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Quantum machine: heat⇒ electrical power

=⇒ Objective : 2nd law of thermodynamics + fluctuation theorems

♣ TRAJECTORIES from perturbation theory (all orders) in coupling

Real­time Keldysh for density matrix

• interference

• non­markovian = strong coupling

(cotunneling, Kondo, etc)

♣ Symmetry relation: TRAJECTORY⇔ TIME­REVERSE

♣ Families of approximations which respect 2nd law (& fluct. theorems)



INTRODUCTION

TRAJECTORIES

⇓ ⇓

SECOND LAW of THERMODYNAMICS

& FLUCTUATION THEOREMS

classical rate equations −→ fluctuation theorems



FLUCTUATION THEOREMS & 2 nd LAW

Pgood =
N◦ of “good” states

Total N◦ states
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N◦ of “bad” states
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[
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Dissipative dynamics: need ∆S of fluid ⇐ trajectory of system
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electrons photons/phonons
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at thermal equilibrium

∆S =
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kBT
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Fluctuation theorems:

• Under right conditions Evans­Searles (1994), Crooks (1998)

P (−∆S) = P (∆S) exp
[

−∆S
]

⇒ 2nd law on average 〈∆S〉 ≥ 0

• Universal : Kawasaki (1967), Seifert (2005)
〈

exp
[

−∆S
]〉

= 1

• Other relations: Jarzynski (1997), etc
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Single photosyntheticmolecule

Gerster et al (2012)
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Rate equation (markovian master equation)

d

dt
Pb(t) =

∑

a

(

Γba Pa(t) − Γab Pb(t)
)

where Pb = prob. system is in state b

& Γba = rate a→b

Rate
[

(0, 0)→ (1, 0)
]

∝ Fermi

Rate
[

(1, 0)← (0, 0)
]

∝ 1−Fermi

}

⇒ LOCAL DETAILED BALLANCE

Γab = Γba exp
[

−∆Sba

]
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T0 T0
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Stochastic thermodynamics Seifert (2005), Schmeidl­Seifert (2007)

Trajectory ζ =
0 1t 2t 3t

(0,1)(0,0) (0,1) (1,0)HR H

t

time­reverse ζ =
0 1t-t2t-t3t-t

(0,1) (0,0)(0,1)(1,0) H RH

t

Prob. of ζ =
(

Prob. of ζ
)

× exp
[

−∆Sres(ζ)
]

=⇒ Fluctuation
theorem



Beyond simple rate equations ...

quantum
completely

including SUPERPOSITIONS, ENTANGLEMENT, etc

GENERAL : Strong­coupling = non­Markovian

Time­dependent external drive

SUITABLE for CALCULATION:

Currents, heat flows, thermodynamic efficiencies, ...



Previous proofs of 2nd law for quantum machines

interacting
time-dependent
strong-coupling
non-Markovian

no
n-

in
te
ra
ct
in
g

weak-

coupling

time-

independent

Landauer scattering theory
      Nenciu (2007), RW (2013) 

Keldysh (non-interacting) 
     Ludovico et al (2014)
     Esposito, Ochoa, Galperin (2015)
     Bruch et al (2016)      

Rate equations  
       Schmeidl-Seifert (2007) 

m
arkovian

Lindblad equation
    Alicki (1979) & others
    reviewed by Kosloff (2013)

Keldysh (adiababtic driving) 
     Ludovico et al (2016)

Single reservoir systems
including fluct. theorems
Cohen-Imry (2012)

Formal proofs for ALL cases (by taking sys+res as closed system)
    including fluct. theorems  reviewed by Campisi, Talkner, Hanggi (2011)
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PERTURBATION
sys­reservoir coupling

⇓

U(t; t0) = T̂ exp

[

−i

∫ t

t0

dτ
(

Ĥsys(τ) + Ĥres + V̂ (τ)
)

]

= T̂ exp

[

−i

∫

t

t0

dτ V̂(τ)

]

for interaction picture

V̂(τ) = Û(τ ;t0) V̂ (τ) Û†(τ ;t0)

with Û(τ ;t0)= T̂ exp
[

−i
∫

t

t0

dτ(Ĥsys+Ĥres)
]
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PERTURBATION
sys­reservoir coupling

⇓

U(t; t0) = T̂ exp

[

−i

∫ t

t0

dτ
(

Ĥsys(τ) + Ĥres + V̂ (τ)
)

]

= T̂ exp

[

−i

∫

t

t0

dτ V̂(τ)

]

for interaction picture

V̂(τ) = Û(τ ;t0) V̂ (τ) Û†(τ ;t0)

with Û(τ ;t0)= T̂ exp
[

−i
∫

t

t0

dτ(Ĥsys+Ĥres)
]

= 1 − i
∫

t

t0
dτ1 V̂(τ1) −

∫

t

t0
dτ2

∫

τ2

t0
dτ1 V̂(τ2) V̂(τ1) + · · ·

0t

A

t

BA A B C
0t t 0t t

time time time

1 1 2
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BIG simplifications:

• interactions in system but NOT in reservoirs

=⇒ many­body eigenbasis for system

=⇒ free­particle eigenbasis for reservoirs

• infinite N◦ of reservoir modes k

=⇒ coupling to lowest (2nd) order for each k

• Assumption: initial state is product state

Example Hamiltonian =

Ĥsys

(

d̂†
n
, d̂n, t

)

+
∑

k

Vnk

(

d̂†
n
ĉk + d̂nĉ

†
k

)

+
∑

k

Ek ĉ
†
k
ĉk + photon

terms

interacting coupling electron
system reservoirs



REAL­TIME KELDYSH APPROACH
quantum + non­markov + interactions + far from equilibrium

Schoeller­Schön (1994) + Konig + Gefen

BIG simplifications:

• interactions in system but NOT in reservoirs

=⇒ many­body eigenbasis for system

=⇒ free­particle eigenbasis for reservoirs

• infinite N◦ of reservoir modes k

=⇒ coupling to lowest (2nd) order for each k

• Assumption: initial state is product state

Evolution as function of time :

time

0
t

A B C

A B' C'

+

+

+ +
D C

k
1 k

2

k
3



REAL­TIME KELDYSH APPROACH
quantum + non­markov + interactions + far from equilibrium

Schoeller­Schön (1994) + Konig + Gefen

BIG simplifications:

• interactions in system but NOT in reservoirs

=⇒ many­body eigenbasis for system

=⇒ free­particle eigenbasis for reservoirs

• infinite N◦ of reservoir modes k

=⇒ coupling to lowest (2nd) order for each k

• Assumption: initial state is product state

Evolution as function of time :

time

0
t

A B C

A B' C'

+

+

+ +

+

++
D C

k
1 k

2

k
3



TIME­REVERSE OF

TRAJECTORIES

♦ time­reverse Hamiltonian

H(τ, B) = H(t+ t0 − τ,−B)

♦ time­reverse states

ı = time­reverse of state i

momentum of ı opposite to i

(for spins see Messiah’s book)

i=

i
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=
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Trajectories from system diagonal basis to diagonal basis

Diagonalize system state

with rotationsW0 &W at
beginning and end

t0 t

+

time

++

+

i i
+

+

0

0

0

With rotations

we still have:

0 tt0 tt

(     )
=e

- Sres
i
0

j
0

i

j
0

0

algebra

same as for

rate equations

=⇒ ALL CLASSICAL FLUCTUATION THEOREMS

Crook’s, Jarzynski, Kawasaki, etc

=⇒ 2nd LAW
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Any approximation which:

(1) contains a time­reverse for every trajectory

(2) conserves probability
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Fluctuation theorems in APPROXIMATE theories

Any approximation which:

(1) contains a time­reverse for every trajectory

(2) conserves probability

=⇒ Fluctuation theorems =⇒ no violation of 2nd LAW

WORKS FOR STANDARD APPROXIMATION:

Irreducible blocks

Seq. tunnelling approx

Co­tunnelling approx

+

+

+
+ +

& sum to all orders

0 tt

i
0

j
0

i

j
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NON­MARKOVIAN TRAJECTORIES

from all­orders PERTURBATION THEORY

perturbation = sys­reservoir coupling

♣ get FLUCTUATION THEOREMS for arbitrary quantum machine

⇑ ⇑ ⇑ ⇑
stochastic thermodyn, 2ND LAW, etc strong­coupling, interacting, t­dependent, etc

♣ for FAMILIES OF

APPROXIMATIONS











sequential tunnelling = Born­Markov

co­tunnelling = 1st non­Markov correction

your favourite truncation ???

EXACT TREATMENT



— ADVERT —

Horizon 2020 “CO­FUND” for Grenoble quantum technology

20­25 PhDs to be funded in 2017­2018

for international students→ Grenoble

Email: robert.whitney@grenoble.cnrs.fr

• Experiment – building qubits, controlled qubit/photon coupling, ...

• Theory – quantum thermodynamics, open quantum systems,

controlled qubit/photon coupling, ...

+ Industrial placement
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Change of system entropy

Standard thermodynamics :

∆Ssys = Ssys(t) − Ssys(t0)

with Shannon entropy

Ssys = −
∑

i
pi ln pi

Classical “Stochastic thermodynamics”:

assign entropy to initial and final state for each trajectory

Seifert (2005)

∆S i0→i
sys = −

[

ln pi(t) − ln pi0(t0)
]

which means exp[−∆S i0→i
sys ] =

pi(t)

pi0(t0)
⇐= 2nd ingredient

for fluct. theorem



ENTROPY CHANGE IN QUANTUM SYSTEM

∆Ssys = Ssys(t) − Ssys(t0)
with von Neumann

Ssys(τ) = −Tr
[

ρ̂sys(τ) ln
(

ρ̂sys(τ)
)]

∆Ssys for initial/final QUANTUM state

Assign entropy to each state in initial and final diagonal bases

• Initial system density­matrix

ρ̂sys(t0) = Ŵ0 p̂
(initial) Ŵ†

0 ⇐ diagonal p̂(initial)

• Final (reduced) system density­matrix

ρ̂sys(t) = Ŵ p̂
(final) Ŵ† ⇐ diagonal p̂(final)

Take double trajectories as going

from one diag. basis to the other
∆S i0→i

sys = ln p
(initial)
i0

− ln p
(final)
i



Subtlety of sum over stochastic trajectories

Let 〈 · · · 〉 be average by summing over all stochastic trajectories

& let << · · · >> be normal average

=⇒ One has
〈

∆Sres +∆Ssys

〉

= << ∆Sres >> + << ∆Ssys >>

However
〈

[∆Sres +∆Ssys]
n
〉

seems to contain

some correlations between ∆Sres and ∆Ssys, but not ALL of them!

i.e. it seems to be between

<< [∆Sres +∆Ssys]
n >>

and << [∆Ssys]
n >> × << [∆Sres]

n >> ??
Physics

hidden here!



WHY assume we can NEGLECT:

♣ Entropy of entanglement between system & reservoirs

♣ Non­zero off­diagonal trajectories for entropy fluctuations

t0 t

+

time

++

+

i
i

+

+

0

0

0

j
has no time­reverse for j 6= i

...they sum to zero

Assume we cannot use knowledge

of a reservoir’s microscopic state to get EXTRA work


