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OVERVIEW arXiv:1611.00670

Quantum machine: heat = electrical power

— Objective : 2nd law of thermodynamics + fluctuation theorems

& TRAJECTORIES from perturbation theory (all orders) in coupling
Real-time Keldysh for density matrix

e interference
e non-markovian = strong coupling
(cotunneling, Kondo, etc)

& Symmetry relation: TRAJECTORY < TIME-REVERSE

& Families of approximations which respect 2nd law (& fluct. theorems)




INTRODUCTION

TRAJECTORIES
¢l

SECOND LAW of THERMODYNAMICS
& FLUCTUATION THEOREMS

classical rate equations — fluctuation theorems




FLUCTUATION THEOREMS & 2" LAW

N° of “good” states
Total N° states

Pgood =

Entropy:
Sgooa = In [ N° of “good” states |
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Pbad—)good = Pgood%bad X €exp |: - ASgood%bad:|




FLUCTUATION THEOREMS & 2" LAW

N° of “good” states
Total N° states

Pgood =

Entropy:
Sgooa = In [ N° of “good” states |

Shad = In [N° of “bad” states |

Pbad—)good = Pgood%bad X €exp |: - ASgood%bad:|

Dissipative dynamics: need AS of fluid <« trajectory of system
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Fluctuation theorems:
e Under right conditions Evans-Searles (1994), Crooks (1998)
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FLUCTUATION THEOREMS & 2" LAW
electrons photons/phonons

§T a, lAQ Any large reservoi.r

at thermal equilibrium

s 771
s AQ
R AS = —%
s kgT
Fluctuation theorems:
e Under right conditions Evans-Searles (1994), Crooks (1998)
P(~AS) = P(AS) exp [~ AS]
"5
e Universal : Kawasaki (1967), Seifert (2005) 55143;
(exp[ - AST) = N

e Other relations: Jarzynski (1997), etc

= 2nd law on average (AS) > 0




EXAMPLES: EXISTING NANOSCALE MACHINES

Glattli group (2015) |
B Worschech group (2015) |
Molenkamp group (2015)

&
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Theory:
Séanchez & Buttiker(2011)
Entin-Wohlmann et al (2011-2015)
Strasberg-Schaller-Brandes-Esposito (2013)




EXAMPLES: EXISTING NANOSCALE MACHINES

Glattli group (2015) | Single photosynthetic molecule
B Worschech group (2015) | Gerster et al (2012)

Molenkamp group (2015) 2

&

|

Theory:
Séanchez & Buttiker(2011)
Entin-Wohlmann et al (2011-2015)
Strasberg-Schaller-Brandes-Esposito (2013)
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Rate equation (markovian master equation)
d
Shlt) = ; (rba Pu(t) — Tu Pb(t))

where P, = prob. system is in state b
&Iy, =ratea—b

= LOCAL DETAILED BALLANCE

Rate[(0,0) — (1,0)] o< Fermi }
1—‘lab = 1—‘lba exp [ - ASba]

Rate[(1,0) < (0,0)] oc 1—Fermi
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Stochastic thermodynamics Seifert (2005), Schmeid|-Seifert (2007)
00 Ronf  ao Hon .

Trajectory ( =
0 t, t, t

LonH a0  HonR 0o

time-reverse { = ' h '
0 tt, i t

Prob. of { = (Prob. of ¢) x exp [— ASreS(Q} — Fluctuation
theorem




Beyond simple rate equations ...

completely

A1iAnh im
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including SUPERPOSITIONS, ENTANGLEMENT, etc

GENERAL : Strong-coupling = non-Markovian
Time-dependent external drive

SUITABLE for CALCULATION:

Currents, heat flows, thermodynamic efficiencies, ...




Previous proofs of 2nd law for quantum machines

— Keldysh (adiababtic driving)
Ludovico et al (2016)

— Landauer scattering theory
Nenciu (2007), RW (2013)

L — Keldysh (non-interacting)
Ludovico et al (2014)
Esposito, Ochoa, Galperin (2015)
Bruch et al (2016)

interacting
time-dependent
strong-coupling
\[non-Markovian

— Rate equations
Schmeidl-Seifert (2007)

J
] ———— Lindblad equation
Single reservoir systems Alicki (1979) & others
including fluct. theorems reviewed by Kosloff (2013)

Cohen-Imry (2012)

Formal proofs for ALL cases (by taking sys+res as closed system)
including fluct. theorems reviewed by Campisi, Talkner, Hanggi (2011)
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PERTURBATION
sys-reservoir coupling

U(t;to) = 7A‘eXp |:—i/ dT(PIsys(T) + Hres + V(T))

¢
=T exp [—i/ dr V(T)} for interaction picture
o V(r) = U(rito) V() U (75t0)

with U(‘r;to) = '7A—exp [—ij;;dr(f[sys-i-ﬁres)]




PERTURBATION THEORY as TRAJECTORIES

PERTURBATION
sys-reservoir coupling

Ult;to) = T exp {—i/ dT(ﬁsys(T) + Hypos + V(T))

¢
=T exp [—i/ dr D(T):| for interaction picture
o V(r) = U(rito) V() U (75t0)

with U(‘r;to) =7 exp [7i‘]:d7'(f[5ys+1:1,es):|
0

= 1 —iffdnV(n) — [, dr [ dn V() V(n) +--

t, t , T t b 1 Tt
—t F——O—t F——O—=0O—1+>
A time A B time A B C “time




REAL-TIME KELDYSH APPROACH
quantum + non-markov + interactions + far from equilibrium
Schoeller-Schon (1994) + Konig + Gefen




REAL-TIME KELDYSH APPROACH
quantum + non-markov + interactions + far from equilibrium
Schoeller-Schon (1994) + Konig + Gefen
BIG simplifications:
e interactions in system but NOT in reservoirs
—> many-body eigenbasis for system
— free-particle eigenbasis for reservoirs
e infinite N° of reservoir modes k&
=—> coupling to lowest (2nd) order for each k

e Assumption: initial state is product state

Example Hamiltonian =

Hays (s dnst) + 3 Vi (dhe +dnc]) + Z Epélen + photon
k terms
— —_— W\J
interacting coupling electron
system reservoirs
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—> many-body eigenbasis for system
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e infinite N° of reservoir modes k
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TIME-REVERSE OF
TRAJECTORIES

{ time-reverse Hamiltonian
H(r,B)=H(t+ty—T1,—B)

{ time-reverse states
7 = time-reverse of state ¢

momentum of 7” opposite to ¢
(for spins see Messiah’s book)
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TIME-REVERSE OF
TRAJECTORIES

{ time-reverse Hamiltonian

H(r,B)

:H(t—l—to—T,—B)

{ time-reverse states
7 = time-reverse of state ¢

momentum of 7” opposite to ¢
(for spins see Messiah’s book)

RESULT:
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Trajectories from system diagonal basis to diagonal basis

with rotations Wy & W at

Diagonalize system state
if
beginning and end

With rotations

we still have:

algebra
same as for
rate equations

W W
}i
o0 : :
W), W
h t time

i T ASed D) Tyl
0 i xe res( ) . 8,

i = =T
to t to t

= ALL CLASSICAL FLUCTUATION THEOREMS

Crook’s, Jarzynski, Kawasaki, etc

~EHNE




Fluctuation theorems in APPROXIMATE theories

Any approximation which:
(1) contains a time-reverse for every trajectory

(2) conserves probability

— Fluctuation theorems = no violation of 2nd LAW




Fluctuation theorems in APPROXIMATE theories

Any approximation which:
(1) contains a time-reverse for every trajectory
(2) conserves probability

— Fluctuation theorems —

WORKS FOR STANDARD APPROXIMATION:

Seq. tunnelling approx ~
Irreducible blocks

i

no violation of 2nd LAW

@
—0

Co-tunnelling approx ~ @7 4 P
—0

& sum to all orders jo 2| |2| |Z|:|Z| |Z

0;

ty
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CONCLUSIONS arXiv:1611.00670

NON-MARKOVIAN TRAJECTORIES
from all-orders PERTURBATION THEORY

perturbation = sys-reservoir coupling

& get FLUCTUATION THEOREMS for arbitrary quantum machine
1 1

stochastic thermodyn, 2ND LAW, etc strong-coupling, interacting, t-dependent, etc

& for FAMILIES OF sequential tunnelling = Born-Markov

co-tunnelling = 1st -Mark i
APPROXIMATIONS u ing S. non ar. ov correction
your favourite truncation ??7?

EXACT TREATMENT




— ADVERT —

Horizon 2020 “CO-FUND” for Grenoble quantum technology

20-25 PhDs to be funded in 2017-2018
for international students — Grenoble

Email: robert.whitney@grenoble.cnrs.fr

e Experiment — building qubits, controlled qubit/photon coupling, ...

e Theory — quantum thermodynamics, open quantum systems,
controlled qubit/photon coupling, ...

+ Industrial placement
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Change of system entropy

Standard thermodynamics : with Shannon entropy
ASgys = Ssys(t) - Ssys(tO) Ssys = — Zipi Inp;

Classical “Stochastic thermodynamics”:
assign entropy to initial and final state for each trajectory

Seifert (2005)
ASS?S_M = _[ 1npi(t) - 1npi0(t0>]
. o pi(t
which means exp[-AS07"] = it) <— 2nd ingredient
Pig (t())

for fluct. theorem




ENTROPY CHANGE IN QUANTUM SYSTEM

ith von Neumann
ASs = Ses(t) = Saalto) A A
Y v v Ssys (T) =-—Tr |:psys(7-) In (psys (T)>:|

ASgys for initial/final QUANTUM state
Assign entropy to each state in initial and final diagonal bases
e /nitial system density-matrix
Peys(to) = W plinitial) Wg & diagonal piritial)

e Final (reduced) system density-matrix
Peys(t) = W plinah) it « diagonal p(firaD)

Take double trajectories as going ASio—i — (initial) 1 (final)
from one diag. basis to the other sys = P 1P




Subtlety of sum over stochastic trajectories

Let (---) be average by summing over all stochastic trajectories

&let << --- >> be normal average
= One has ( ASies + ASsys ) = << ASpes > + << ASgys >

However ( [AS;es + ASsys]™ ) seems to contain

some correlations between AS;.s and ASqys, but not ALL of them!

i.e. it seems to be between

< [ASes + ASgys|™ >
??

Physics
hidden here!

and << [ASgys]" > X << [ASpes)” >




WHY assume we can NEGLECT:
& Entropy of entanglement between system & reservoirs

& Non-zero off-diagonaltrajectories for entropy fluctuations

8 K
. DG T 1
lo{_q : > has no time-reverse for j # i
W w
T m>  --theysumto zero

Assume we cannot use knowledge
of a reservoir's microscopic state to get EXTRA work




