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What is @ heat machine?
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Components

1. Working fluid: (qubit, TLS).

2. Hot and cold bath

3. A piston (External driving) periodically drives the system and gets or
gives work.

Hrot = Hs(t) + > _;(Hp, + &S ® B;) i€ H.C

Review: D. G.-K, W. Niedenzu, G. Kurizki Adv. AMO Physics 64, 329-407 (2015) (arXiv:1503.01195)



Weakly coupled machines

Hroe =Hg(t)+ ) ,Hp, + Hsp, i€ H,C (Baths at equilibrium)

Lindblad master equation
(weak coupling, “small”&;)
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Weak coupling limitations
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J Rossnage, S Dawkins, K Tolazzi, O Abah, E Lutz, F Schmidt-kaler, K Singer (2016) Science 325-329



Strong coupling: Redefining the system and
the bath

S’-B’ effective
weak coupling

S-B strong coupling
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H H = UHUT

U Polaron transformation

D. P. McCutcheon and A. Nazir, NJP 12, 113042 (2010).
D G-K, AAspuru-Guzik, JPCL 6 (17), 3477-3482 (2015)



Power “disappears” at the strong coupling
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Decay of the current in other systems
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System: Molecule

Baths: Spin
Technique: Surrogate Hamiltonian




Decay of the current in other systems

Nonequilibrium Energy Transfer at
Nanoscale: A Unified Theory from

Weak to Strong Coupling

Chen Wang®?3, Jie Ren** & Jianshu Cao®?

System: Spin
Baths: Bosonic
Technique: NE-PTRE

Quantum phase transition in the multimode Dicke model

Denis Tolkunov® and Dmitry Solenov'
Department of Physics, Clarkson University, Potsdam, New York 13699 5820
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Nonequilibrium thermodynamics in the strong coupling and

non-Markovian regime based on a reaction coordinate mapping
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System: Harmonic oscillator

Baths: Bosonic
Technique: Holstein-Primakoff Transformation

System: Arbitrary
Baths: Bosonic
Technique: Reaction coordinate



Yes No

What is the Show an example
physical mechanism?



Energy transfer in the strokes engine
Requirements:

* Energy exchange between the system and bath
e Different equilibrium states for different temperatures




Energy exchange between the system and a
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There are two different mechanisms of effective decoupling...
... or maybe only one?




Case 1:“Polaron” Hamiltonian
Hy = 0, + Ao, EHpy = €0, @ B

Two level system weakly driven by a low frequency laser A < wy
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At the strong coupling: the system and the bath do not exchange energy anymore
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Case 2:“Orthogonal” Hamiltonian

HS — %OZ gﬂznt — 50-:1:' ® B
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At the strong coupling: the system and the bath energy exchange grows



Heisenberg picture: time evolution at any
coupling strength

Hg(t) = etleott [ (0)e~ tHitort

Hiot|t) = E;1)
/Otot(o) — Zij pi{)t(O)‘i) <]‘ (Doesn’t evolve in this picture)

H, ®15(0) = >_,; HJ(0)]3)(J]



Steady state for any coupling strength

(Hs(t) ® Ig) = ”
> HE(0)pit(0) + 32,5 HIZ(0)p, (0) e Fe =)

PN

Diagonal terms: Off-diagonal terms:
Steady state Oscillatory

At the strong coupling: Htot ~ 5H@‘nt



Steady state for “polaron” Hamiltonian

HS@)IB:(—JZ—I—AJ;B)@IB EH;p =60, B
Htot %€UZ®B

> H(0)pio:(0) = (502(0)) ~ (H,(0))

This result is independent of the bath and its coupling to the system



Steady state for “Orthogonal” Hamiltonian

Hi®lp=9o.@lg i =809 D
Htot ~ SO-CB 02 b

H(0) =0

Zi H;@ (O)pi”é)t (O) — () Does not depend on the bath temperature

This result is independent of the bath and its coupling to the system



Break the dynamics!

... by periodically disturbing the dynamics!




“polaron” Hamiltonian under disturbances
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No heat currents or power




“Orthogonal” Hamiltonian under disturbances
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Heat currents and power

f I Depends on the bath temperature




Frequent perturbations: totally different
dynamics

e’thottHS(O)e—thott ~
_ 2
H,(0) + it[Hiot, Hs(0)] — 5 [Hiot, [Hiot, Hs(0)]]



Recurrent short time dynamics

HS(t) — HS(O) + it[Htota HS(O)] — %[Htota [Htota HS(O)H —
H,(0) + f(t)

Short time dynamics \

Ho(t) = Hy(to) + f(t) —> N

Does not change

/ Hy(t) or Heot
H(ty) = Hy(t1) + f(t2) _,ﬂ
E “



Effects of frequent perturbations '\
« Change the steady state

O

(Bath temperature)
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f (t) may depend on (Hg(0))




Conclusions

| do not know

J,P =0, caused by the steady state independence of T
(Hs(t))
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