Γ, we obtain an in-
dication that something very interesting is happening, as this third-order
contribution causes the conductance of the dot to diverge logarithmically as
temperature is decreased. This divergence was discovered by Kondo whilst
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(a) (b) (c)

Figure 7.6: A Kondo spin-flip process. This is an elastic process

studying the theory of transport in metals (where it leads to a divergence in
the resistivity, not the conductnace!). See Bruus and Flensberg for details.

This effect is known as the Kondo effect and it arises arises from virtual
processes such as that depicted in Fig. 7.6, in which the spin of the dot
electron is flipped. To fully describe the Kondo effect requires a nonpertur-
bative approach; the divergence of our power series signals a break-down of
the perturbative reasoning. Kondo physics is an important area of many-
body invesitagation and a full understanding requires sophisticated many-
body techniques (e.g. numerical RG: Wilson 1975, Bethe Ansatz, Tsvelik
and Wiegmann 1983, or see book by Hewson, 1997). The master equation
expansion may also be extended to describe the Kondo effect within the so-
called resonant-tunnelling approximation (J. König 1999/2000). The Kondo
effect in quantum dots is also an active area of experimental investigation
(see Fig. 7.7).
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Figure 7.7: Conductance of single quantum dot in Kondo regime. With an
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temperature. Experimental data from W. G. van der Wiel et al, Science
289, 2105 (2000).
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Chapter 8

Shotnoise

Up to now, our considerations have only extended to the average current
(or conductance) of mesoscopic devices. However, transport is stochastic
process and the current will show fluctuations around this average value as
a function of time, something like this:

t

I

The size of these current fluctuations is termed the noise. If we were design-
ing a stereo system, the (instantaneous) mean current would be the signal,
the important part, and the noise would be seen as an unwelcome influence
and we would try to eliminate it as far as possible.

In mesoscopic transport, however, this negative view of noise has sub-
sided, with the increasing realisation that we can actually learn a lot about
what is happening inside a mesoscopic device by looking at the noise, much
more in fact than can be gleaned by considering the average current alone.
R. Landauer, one of the founding fathers of mesoscopics, has stated that
“the noise is the signal” to reflect the importance of the study of noise.

In this chapter we will introduce key noise concepts and learn how to
calculate noise within the scattering theory of transport. Most of the details
of this chapter can be found in the review by Blanter and Büttiker. A

113
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nice introduction is to be found in Quantum Shot Noise by Beenakker and
Schönenberger, http://arxiv.org/abs/cond-mat/0605025.

8.1 Sources of Noise

The two sources of noise in which we will be most interested are thermal

noise (also known as Nyquist-Johnson noise) and shotnoise (or partition
noise). We first introduce these concepts through a simple example.

Let us consider a single electron channel that impinges on a barrier
such that the electron is transmitted with probability T and reflected with
probability R. Ignoring an irrelevant phase factor, the wave function of an
electron scattering at the barrier will be |ψ〉 =

√
T |T 〉 +

√
R|R〉 where the

kets denote transmitted and reflected states respectively, and R+T = 1. Let
us populate the incoming channel with an electron from a thermal reservoir
with Fermi function f . The input density matrix of the system is then

ρin = f |i〉〈i| + (1 − f)|0〉〈0|, (8.1)

where |i〉 and |0〉 denote filled and empty input channel respectively. The
density matrix after scattering will then be

ρ = f |ψ〉〈ψ| + (1 − f)|0〉〈0|. (8.2)

Average occupancies of the transmitted and reflected channels are easily
calculated to be

〈nT 〉 = f〈ψ|nT |ψ〉 = fT

〈nR〉 = f〈ψ|nR|ψ〉 = fR. (8.3)

We are here interested in the fluctuations of the number of particles in
each channel; to quantify their size, we calculate the variance 〈(δn)2〉 with
δn = n − 〈n〉, the difference between the number operator and its average.
We obtain

〈(δnT )2〉 = fT (1 − fT )

〈(δnR)2〉 = fR(1 − fR). (8.4)

We can also calculate the cross-correlator between transmitted and reflected
channels:

〈δnT δnR〉 = −f2TR (8.5)
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These variances characterise the total noise in the system which contains
both thermal and partition contributions.

We can separate these two contributions by analysing to limiting cases.
First, we set T = 1 such that we only have thermal fluctuations. The noise
in the transmitted channel is 〈(δnT )2〉 = f(1 − f), which is equal to the
thermal noise of the input channel.

We then consider the zero-temperature limit such that f = 1 such that
the input channel is definitely occupied. We obtain

〈(δnT )2〉 = 〈(δnR)2〉 = −〈δnT δnR〉 = TR = T (1 − T ) (8.6)

This is shotnoise or partition noise — its source is the partitioning of the
incoming electron stream into transmitted and reflected components and
ultimately the discrete nature of charge. The shotnoise vanishes if either
T = 1 or R = 1 and is maximal when T = R = 1/2.

As we will see shortly, the thermal noise is simply related to the con-
ductance of the sample and tells us nothing new. The shotnoise, however,
provides new information about the intrinsic properties of the device.

A third source of noise is the so-called 1/f (or flicker) noise, which has
its origins in the random motion of impurities. The characteristic 1/f fre-
quency dependence means that this noise-source becomes important at low
frequencies . 10kHz. Nowadays, mesoscopic measurements can be made at
high enough frequency as to avoid these 1/f contributions and thus, we will
not consider it any further. 1/f noise is, however, of great importance to
attempts at realising quantum computation in the solid state, since in that
setting, it is a significant form of environmental perturbation.

8.2 Noise and quantum statistics

One reason why noise is interesting is that it reflects the quantum statis-
tics of the particles producing the noise. Consider three types of particle:
classical, fermion, and boson, described by Boltzmann, Fermi-Dirac, and
Bose-Einstein statistics respectively. The average occupation of single state
in equilibrium is

〈n〉 =
1

eE/kBT + a
; where a =





0 classical
1 fermions
−1 bosons

(8.7)

Correspondingly, the variance in the occupancy is

〈(δn)2〉 = 〈n〉 (1 − a〈n〉) . (8.8)



116 CHAPTER 8. SHOTNOISE

For classical particles (a = 0), 〈(δn)2〉 = 〈n〉 which is the Poissonian value,
indicative of uncorrelated events (see later). When quantum statistics are
important, deviations from this Poissonian case are observed. For bosons
we typically have 〈(δn)2〉 > 〈n〉; the particles are ‘bunched together’ and
the situation is described as super-Poissonian. Conversely, fermions tend
to have 〈(δn)2〉 < 〈n〉 and we say the fluctuations are anti-bunched or
sub-Poissonian. An extreme example of the anti-bunching of fermions is
a zero-temperature channel — this is occupied with certainty, and the cor-
responding noise is zero.

Note that these considerations just provide us with an idea of ‘typical’
behaviours — photons can be anti-bunched (i.e. behave like fermions) and
electrons can be bunched (i.e. behave like bosons). However, this requires
additional sources of correlation in the system, which implies interesting
physics. For example, anti-bunched photons are encountered in resonance
fluorescence in optics, and bunched electron flows can be caused by current-
blockade mechanisms.

8.3 Shotnoise in the scattering approach

We begin by defining the current fluctuation operator in lead α:

δÎα(t) = Îα(t) − 〈Îα〉, (8.9)

and the time-domain correlation function between currents in leads α and
β as

Sαβ(t′ − t) ≡ 1

2
〈δÎα(t)δÎβ(t′) + δÎβ(t′)δÎα(t)〉. (8.10)

Without time-dependent external fields, the correlation function must
be translationally invariant and thus a function of τ = t− t′ only. We then
Fourier transform with respect to τ to give

Sαβ(ω) ≡
∫ ∞

−∞
dτeiωt〈δÎα(t)δÎβ(t′) + δÎβ(t′)δÎα(t)〉 (8.11)

This is sometimes referred to as the noise power. Note that we have used
an ‘engineering convention’ in this definition of the Fourier transform which
brings in an extra factor of two. This is in accordance with Büttiker and
gives the familiar thermal noise value.
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Since we already have an expression for the current operator (Eq. (4.36))
and know how to take expectation values, we can directly evaluate Eq. (8.11)

Sαβ(ω) =
e2

2π~

∑

γδ

∑

mn

∫
dEAmn

γδ (α;E,E + ~ω)Anm
δγ (β;E + ~ω,E)

×{fγ(E)[1 − fδ(E + ~ω)] + [1 − fγ(E)]fδ(E + ~ω)} (8.12)

We are interested here in the zero-frequency noise:

Sαβ = Sαβ(0) =
e2

2π~

∑

γδ

∑

mn

∫
dEAmn

γδ (α;E,E)Anm
δγ (β;E,E)

×{fγ(E)[1 − fδ(E)] + [1 − fγ(E)]fδ(E)} (8.13)

This expression is current-conserving and gauge-invariant (unlike the finite-
frequency result of Eq. (8.12) 1 )

Let us concentrate on the two-terminal case. Current conservation im-
plies that we have S = SLL = SRR = −SLR = −SRL. Utilizing the eigen-
channel representation of section 4.3.6 and some lengthy algebra, we can
write the noise as

S =
e2

π~

∑

n

∫
dE
{
Tn(E)[fL(1 − fL) + fR(1 − fR)]

+Tn(E) (1 − Tn(E)) (fL − fR)2
}

(8.14)

For slowly-varying transmission probabilities, which we evaluate at the
Fermi-level, we obtain

S =
e2

π~

[
2kBT

∑

n

T 2
n + eV coth

(
eV

2kBT

)∑

n

Tn(1 − Tn)

]
(8.15)

8.3.1 Equilibrium noise

In equilibrium, fL = fR and the second contribution in Eq. (8.14) vanishes.
Furthermore, we may use the property f(1−f) = −kBT∂f/∂E to write the
equilibrium noise as

Seq =
2e2kBT

π~

∑

n

∫
dE

(
− ∂f

∂E

)
Tn(E) (8.16)

1Eq. (8.12) fails to take into account displacement currents. See section 9.5 for more
details.
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Comparison with Eq. (4.46),yields the important relation

Seq = 4kBTG (8.17)

such that the noise is proportional to both the conductance and the tem-
perature. This is the Nyquist-Johnson noise and it is a manifestation of the
fluctuation-dissipation theorem — equilibrium fluctuations are proportional
to the corresponding susceptibility.

The important point here is that the equilibrium noise tells us nothing
that we don’t already know from conductance measurements.

8.3.2 Zero-temperature — shot noise

At zero temperature the product f(1−f) is zero and the noise of Eq. (8.14)
becomes

S =
e2

π~

∑

n

∫ µL

µR

dE Tn(E) (1 − Tn(E)) (8.18)

where we assumed µL > µR. Assuming that the tunnel probabilities are
constant within the transport window, we obtain

S =
e3|V |
π~

∑

n

Tn (1 − Tn) (8.19)

This is the shotnoise – it arises in nonequillibrium and is not simply deter-
mined by the conductance.

8.4 Poissonian noise and the Fano factor

A Poissonian process is a the stochastic process in which events occur contin-
uously and independently of one another. A well-known example is radioac-
tive decay of atoms. The noise associated with a Poissonian process swerves
as an important benchmark — we have already seen in section 8.2 how hav-
ing fluctuations greater or lesser than the Poissonian value is indicative of
quantum statistics.

A (classical) current can be written as a string of electron-tunnel events

I(t) = e
∑

k

δ(t − tk) (8.20)
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and for a Poisson process, the times tk are distributed such the probability
of there being n electrons in a time-interval τ is

P (N ; t) =
e−γτ (γτ)n

n!
; n = 0, 1, 2, . . . , (8.21)

with γ the characteristic rate of the process. The mean and the variance
of electron number in interval τ are then 〈n〉 = λτ and 〈(δn)2〉 = λτ ;
in fact, all cumulants of the distribution are the same and equal to λτ .
The corresponding current is 〈I〉 = −e/τ〈n〉 = eγ and the shotnoise SP =
2e/τ〈(δn)2〉 = 2e2γ. For a Poisson process, therefore noise is proportional
to the current

SP = 2e〈I〉. (8.22)

The Fano factor is defined as

F =
S

SP
=

S

2e〈I〉 , (8.23)

which allows us to easily see whether the current exhibits bunching (F > 1),
anti-bunching (F < 1), or is Poissonian (F = 1).

If we now return to the expression for the shotnoise form Eq. (8.19), we
see that, in the limit of small Tn, we may neglect quadratic terms and the
noise becomes

S ∼ e3|V |
π~

∑

n

Tn. (8.24)

From Eq. (4.47), the current is

I =
e2|V |
2π~

∑

n

Tn, (8.25)

such that the Fano factor is equal to one and the noise Poissonian. Further-
more, this is the maximum value achievable by the shotnoise of Eq. (8.19)
since the inclusion of the (1 − Tn) factors always reduce the contribution
from each channel. In general then, we can say that the shotnoise of non-
interacting electrons (as described by this scattering theory) will be sub-

Poissonian with F ≤ 1. This is in accord with typical fermionic behaviour
as mentioned previously. 2

2Note that this statement about subPoissonian noise applies to the shotnoise contri-
bution to the noise, and excludes the thermal contributions. Values of F > 1 are easily
obtainable with thermal fluctuations since, as we reduce the voltage across the device, the
current will vanish but the shotnoise tends towards the constant Johnson-Nyquist value.
The resultant Fano factor then diverges.
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8.5 Multi-lead formulae

The corresponding multi-lead results are

Seq
αβ = 2kBT (Gαβ +Gβα) (8.26)

for the Nyquist-Johnson noise, and

Sαβ =
e2

2π~

∑

γ 6=δ

∫
dE Tr

[
s†αγsαδs

†
βδsβγ

]

{fγ(E)(1 − fδ(E)) + fδ(E)(1 − fγ(E))} (8.27)

Shotnoise correlators in the same lead are always positive, whereas those
between different leads are always negative.

8.6 Examples

8.6.1 Hanbury-Brown Twiss

Quantum Hall edge channels can be used to realise a beam-splitter geometry
for which we can now calculate the noise (Fig. 8.1). At zero temperature
the various noise components are S11 = S33 = −S13 = −S31 with

S13 = −e
3V

π~
T (1 − T ) (8.28)

with T the transmission of the barrier. The experimental results of Fig. 8.1
bare out the theoretical predictions, in particular the negative cross-correlator.

8.6.2 Single Tunnel barrier

A single tunnel barrier has all transmission probabilities Tn ≪ 1. From
Eq. (8.15) we have then

S =
e3V

π~
coth

(
eV

2kBT

)∑

n

Tn = coth

(
eV

2kBT

)
SP . (8.29)

This result illustrates the cross-over between thermal noise for e|V | ≪ kBT
to shotnoise at voltages e|V | ≫ kBT independent of the details of the tun-
nel junction. Very good agreement with this result was observed in the
experiment of Fig. 8.2.
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8.6.3 Units of transferred charge

In a tunnel junction between a normal metal and a superconductor, the
granularity of the current transferred across the junction is not equal to the
elementary charge e, but rather 2e due to the formation of Cooper pairs
in the superconductor. In this case, it can be shown that the shotnoise is
S = 2SP , and the Fano Factor is twice the normal-metal value. This can be
generalised such that if charge is transferred in independent units of q, the
Fano factor will be F = q.

Surprisingly, q need not be integer-valued. For example, tunnelling be-
tween edges states in the FQHE is mediated by quasi-particles with a fraction
q = e/(2p + 1) of the elementary charge.

8.6.4 Point Contact

For a detailed calculation of the properties of a quantum point contact, we
require an electrostatic potential of the constriction. An obvious model is
the saddle

V (x, y) = V0 −
1

2
mω2

xx
2 +

1

2
mω2

yy
2, (8.30)

for which the transmission probability is (Büttiker 1990)

Tn(E) =
1

1 + e−πǫn
;

ǫn ≡ 2

[
E − ~ωy

(
n+

1

2

)
− V0

]
/~ωx. (8.31)

This can be substituted into Eq. (8.19) and the noise calculated. The results
are shown in Fig. 8.3. At each current step, the shotnoise exhibits a pro-
nounced peak of height Smax = e3|V |/4π~. Within the plateaus, the noise
is exponentially suppressed.

8.6.5 Resonant Tunnel Barrier

If we consider the resonant tunnel barrier of section 4.4.2 in the non-linear
regime, such that a set of NV levels are well within the transport window,
the current and noise integrals (Eq. (8.14)) with the RTB transmission co-
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efficient of Eq. (4.55) can be evaluated analytically. The results are

I =
e

~

NV∑

n=1

ΓLnΓRn

Γn
(8.32)

S =
2e2

~

NV∑

n=1

ΓLnΓRn(Γ2
Ln + Γ2

Rn)

Γ3
n

(8.33)

For a single resonance, we have the Fano factor

F =
Γ2

L + Γ2
R

Γ2
(8.34)

which is equal to 1/2 (sub-Poissonian) for symmetric barriers, and is Pois-
sonian for highly asymmetric barriers.
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Figure 8.1: M. Henny, Science, 284, 296, (1999).
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Figure 8.2: Shotnoise as a function of average current for a tunnel junction
realised by an STM tip in proximity of a metal surface. Birk, de Jong and
Schönengerger, 1995.
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Figure 8.3: Current (1) and shotnoise (2) of QPC (from Blanter and
Büttiker)



Chapter 9

Full counting statistics

As described in the previous chapter, the noise correlator S gives us a mea-
sure of the fluctuations in a current away from its mean value. However.
there is more to the current that just its mean and variance — if we could
count individual electrons passing through a device, we could a plot a his-
togram like that of part (d) of Fig. 9.1. We could then infer P (n; t) — the
probability of having n electrons passed to the collector in time t. From
this quantity we could go on to calculate, not just the mean 〈n〉 and vari-
ance 〈(δn)2〉 of the number of electrons passed (and hence the current and
shotnoise), but in principle, all the higher cumulants of the distribution.
Knowledge of P (n; t) therefore constitutes complete knowledge of the (zero-
frequency) properties of the current fluctuations, and is thus known as the
full counting statics (FCS) of the current. Just as there is more information
contained in the noise than in the mean current alone, so we hope to learn
more about the system from the FCS than from just the noise.

FCS began as a theoretical investigation (in the scattering approach,
Levitov 1996; in the master equation approach, Bagrets and Nazarov, 2003).
Although there had been a few measurements of the third current cumulant
(or skewness) (Reulet 2003), it is only recently that experimentalists have
been able to determine the FCS through a process of electron counting
(Gustavsson 2006, Fujisawa 2006, Fricke 2007). The breakthrough that
makes this possible is to use a QPC as an extremely sensitive electrometer
— sensitive enough that the charging of a nearby QD with just a single
electron exerts sufficient influence to close an additional transport channel
in the QPC. The presence of an electron in the QD is thus observed as a
change in the current through the QPC and in this way, the passage of single
electrons can be detected. Figure 9.1 shows some experimental details from

125
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the group of R. Haug in Hannover.
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Figure 9.1: Electron counting experiment. (a) QD with QPC detector. (b)
time trace of QPC current showing single-electron charging processes. (c)
distribution of times of electron in and out of dot. (d) Distribution P (n; t)
of the number of electrons transmitted . Fricke et al., Phys. Rev. B 76,
155307 (2007).

In this chapter we learn how to calculate the FCS in the quantum master-
equation approach (Bagrets and Nazarov 2003, Gurvitz 1996/7). In doing
so we shall develop a theory of shotnoise in interacting systems, including
at finite-frequency.

9.1 n-resolved master equation

The theory of FCS in the master-equation approach bears many similarities
to the theory of photon-counting statistics from quantum optics. Our first
task is to derive the n-resolved master equation (R.J. Cook 1981).

Consider the Liouvillian of single resonant level in the infinite-bias limit:

L =

(
−ΓL ΓR

ΓL −ΓR

)
. (9.1)

Let us concentrate on counting electrons as they enter the collector (the
right lead). For this purpose, we divide the Liouvillian into two parts: the
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jump operator

JR =

(
0 ΓR

0 0

)
, (9.2)

which transfers an electron from the dot into the collector; and

L0 =

(
−ΓL 0
ΓL −ΓR

)
, (9.3)

which leaves the number of electrons in the collector unchanged. The prop-
agator for the system in Laplace-Liouville-space can be written

Ω(z) =
1

z − L
=

1

z − L0 − JR
, (9.4)

which we expand as

Ω(z) = Ω0(z) + Ω0(z)JRΩ0(z) + Ω0(z)JRΩ0(z)JRΩ0(z) + . . .

=
∞∑

n=0

Ω0(z) [JRΩ0(z)]
n , (9.5)

with Ω0(z) = 1/(z − L0). The density matrix in Laplace-space is then

ρ(z) =

∞∑

n=0

Ω0(z) [JRΩ0(z)]
n ρ(t0), (9.6)

and we define the partial density matrix

ρ(n)(z) = Ω0(z) [JRΩ0(z)]
n ρ(t0), (9.7)

such that ρ(z) =
∑

n ρ
(n). Since partial density matrix ρ(n)(z) consists of

a total of n jump operators acting (at various times) on the initial state,
it represents that component of the density matrix with n electrons having
been transferred to the collector. If we start counting as t = t0, the initial
conditions read: ρ(0)(t0) = ρ(t0) and ρ(n)(t0) = 0; n 6= 0.

We now construct equations of motion for these n-resolved components.
For n = 0, we have from Eq. (9.7)

ρ(0)(z) =
1

z − L0
ρ(t0)

⇒ zρ(0)(z) − ρ(0)(t0) = L0ρ
(0)(z). (9.8)
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Performing the inverse Laplace transform, we find

ρ̇(0)(t) = L0ρ
(0)(t). (9.9)

For n 6= 0, Eq. (9.7) yields the recursion relation

ρ(n)(z) = Ω0(z)JRρ
(n−1)(z), (9.10)

from which we obtain

ρ̇(n)(t) = L0ρ
(n)(t) + JRρ

(n−1)(t). (9.11)

With the the convention ρ(−n) = 0, we can combine these results and write

ρ̇(n)(t) = L0ρ
(n)(t) + JRρ

(n−1)(t) (9.12)

for all n. This is the n-resolved master equation (for a single one-electron
jump process).

This can be generalised to include processes which transfer an arbitrary
number of electrons to the collector as

ρ̇(n)(t) =

n∑

n′=0

W (n− n′)ρ(n′)(t). (9.13)

It is also possible to generalise to multiple counting fields and to nonMarko-
vian kernels (Braggio, Flindt).

9.1.1 The counting field, χ

The equation set (9.12) can be solved with a Fourier transform that intro-
duces the counting field χ as the variable conjugate to n. We define

ρ(χ; t) =
∑

n

ρ(n)einχ. (9.14)

Multiplying Eq. (9.12) with einχ and summing over n, we obtain

ρ̇(χ; t) =
(
L0 + eiχJR

)
ρ(χ; t) (9.15)

or

ρ̇(χ; t) = L(χ)ρ(χ; t) , (9.16)
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where we have defined the χ-dependent Liouvillian

L(χ) = L0 + eiχJR . (9.17)

This is the χ-resolved master equation, which is identical to the normal
master equation but with the χ-dependent Liouvillian L(χ). L(χ) is itself the
same as the normal Liouvillian, but with the jump operator JR multiplied
with eiχ. This form can be generalised such that processes which transfer m
electrons to lead α acquire a factor eimχα and processes in which m electrons
are transferred from lead α acquire a factor e−imχα .

Equation (9.16) is easily solved in Laplace space:

ρ(χ; z) = Ω(χ; z)ρ(t0) (9.18)

with the χ-dependent propagator

Ω(χ; z) =
1

z − L(χ)
. (9.19)

9.2 Vector representation

For practical calculations it is useful to utilise the representation of Chapter
7 in which L is a matrix and ρ a vector. The eigendecomposition of L reads

L =

N−1∑

k=0

λk|φk〉〉〈〈φk|, (9.20)

with eigenvalues λk, and right and left eigenvectors |φk〉〉 and 〈〈φk| respec-
tively. We choose the labelling such that λ0 = 0 with corresponding right
eigenvector |φ0〉〉 = |ρstat〉〉, the stationary state, which we assume unique
and normalised. From orthonormality 〈〈φj |φk〉〉 = δjk, the left eigenvector
〈〈φ0| has entries 1 at all positions corresponding to populations and 0 else-
where. Thus the action of multiplying from the left with 〈〈φ0| is equivalent
to taking the trace in the normal Fock space.

We introduce a similar notation for the eigendecomposition of the χ-
dependent Liouvillian:

L(χ) =

N−1∑

k=0

λk(χ)|φk(χ)〉〉〈〈φk(χ)|. (9.21)

We have λk(χ = 0) = λk, and similarly for the eigenvectors.
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9.3 Electron counting statistics

We begin with definitions of the moment and cumulants generating functions
(MGF: G(χ; t) and CGF: F (χ; t)):

G(χ) = eF (χ;t) =

∞∑

n=0

P (n; t)einχ (9.22)

From these functions we can obtain all the moments/cumulants of distribu-
tion P (n; t) via simple differentiation. In particular, the kth cumulant can
be obtained as

〈(δn)k〉 =
∂k

∂(iχ)k
F (χ; t)

∣∣∣∣
χ=0

. (9.23)

The distribution and generating functions are easily obtainable from the n-
resolved approach. The probability of n electrons having passed after time
t is simply

P (n; t) = Tr
{
ρ(n)(t)

}
, (9.24)

and the generating function is therefore

eF (χ;t) =

∞∑

n=0

Tr
{
ρ(n)(t)einχ

}
= Tr {ρ(χ; t)} . (9.25)

Inverse Laplace-transforming Eq. (9.19), we can write the CGF

eF (χ;t) = Tr
{
eL(χ)tρ(t0)

}
. (9.26)

For studying the long-time limit, we start the system in its stationary
stateρ(t0) = ρstat. Employing the vector notation, we have

eF (χ;t) = 〈〈φ0|eL(χ)t|φ0〉〉. (9.27)

We then use the eigendecomposition of L(χ) to write

eF (χ;t) =
∑

k

〈〈φ0|φk(χ)〉〉〈〈φk(χ)|φ0〉〉eλk(χ)t. (9.28)

In the long time limit, the only term that survives is that with λ0(χ) in the
exponent, since all other terms yield exponentially-damped contributions to
any and every cumulant. We have, therefore

eF (χ;t) ∼ c(χ)eλ0(χ)t, (9.29)
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with c(χ) = 〈〈φ0|φ0(χ)〉〉〈〈φ0(χ)|φ0〉〉. Taking logarithms, we obtain

F (χ; t) = λ0(χ)t+ ln c (9.30)

and, therefore, to exponential accuracy,

F (χ; t) = λ0(χ)t . (9.31)

From this we can easily obtain any cumulant via multiple differentiation.
In addition, we can obtain the distribution P (n; t) via the inverse Fourier
transform.

P (n; t) =

∫ π

−π

dχ

2π
eF (χ;t)−inχ (9.32)

This is often evaluated using a saddle-point method.

9.4 Examples

9.4.1 Poissonian Process

As with the noise, we use a generic Poissonian process as benchmark. The
CGF is

F (χ) = tγ(eiχ − 1), (9.33)

such that all the cumulants are equal 〈(δn)k〉 = γt.

9.4.2 Single resonant level

The χ-dependent Liouvillian for the SRL is

L(χ) =

(
−ΓL ΓRe

iχ

ΓL −ΓR

)
. (9.34)

Diagonalisng, we find the CGF:

F (χ) =
Γt

2

{√
1 − 4ΓLΓR

Γ2
(1 − eiχ) − 1

}
(9.35)

with Γ = ΓL + ΓR. The first three cumulants are

〈n〉 = t
ΓLΓR

Γ

〈(δn)2〉 = t
ΓLΓR

Γ3

(
Γ2

L + Γ2
R

)

〈(δn)3〉 = t
ΓLΓR

Γ5

(
Γ4

R − 2Γ3
LΓR + 6Γ2

LΓ2
R − 2ΓLΓ3

R + Γ4
R

)
(9.36)
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A typical P (n; t) distribution is shown in Fig. 9.1 alongside experimental
results for a single QD. Note that in the limit in which 4ΓLΓR/Γ

2 ≪ 1, the
becomes

F (χ) ≈ ΓLΓRt

Γ
(eiχ − 1), (9.37)

recovering the Poisson limit.

9.4.3 Double Quantum dot

This theory of FCS applies equally as well to systems with internal coher-
ences. For a DQD in the strong Coulomb blockade regime (0 or 1 electrons).
χ-dependent Liouvillian in basis (ρ00, ρLL, ρRR, ρLR, ρRL) reads:

L(χ) =




−ΓL 0 ΓRe
iχ 0 0

ΓL 0 0 iTc −iTc

0 0 −ΓR −iTc iTc

0 iTc −iTc −iǫ− ΓR/2 0
0 −iTc iTc 0 iǫ− ΓR/2



. (9.38)

I skip the details here but refer you to Fig. 9.2 for some interesting results
concerning the Fano factor of this model.

9.5 Finite-frequency FCS

In this section we look at how to calculate FCS at finite-frequencies. We
follow the approach of Emary et al. PRB 2007. In doing so, we also derive an
alternative method of evaluating specific cumulants (Hershfield 1993, Flindt
2005), which is particularly suited to situations with large Liouvillians.

9.6 Multi-time generating function

We are interested in N -point correlation functions, such as 〈n(t3)n(t2)n(t1)〉,
which correlates the number of electrons that have been passed to the col-
lector at N different times. With each electron number, n(tk), we associate
a separate counting field χk. We then view the evolution of the system as
a series of propagations, first t0 → t1, then t1 → t2, and finally tN−1 → tN .
As Fig. 9.3 shows, in each propagation interval more than one counting
field can be active. In fact, in interval τk ≡ tk+1 − tk, counting fields
σk ≡∑N

i=N+1−k χi are active.
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Figure 9.2: Mean current and Fano factor through an asymmetric DQD from
both experiment (LEFT) and theory (RIGHT). Of particular interest is the
superPoissonian Fano factor, an effect which is diminished with increasing
temperature. This superPoissonian Fano factor is also absent from calcula-
tions with sequential tunnelling between the dots, indicating that F > 1 is
a coherent effect. From G. Kiesslich et al., Phys. Rev. Lett. 99, 206602
(2007).

We want to calculate the CGF for such a set of intervals, as this allows us
to calculate any cumulant of the form 〈(δn(tN ))pN (δn(tN−1))

pN−1 . . . (δn(t1))
p1〉,

where pk are integers. Here we just give recipe for the CGF, which is (hope-
fully) plausible — details can be found in Emary 2007 and Marcos 2009
(in preparation!). The multi-time CGF for a given set of intervals can be
obtained by taking Eq. (9.27), dividing the propagator up into separate
propagators for each interval, and inserting the appropriate set of counting
fields σk in place of χ. This gives

eF
>(χ;t) = 〈〈

N∏

k=1

Ω(σk; τN−k)〉〉, (9.39)

where χ ≡ (χ1, . . . , χN ), t ≡ (t1, . . . , tn). We have labelled the CGF here
F> because the above form assumes a specific time ordering: tN > tN−1 >
. . . > t1 > t0. To obtain the full CGF we need to include all time-orderings,
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n0

χ1

n1

χ2

n2

χ3

n3

Figure 9.3: Time intervals, electron numbers, and counting fields for aN = 3
correlation function. In interval t0 → t1 all three counting fields are active,
in interval t1 → t2, fields χ2 and χ3 are active, and in the final interval
t2 → t3, only χ3 is active.

and this we do with the use of the time-ordering operator T . We obtain

eF(χ;t) = T 〈〈
N∏

k=1

Ω(σk; τN−k)ρ(t0)〉〉, (9.40)

Note that this form relies on the Markovian nature of the time-evolution.
The N -time current-cumulant (e = 1) is calculated using:

S(N)(t1, . . . , tN ) ≡ 〈δI(t1) . . . δI(tN )〉 =

= ∂t1 . . . ∂tN 〈δn(t1) . . . δn(tN )〉 =

= (−i)N∂t1 . . . ∂tN ∂χ1
. . . ∂χN

F(χ; t)
∣∣∣
χ=0

. (9.41)

Note that, in the QME approach, the number of electrons in a lead is essen-
tially a classical variable — this arises because we assume that no phase co-
herence exists between tunnelling events (in the sequential regime, at least).
Correspondingly, the number and current correlation functions need not be
symmetrised in the usual QM fashion. For noise, we have therefore

S(t2, t1) ≡
1

2
〈δI(t2)δI(t1) + δI(t1)δI(t2)〉 = 〈δI(t2)δI(t1)〉. (9.42)

9.6.1 Finite-frequency shotnoise

The two-time cumulant generating function (CGF) is

eF(χ2,χ1;t2,t1) = T 〈〈Ω(χ2, t2 − t1)Ω(χ1 + χ2, t1 − t0)〉〉, (9.43)
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and we want to evaluate

S(ω1, ω2) ≡ 2

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2e

iω1t1+iω2t2S(t1, t2). (9.44)

(Note that the 2 in the front is to agree with the definition in the Büttiker
review) The correlator S(t1, t2) of Eq. (9.42) has the properties: 1) time-
translational invariance S(t1 + τ, t2 + τ) = S(t1, t2), and 2) symmetry under
exchange of indices: S(t2, t1) = S(t1, t2) (symmetrised, or here classical).

We can take into account the T operator by rearranging the frequency
integrals. First, we write Eq. (9.44) as

S(ω1, ω2) = 2

∫ ∞

−∞
dt1dt2e

iω1t1+iω2t2S(t1, t2) [θ(t2 − t1) + θ(t1 − t2)] .(9.45)

Exchanging variables in the second term we have

S(ω1, ω2) = 2

∫ ∞

−∞
dt1dt2

(
eiω1t1+iω2t2 + eiω2t1+iω1t2

)
S(t1, t2)θ(t2 − t1),(9.46)

due to the symmetry of S(t1, t2). Now let’s change variables to t1 and
τ = t2 − t1

S(ω1, ω2) = 2

∫ ∞

−∞
dt1dτe

ieωt1
(
eiω2τ + eiω1τ

)
S(t1, t1 + τ)θ(τ), (9.47)

where ω̃ = ω1 + ω2.
Now split t1 integral and use translational-invariance, S(−t1,−t1 + τ) =

S(t1, t1 + τ), to obtain

S(ω1, ω2) = 2

∫ ∞

0
dt1dτ

(
eieωt1 + e−ieωt1

) (
eiω2τ + eiω1τ

)
S(t1, t1 + τ).(9.48)

Therefore, we are able to write

S(ω1, ω2) = 2
(
S̃(ω̃, ω2) + S̃(ω̃, ω1) + S̃(−ω̃, ω2) + S̃(−ω̃, ω1)

)
(9.49)

with

S̃(ω̃, ω2) =

∫ ∞

0
dt1dτe

ieωt1+iω2τS(t1, t1 + τ). (9.50)

The symmetry properties of S are thus clear. Finally, let us write S̃ as a
Laplace transform

S̃(z̃, z2) =

∫ ∞

0
dt1dτe

−ezt1−z2τS(t1, t1 + τ), (9.51)
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with z̃ = −iω̃ and zi = −iωi.
Now, writing cumulants in terms of moments, we have

S(t1, t1 + τ) = 〈δI(t1)δI(t1 + τ)〉
= 〈I(t1)I(t1 + τ)〉 − 〈I(t1)〉〈I(t1 + τ)〉
= 〈I(t1)I(t1 + τ)〉 − 〈I(t1)〉〈I(τ)〉, (9.52)

where the last line follows once again from the translational invariance of the
mean current. The currents can be expressed as time-derivatives of electron
numbers:

S(t1, t1 + τ) =
∂2

∂t1∂t2
〈n(t1)n(t1 + τ)〉 − ∂2

∂t1∂τ
〈n(t1)〉〈n(τ)〉

=

(
∂2

∂t1∂τ
− ∂2

∂τ2

)
〈n(t1)n(t1 + τ)〉 − ∂2

∂t1∂τ
〈n(t1)〉〈n(τ)〉.

(9.53)

Placing this result into Eq. (9.50), we obtain

S̃(z̃, z2) = z2 (z̃ − z2)

∫ ∞

0
dt1dτe

−ezt1−z2τ 〈n(t1)n(t1 + τ)〉

−z2z̃
∫ ∞

0
dt1dτe

−ezt1−z2τ 〈n(t1)〉〈n(τ)〉. (9.54)

The number correlators are obtained from our moment-generating-functions
as

S̃(z̃, z2) = z2 (z̃ − z2)

∫ ∞

0
dt1dτe

−ezt1−z2τ 1

i2
∂2

∂χ1∂χ2
〈〈Ω (χ2, τ) Ω (χ1 + χ2, t1)〉〉

−z2z̃
∫ ∞

0
dt1e

−ezt1 1

i

∂

∂χ1
〈〈Ω (χ1, t1)〉〉

∫ ∞

0
dτe−z2τ 1

i

∂

∂χ2
〈〈Ω (χ2, τ)〉〉

= z2 (z̃ − z2)
1

i2
∂2

∂χ1∂χ2
〈〈Ω (χ2, z2)Ω (χ1 + χ2, z̃)〉〉

−z2z̃
1

i

∂

∂χ1
〈〈Ω (χ1, z̃)〉〉

1

i

∂

∂χ2
〈〈Ω (χ2, z2)〉〉 (9.55)

where we have introduced the propagator in Laplace space

Ω(χ; z) =

∫ ∞

0
e−ztΩ(χ; t) = (z − L(χ))−1. (9.56)

Can now expand the propagators as

Ω(χ, z) = [z − L− Lχ]−1 = Ω(z) + Ω(z)LχΩ(z) + Ω(z)LχΩ(z)LχΩ(z) + . . .(9.57)
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with Ω(z) = [z − L]−1. Now, since Lχ = J(eiχ − 1), we can further expand
as functions of χ and only keep the terms that match with the derivatives
in Eq. (9.55). For the current-squared term we require

1

i

∂

∂χ
〈〈Ω (χ, z)〉〉 =

1

i

∂

∂χ
〈〈Ω(z) + Ω(z)

(
iχ− χ2/2 + . . .

)
JΩ(z) + . . .〉〉

= 〈〈Ω(z)JΩ(z)〉〉. (9.58)

Similarly, for the two-point generating function, we have

1

i2
∂2

∂χ1∂χ2
〈〈Ω (χ2, z2) Ω (χ1 + χ2, z̃)〉〉

= 〈〈Ω(z2) (1 + 2Ω(z̃)J + JΩ(z2)) Ω(z̃)JΩ(z̃)〉〉
(9.59)

With the “amputation rules”〈〈. . .Ω(z)〉〉 = 〈〈Ω(z) . . .〉〉 = (z)−1〈〈. . .〉〉, we have

1

i2
∂2

∂χ1∂χ2
〈〈Ω (χ2, z2)Ω (χ1 + χ2, z̃)〉〉

=
1

z2z̃2
{〈〈J〉〉 + 2〈〈JΩ(z̃)J〉〉 + z̃〈〈JΩ(z2)Ω(z̃)J〉〉} , (9.60)

and will also use the trick

Ω(z2)Ω(z̃) =
1

z̃ − z2
(Ω(z2) − Ω(z̃)) . (9.61)

Placing these results into Eq. (9.55), gives us

S̃(z̃, z2) =
z̃ − z2
(z̃)2

〈〈J〉〉 +
z̃ − 2z2

(z̃)2
〈〈JΩ(z̃)J〉〉 +

1

z̃
〈〈JΩ(z2)J〉〉 −

1

z̃z2
〈〈J〉〉2

(9.62)

We then employ the eigendecomposition of L to write

Ω(z) =
1

z − L
=

N−1∑

k=1

|φk〉〉〈〈φk|
z − λk

+
|φ0〉〉〈〈φ0|

z

= R(z) +
P

z
. (9.63)

The object P = |φ0〉〉〈〈φ0| is the projector onto the steady-state, and R(z)
is the pseudo-inverse of z − L, i.e. the inverse of the part of z − L that is
non-singular in the z → 0 limit. This gives, in particular

1

z̃
〈〈JΩ(z2)J〉〉 =

1

z̃
〈〈JR(z2)J〉〉 +

1

z̃z2
〈〈JPJ〉〉 (9.64)
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The second term of this then cancels with the current-squared contribution,
to give

S̃(z̃, z2) =
z̃ − z2
(z̃)2

〈〈J〉〉 +
z̃ − 2z2

(z̃)2
〈〈JR(z̃)J〉〉 +

1

z̃
〈〈JR(z2)J〉〉. (9.65)

We can now use our symmetrization results of Eq. (9.49). First, we find

S̃(z̃, z2) + S̃(z̃, z1) =
1

z̃
{〈〈J〉〉 + 〈〈JR(z1)J〉〉 + 〈〈JR(z2)J〉〉} , (9.66)

where the term containing R(z̃) has cancelled. We then symmetrize over z̃
and, because the two contributions originally come from different halves of
the z̃ axis, they have opposite convergence factors, giving

S(z1, z2) = 2

(
1

z̃ + η
+

1

−(z̃ − η)

)
{〈〈J〉〉 + 〈〈JR(z1)J〉〉 + 〈〈JR(z2)J〉〉}

= 2
2η

z̃2 + η2
{〈〈J〉〉 + 〈〈JR(z1)J〉〉 + 〈〈JR(z2)J〉〉} (9.67)

In the limit that η → 0, we obtain

S(z1, z2) = 2 (2πδ (z1 + z2)) {〈〈J〉〉 + 〈〈JR(z1)J〉〉 + 〈〈JR(z2)J〉〉} .(9.68)

The 2πδ(z1 +z2) forefactor originates from the time-translational invariance
of the correlator. Translating back into Fourier space, we have then

S(ω) = 2
{
〈〈J〉〉 + 〈〈JR(ω)J〉〉 + 〈〈JR(−ω)J〉〉

}
(9.69)

with

R(ω) ≡ Q
−1

iω + L
Q (9.70)

where Q = 1 − |φ0〉〉〈〈φ0| is the projector out of the null-space of L. In this
same notation, the current is

〈I〉 = 〈〈J〉〉 . (9.71)

The zero frequency noise is then

S(0) = 2
{
〈〈J〉〉 + 2〈〈JR(0)J〉〉

}
(9.72)
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9.6.2 Total current and the Ramo-Shockley theorem

The above frequency-dependent result does not directly give the finite-
frequency noise measured in experiment since this result, just as Eq. (8.12),
describes the particle current only and neglects displacement currents aris-
ing from charge accumulation. Note that the zero-frequency result does not
suffer in the same way as the charge accumulation contribution disappears
in this limit. Fortunately, the effect of the displacement current can be eas-
ily incorporated with help of the Ramo-Shockley theorem (1938/39), which
states that the total instantaneous current through a two barrier system of
capacitances CL and CR is given by

I(t) =
CR

CL + CR
IL(t) +

CL

CL +CR
IR(t) = αIL(t) + βIR(t), (9.73)

with α+β = 1. Translating this into QM operators, we see that the shotnoise
in frequency-domain will have the form

S(ω) = α2SLL(ω) + β2SRR(ω) + αβ (SLR(ω) + SLR(ω)) (9.74)

where the noise correlator SXY correlates currents through leads X and Y .
These correlation functions can be evaluated as in the preceding subsec-
tion with the following modifications. We write the Liouvillian in terms of
both left and right current superoperators, and associate with each its own
counting field: L(χ) = L0 +eiχRJR +eiχLJL. The auto-correlation functions
SXX(ω); X = L,R are then obtained from twice differentiation of the CGF
with respect to the single counting field χX and yield forms identical to
Eq. (9.69). The cross-correlators SXY (ω); X,Y = L,R are obtained from
differentiation of the CGF once with respect to χL and once with respect to
χR in the appropriate interval (z-variable). The cross-correlators are thus
found to be

SXY (ω) = 2
{
〈〈JXR(ω)JY 〉〉 + 〈〈JXR(−ω)JY 〉〉

}
. (9.75)

In this way, the total noise can be determined in the master equation ap-
proach.

The Ramo-Shockley result can be expressed as

S(ω) = αSLL(ω) + βSRR(ω) − αβω2SQ(ω) (9.76)

where SQ(ω) is the charge-charge correlation function of the dot. This latter
form shows how the charge-accumulation contribution disappears for ω → 0
and that the noise with this contribution is always less than that without,
since SQ(ω) > 0.
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9.6.3 Double Quantum dot

An interesting model in which to study finite frequency noise is the DQD
since the existence of an internal quantum degree of freedom is visible in
the finite-frequency noise as a resonant structure. Figure Fig. 9.4 shows
some finite-frequency results for the DQD (Aguado Brandes). The previous
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Figure 9.4: a) Fano factor vs. bias ε for different dissipative couplings
α. Parameters Tc = 3, Γ = 0.15, ωc = 500, ωd = 10, T = 2 (in µeV )
correspond to typical experimental values in double quantum dots. Lines:
acoustic phonons, circles: generic ohmic environment ωd = 0 (see text). b)
Frequency dependent current noise (α = 0, T = 0, Γ = 0.01). Inset: (Top)
Contribution to noise from particle currents SIR

(ω)/2eI. (Bottom) Charge
noise contribution ω2SQ(ω)/8eI. a = b = 1/2. From Aguado & Brandes,
Phys. Rev. Lett. 92, 206601 (2004)

calculation is also capable for giving higher-order frequency-dependent cor-
relators. In Fig. 9.5 some results for the frequency-dependent skewness are
given (Emary 2007).
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Figure 9.5: Frequency-dependent Fano skewness for the double quantum dot
in Coulomb blockade. (a) Contour plot in the strong coupling regime, Tc =
3ΓR, with ΓL = ΓR and ǫ = 0. (b) Sections F (3)(ω, 0) and F (3)(ω,−ω), and
shotnoise F (2)(ω) show a series of abrupt increases with increasing ω. Both
noise and skewness exhibit both sub- and super- Poissonian behaviour (c)
Varying the internal coupling Tc, the skewness shows rapid increases along
the lines ω = ∆ and ω = ∆/2. For ω > ∆ the system is Poissonian (slightly
super-Poissonian for ω & ∆), while for ω < ∆ the transport is always sub-
Poissonian. The skewness is strongly suppressed at low frequencies. (d)
The derivative dF (3)(ω,−ω)/dω as a function of frequency and detuning ǫ
for Tc = 3ΓL = 3ΓR. Resonances occur at ω = ∆, ∆/2 and ∼ ΓR.


