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A chain of fermions: An example of many-body equilibration

HS = ✏Sa
†a

V = g0(b†1a+ a†b1)

HB =
X

i

✏Bb
†
kbk + g(b†kbk+1 + b†k+1bk)

⇢0 = ⇢S ⌦ e��HB

ZB

⇢(t) = U⇢0U
†, U = e�iHt

population = Tr(a†a⇢(t))

⇢S(t) = TrB⇢(t) ⇡ !eq

!eq 6= e��HS

ZS

Bath of 100 fermions
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⇢S(t) ⇡ TrB(!SB)
dim(HS) ⌧ dim(HB)

Gibbs ensemble
For generic interacting many-body systems.
Maximum-entropy state for only one conserved 
quantity (the energy).
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Further constants of 
motion become relevant.
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Coming back to the chain of fermions…

H = ✏Sa
†a+

X

i

✏Bb
†
kbk + g(b†kbk+1 + b†k+1bk) =

X

i

Eic
†
i ci =

X

i

hi

Integrable system

!SB =
e�

P
i µihi

Z

Tr(hi!SB) = Tr(hi⇢0)
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Our goal is to incorporate these insights from equilibration theory into the study of 
thermodynamics (work extraction, heat engines,…)

1. Thermodynamics for systems that thermalise in the strong coupling regime.

2. Thermodynamics for Generalised Gibbs ensembles

Thermal machines beyond the weak coupling regime, R. Gallego, A. Riera, J. Eisert, 
New J. Phys. 16, 125009 (2014). 

Fundamental corrections to work and power in the strong coupling regime, M. P-L., 
H. Wilming, A. Riera, R. Gallego, J. Eisert —> soon on arxiv.

Work and entropy production in generalised Gibbs ensembles, M. P.-L., A. Riera, R. 
Gallego, H. Wilming, J. Eisert, New J. Phys. 18, 123035 (2016).
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A framework to describe thermodynamic protocols

System: Part that can be controlled

Bath: Rest of the many-body system

1. Quenches on the system:

2. Equilibration processes

HS ! H 0
S

⇢ ! ⇢
hW i = Tr(⇢(H 0

S �HS))

H ! H

⇢S ! TrB(!GGE)
hW i = 0

S

�

Weak coupling limit: Anders, Govannetti NJP 2013
Strong coupling: Gallego, Wilming, Eisert NJP 2014
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⌘
Exact equilibrium state, We take instead the efficient 
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H(0) ! H(1) ! ... ! H(N�1) ! H(N)

⇢(0) ! !(1) ! !(2) ! ... ! !(n)

Quenches

Real evolution

Effective 
description

When does the effective description works?

Tr(Q(j+1)
i ⇢(j)) ⇡ Tr(Q(j+1)

i !(j)
GGE)

A thermodynamic protocol

Diagonal, GGE or 
Gibbs states.



A comparison between the effective description and the exact 
unitary dynamics: Thermodynamic protocols on the fermonic chain

Local quenches 
+ 

Initial Gibbs state

Global quenches 
+ 

Initial GGE state



Result: A framework to describe in an effective way concatenation of 
equilibration processes.

* Good agreement with exact dynamics for quadratic fermionic systems. 

* The framework is flexible enough to incorporate other many-body systems.



In the real description:

Entropy production as lost of information

In the effective description:

S(⇢(j+1)) = S(⇢j)

S(!(j+1)) � S(!j)

S(⇢) = �Tr(⇢ ln ⇢)



*smoothness of the path and the Lagrange multipliers being finite.

Quasi-static processes
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S(!(N)) = S(!1) +O(1/N)

*smoothness of the path and the Lagrange multipliers being finite.

Quasi-static processes

Slow processes ReversibleNo info. is lost



Result: Validity of the minimal work principle for the different models of equilibration.

Gibbs states: It holds in general.

GGE states: It can break down  (case study: free fermions).
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Work and entropy production in generalised Gibbs ensembles, M. P.-L., A. Riera, 
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Thank you for your attention!
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At the level of S, this states 
becomes indistinguishable from….

When further integrals of motion/
symmetries become relevant.


