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GHE
    generalized hierarchy equation

1. bosonic bath
2. fermionic bath
3. spin bath (dual fermion)
4. non-Gaussian bath

SLE \ SW

SPI
       stochastic path integrals

1. imaginary time - thermal distribution
2. absorption / emission spectra
3. multichromophoric Forster rate

Hybrid
        deterministic + stochastic

   1.   stochastic-HEOM 
         (JCP 139, 13406, 2013)
   2.   transfer tensor method
         (PRL 112, 11040, 2014)

A Unified Stochastic Formalism of Quantum Dissipation 

Hsieh and Cao, arXiv: 1701.05709   



Polaron:  Polarization of Lattice 

•  non-canonical thermal distribution	


•  polaron-transformed Redfield equation	


•  quantum diffusion in organic systems	


•  light-harvesting energy transfer	


•  heat transfer in NESB	





	
   

unitary polaron transformation 

S = exp[σ zB]

B = fk
ω k

bk
† − bk( )

k
∑

HS =
ε
2
σ z +κ

J
2
σ x

HB = ωk
k
∑ bk

†bk

V =
J
2
σ x (cosB−κ )+σ y sinB#$ %&

κ = coshB ≤1

 
!He = SHeS

† = !HS + !HB + !V

	
   

1

2

J  
He =

ε

2
σ z +

J
2
σ x + ω k

k
∑ bk

†bk +σ z fkbk
† +H.c.( )

k
∑

1

2

κJ V
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B is the phonon displacement 



Deviation from Boltzmann 

J Moix and J. Cao, PRB, 85, 115412, (2012): imaginary-time path integral calculations 
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Hs and HSB do not commute 



Lee, Cao, Gong, PRE 86, 021109 (2012) 

Hs =
ε
2
σ z +

κJ
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σ x = ε+ + + +ε− − − τ z = − tanh(β ε 2 +κ 2J 2 / 2)

Non-canonical distribution (I): polaron population 
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Non-canonical distribution (II): basis set rotation  
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non-Boltzmann at Trm 
for strong couplings 

non-Boltzmann at low T  
even for small λ	



Lee, Cao, and Gong, PRE, 86, 021109 (2012); Cerrillo and Cao, PRL 112, p110401 (2014) (TTM)  
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ρ1: eigen 
ρ2: polaron 
θ:  deviation 
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Master Equation in the Polaron Basis 

polaron basis 
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Master equation with Born-Markov approximation (Breuer and Petruccione) 
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Polaron Dynamics:  Silbey, Nazir, Schaller, Gelbwaser…  
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Polaron-Transformed Redfield-Bloch Equation (PTRE) 

Lee, Moix, and Cao JCP 142, p164103, (2015)  Xu and Cao, Frontier of Physics 11(4),110308 (2016) 



Weak coupling limit κ = cosB →1
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Fermi’s Golden-rate rule: 

PTRE (I):  Bridging Two Limits 

Xu and Cao, Frontier of Physics 11(4),110308 (2016) 
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d !τ
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population difference 

PTRE (II):  Thermodynamic Consistency 

Steady state solution 

•  Dynamical steady state and thermodynamic equilibrium state are consistent  
•  PTRE bridges smoothly the Redfield equation and Fermi-Golden-Rule rates 
•  Numerical comparison shows reliability in the relevant regime  

Xu and Cao, Frontier of Physics 11(4), 110308 (2016) 



coherent band-like 
(Redfield equation) 

Two Models of Carrier Dynamics 

incoherent hopping 
(Fermi’s golden rule rate) 



Charge carrier mobilities are usually more or less aniso-
tropic in organic molecular crystals. As an example the elec-
tron mobility tensor ~ellipsoid! in monoclinic a-perylene is
presented in Fig. 5 for different temperatures.

B. High mobilities at low temperature/non-ohmic
transport

In exceptional cases of successful ultrapurification TOF
mobilities could be followed down to close to liquid He tem-
perature ~4.2 K!. In these cases very high mobilities ~several
hundred cm2/V s! could be obtained, associated with charge
carrier velocities up to several 106 cm/s.27,28 These velocities
are higher than sound velocity, thus definitely ruling out po-
laron hopping transport models at these low temperatures.
From the observed non-Ohmic transport behavior with a ten-
dency towards saturation of the drift velocities at very high
fields—similar to what is known for silicon—effective
masses could be estimated; these were found not substan-
tially different from the free electron mass. For more details
the reader is referred to literature.23,24,28 A crude summary of
these results can be given as follows: Charge carrier trans-
port in ultrapure organic aromatic molecular crystals at low
temperature, where vibrational modes are not yet excited,
can be described in a band transport picture; it closely re-
sembles transport in silicon at room temperature.

C. Role of impurities and defects: multiple shallow
trapping delayed transport

As can be seen from Fig. 4 there is often found a drastic
decrease of mobilities at lower temperatures. This is due to
multiple shallow trapping limited transport. Early examples
were studied by Hoesterey and Letson,29 see also Refs. 30
and 31. As this topic has been extensively treated
elsewhere,32 only a brief summary shall be given here: The
situation is sketched in Fig. 6 for the system anthracene
~C14H10) doped with the ‘‘natural’’ impurity tetracene
~C18H12). Tetracene, in its own crystal, forms a narrow con-
duction and valence band ~estimated room temperature band-

FIG. 4. Increase of the electron mobility in high purity single-crystalline
a-perylene ~as obtained from pulses similar to those displayed in Fig. 3!
with decreasing temperature follows a power law, m;T21.87, before at the
lowest temperatures multiple shallow trapping limited transport sets in and
finally becomes dominant ~dashed curve!, cf. Ref. 32. ~0.37-mm-thick slice
cut in an oblique crystallographic orientation, cf. Ref. 23 ~log m–log T plot!.
The evaluated trap depth amounts to 17.5 meV. Figure taken from Ref. 23.

FIG. 5. Magnitude and anisotropy of the electron mobility tensor in the
crystallographic ~010! plane of the monoclinic a-perylene single crystal for
different temperatures; the corresponding values mbb ~along the orthogonal
third principal axis! range from 5,5~2! cm2/V s at 300 K to 90 cm2/V s at 60
K ~cf. Refs. 2 and 27!.

FIG. 6. Schematic energy level diagrams for the organic photoconductors
tetracene ~left! and anthracene doped by tetracene ~right!. Tetracene as a
~dilute, substitutional! dopant in an anthracene crystal forms unoccupied and
occupied ~‘‘shallow’’! trap levels within the band gap, as indicated; these
levels can trap electrons ~1! and holes ~18!, respectively. In a sequence of
multiple trapping and thermal detrapping ~2,28! events, transport becomes
slow and thermally activated over wide temperature ranges. In addition,
dopant aggregates or other impurities may lead to trapping in ‘‘deep’’ traps
~3! from which no thermally stimulated charge carrier release takes place
within characteristic experimental time intervals. Figure taken from Ref. 32,
drawn after Ref. 33.

2321 Karl et al.: Fast electronic transport in organic molecular solids? 2321
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Optimal Temperature 

Fluctua'ng	
  Anderson	
  Model	
  for	
  Organic	
  Solids
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Two Limiting Cases 
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T-dependence in Mobility: Quantized Phonon Bath 

one-dimensional chain with 100-1000 sites 
an independent quantum bath for each site 
spin-boson model: 2 states and one bath 
 
Redfield equation: weak coupling/low T (eigen-state basis) 
Fermi’s golden rule rate: strong coupling/high T (site basis) 

J (ω) = π
2
αωe−ω /ωc

ρ t( ) DD

σ n

Boson bath 
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Diffusion Constant: Quantum Noise 

diffusion at zero T! 

 Lee, Moix, and Cao (JCP 142, p164103, 2015) 
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FIG. 2: Di↵usion constant as a function of temperature. (a)
Results for di↵erent values of dissipation strength and a fast
bath !c = 3. The inset shows the di↵usion constant calcu-
lated with SRE near zero temperature regime and � = 0.01.
(b) Results for di↵erent cut-o↵ frequencies and a constant re-

organization energy of
R1
0

J(!)
! = 1.08. The diamond symbols

depicts the results of FGR rates as given by Eqn. (8).

to the right of the maxima in Fig. 1. Hence D decreases
as � increases in the high temperature regime. In ad-
dition, since the intermediate coupling results shown in
Fig. 2 (a) are beyond the reach of the SRE, D does not
increase at a rate proportional to � in the low tempera-
ture regime as might be expected. However, the results
here also do not agree with the Marcus formula where one
would expect the transport rate to decrease as 1/

p
�T ,

but instead are nearly independent of �. This low tem-
perature, intermediate coupling regime is not adequately
described by any perturbative method. At zero temper-
ature, quantum fluctuations from the thermal environ-
ment are still present that destroy the Anderson local-
ization and allows for transport to occur, albeit at a very
slow rate. This leads to a small but finite value of D as
seen in the inset of Fig. 2 (a).

It is also useful to explore the dynamics of noisy, disor-
dered systems. Fig. (3) displays the average population
probability distribution at high and low temperatures for
an initial excitation located at the center of the disor-
dered chain. The temperatures are selected such that the
di↵usion constants in (a) and (b) are approximately the
same, 2D ⇡ 1.1. In the high temperature case, the coher-
ence is quickly destroyed by dissipation. Thus no wave-
like motion is observed in the time scale plotted. While
the population distribution appears exponential at short
times –which is a signature of Anderson localization– the
exponential behavior quickly transitions to a Gaussian
profile indicating the onset of the di↵usive regime. The
population dynamics at low temperature in Fig. (3) is
qualitatively di↵erent. At short times, the distribution
displays free-particle-like wavelike motion near the cen-
ter of the chain while the tails appear exponential. The
wavelike motion disappears at intermediate times but the
localization peak persists. Although the exponential be-
havior eventually disappears and transition of the popu-
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FIG. 3: Time evolution of the probability distribution profiles
for � = 0.02, !c = 3 and (a) high temperature, T = 50 or (b)
low temperature T = 1. The di↵usion constant is 2D ⇡ 1.1
in both cases.

lation distribution to a Gaussian form is slow and takes
place long after a reliable estimate of D can been ob-
tained (hR2i / t).
Applications - It is interesting to compare estimates

of the transport properties in real material systems from
the PT-RE with the approximate FGR and SRE rates
that are often assumed to hold. For example, predictions
of the charge mobility, µ = eD

kBT , of several commonly
used organic semiconductor materials are presented in
table I. The parameters are taken from Ref. [26] and ref-
erences therein. Despite using a vastly simplified model,
the mobility calculated with the PT-RE is in reasonable
agreement with the available experimental values, while
the SRE usually leads to an substantial overestimation of
the mobility and the commonly used FGR generally leads
to a significant underestimation because of the neglect of
quantum coherence.

TABLE I: Mobility (in unit cm2/Vs) of organic semiconductor
materials at T = 300K and � = 800cm�1.

PT-RE Redfield FGR Experiment

Rubrene 11.1 41.2 0.33 3 to 15

Pentacene 0.73 2.0 0.045 0.66 to 2.3

PBI-F2 2.2⇥ 10�5 1.2⇥ 10�3 2.0⇥ 10�5 -

PBI-(C4F9)2 0.61 104 0.25 -

Conclusion - We have developed a PT-RE to systemat-
ically study the transport properties of one-dimensional
disordered systems coupled to quantum baths, and es-
tablished scaling relations for the di↵usion coe�cients at
both limits of the temperature and system-bath coupling
strength. The results presented here constitute one of the
first studies of quantum transport in disordered systems
over the whole range of bath parameters. The PT-RE
provides a general framework to establish a unified un-
derstanding of the transport properties of a wide variety
of systems including light-harvesting complexes, organic
photovoltaics, conducting polymers and J-aggregate thin

FGR:     Fermi’s golden-rule rate (incoherent hopping transport) 
Redfield:  transitions between excitons (coherent band-like transport) 
PT-RE:    polaron-transformed Redfield Eq. (hopping between polarons)  

Comparison with Measured Mobility 

our model    band-like     hopping 



Quantum	
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short-time localization  
+ long-time hopping 
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Moix, Khasin, and Cao (NJP 15, 085010, 2013) 
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Open Questions in Quantum Diffusion 

Anisotropic dipolar interactions (J-aggregates) 

2D lattice with 3D dipoles (H-aggregates) 
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Anderson localization competes with the long-range dipolar interactions  



intermediate system-bath 
coupling and temperature 

Energy transfer in photosystem: Optimal coupling 

Wu, Silbey, and Cao, PRL 110, 200402 (2013); Wu, et al, NJP, 12, 105012 (2010) 

F = 1/<t> 
FMO 

optimal reorganization energy 



Three-level Light-Harvesting Model 
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Scully, et al. 
PNAS (2011) 



maser efficiency (kinetic Limit) 

Scovil	
  and	
  Schulz-­‐DuBois	
  Limit	
  
Phys. Rev. Lett. 2 262 (1959) Xu, Wang, Cao, NJP 023003 (2016)   

ηSSD =
ν
εh

≤ ηC

strong coupling  (Re[ρ12]=0)  

Ji = εiF	
  	
  	
  	
  	
  ηSSD = ε2/ε1	



F is the exciton population flux 
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Three-level Quantum Heat Engine and Heat Pump  

quantum heat engine light-harvesting (heat pump) 



Time evolution of the light-harvesting system 

 

dρs (t)
dt

= −i[HS ,ρs (t)]+Lpump[ρs ]+Ltrap[ρs ]+Lphonon[ρs ]

 Redfield-Lindblad form polaron approach 

Efficiency 
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Without coherence,  Re[ρ12]=0,  then Jj=εjF  and ηSSD = ε2/ε1    	



Energy flux and quantum coherence  

 
J1 = Trs[LpumpρsHs ]= −ε1γ 1[(n1 +1)ρ11 − n1ρgg ]−

Jγ 1
2
(n1 +1)Re[ρ12 ]

 
J 2 = Trs[LtrapρsHs ]= −ε2γ 2 (n2 +1)ρ22 − n2ρgg⎡⎣ ⎤⎦ −

Jγ 2
2
(n2 +1)Re[ρ12 ]

coherence term: Re[ρ12] population term 



Optimal performance, coherence, and population inversion 

D. Xu, C Wang, Y Zhao, J Cao, NJP18,  023003 (2016)  
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Dependence on temperature and coupling strength 

•  The high efficiency is not correlated with high energy output 
•  The optimal regime is intermediate coupling and temperature 
•  These observations are consistent with LH  



Heat transfer in non-equilibrium spin-boson model  

Wang, Ren and Cao, Sci. Rep. 5, 11787(2015) & PRA 95 0236610 (2017) 

differential thermal conductivity 
Berry phase in heat pumping 
current fluctuations (FDR) 
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non-canonical thermal distribution	


	

polaron-transformed Redfield equation	


	

charge mobility in organic systems	


	

light-harvesting energy transfer	
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•  Symmetry and Multiple Steady-states in Heat Transfer 



Heat	
  Transfer	
  and	
  Fourier	
  Law	
  	
  	
  

~J = rT unique steady state  Joseph Fourier (1768 –1830) 

The Liouvillian equation for the quantum system predicts the steady state flux J 

ρ = −i Hs ,ρ"# $%+ L̂Lρ + L̂Rρ Jst =Tr(HsLLρ) = −Tr(HsLRρ)

LL LR 



(a) (b)

Symmetric Molecular Structures 

LH2   
 Cleary, Chen, Silbey, Cao, PNAS 110, 8537 (2013) 

          Dendrimer  
Wu, Silbey and Cao, PRL 110, 200402 (2013) 

Chlorosome  
Chuang, Moix, Knoester, Cao, PRL 116, 196803 (2016) 

           Benzene 
Thingna, Manzano and Cao, Sci. Rep. 6, 28027 (2016)  



Symmetries	
  and	
  Mul'ple	
  Steady-­‐states	
  

HS
HL HR

If there exists a unitary operator ⇧ such that:

HLS

AL ⌦BL

=
HSR

AR ⌦BR

=

[⇧, HS ] = [⇧, A↵] = 0

=) Multiple steady-states

Buča and Prosen, NJP. 14, 073007 (2012);  Thingna, Manzano, and J. Cao, Sci Rep. 6, 28027 (2016) 

# of steady states  =   # of independent symmetry operators + 1 



Symmetry	
  and	
  Steady-­‐states	
  of	
  4-­‐Site	
  Model	
  

HS =

0

BBBB@

eg 0 0 0 0
0 e1 J1 0 J1
0 J1 e2 J2 0
0 0 J2 e3 J2
0 J1 0 J2 e2

1

CCCCA
=) ⇧ =

0

BBBB@

1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0

1

CCCCA
.

1 

2 

3 

4 

mirror symmetry: two steady states 

ρ1: mixed state of even symmetry  
       and non-zero current Jst    
 
ρ2: pure state with zero current J=0 
 
 
 

⇢2 = | 2ih 2| ψ2 =
1
2
(e2 − e4 )



Coherent	
  Control	
  of	
  Steady-­‐State	
  Current	
  

⇢(0) = cos

2
(✓)⇢1 + sin

2
(✓)⇢2

✓ ⌘ Mixing angle

Thingna, Manzano, and Cao, Scientific Reports 6, 28027 (2016) 

control of steady-state current 

double-slit experiment 

4 ±2

3

1

ρ1 (+)  constructive, J=JM 
ρ2 (-)   destructive,  J=0  
          0 < J < JM 



Broken	
  Symmetry	
  and	
  Unique	
  Steady-­‐State	
  

No disorder 
Dynamic disorder 
Static disorder  

•  one unique steady-state.  

•  quasi steady-state 

Buttiker probe 

How to detect symmetry in the presence of disorder?  
(steady-state / transient current) 



Master	
  Equa'on	
  and	
  Transient	
  Current	
  

d⇢

dt
= �i[H

S

, ⇢] + L
P

[⇢] +

↵

X

↵=L,R
i=p,d

L↵

i

[⇢],

The dissipative Liouvillians are given by,

L↵

i

[⇢] = A↵

i

⇢A↵†
i

� 1

2

n

A↵†
i

A↵

i

, ⇢
o

,

L
P

[⇢] =

Z 1

0
d⌧ [S, ⇢S(⌧)]C(⌧)� [S, S(⌧)⇢]C(�⌧).

Above S breaks the symmetry, i.e., [S,⇧] 6= 0

J(!) =
�!



1 +

⇣

!

!D

⌘2
�

; C(⌧) =

Z 1

0

d!

⇡
J(!)



coth

✓

�!

2

◆

cos(!⌧)� i sin(!⌧)

�

The excitonic current

J in
x

= Tr

�

AL†
p

AL

p

⇢(t)
�

� Tr

⇣

AL†
d

AL

d

⇢(t)
⌘



Effects	
  of	
  BuMker	
  Probe	
  

Green dashed lines         site 2 Black solid lines        site 1 



Eigen-­‐spectrum	
  of	
  Open	
  Systems	
  

double steady-states 

Unique steady state 

Inverse decay time 

Thingna, Manzano, and Cao, Scientific Reports 6, 28027 (2016) 

spectral analysis: JCP 117, 3822 (2002) 



Symmetry	
  Structure	
  of	
  Benzene	
  

Para-­‐benzene	
  has	
  2	
  exchange	
  symmetries	
  and	
  3	
  steady-­‐states	
  	
  
1	
  NESS	
  with	
  even	
  symmetry	
  and	
  steady-­‐state	
  current	
  (ρ1)	
  	
  
2	
  pure	
  states	
  with	
  zero	
  steady	
  state	
  current	
  (ρ2	
  and	
  ρ3)	
  

2	
   3	
  

6	
   5	
  

2	
   3	
  

6	
   5	
  

symmetric  
exchange 

antisymmetric 
exchange 

⇢2 = | 2ih 2| ⇢3 = | 3ih 3|



•  Para-­‐Benzene	
  molecule	
  has	
  3	
  steady-­‐states.	
  
•  The	
  applica'on	
  of	
  the	
  probe	
  perturbs	
  the	
  Liouvillian	
  breaking	
  

the	
  degeneracy	
  of	
  the	
  3	
  steady-­‐states.	
  
•  The	
  eigenvalues	
  of	
  the	
  perturba'on	
  matrix	
  should	
  give	
  the	
  

longest	
  'me-­‐scale	
  of	
  the	
  perturbed	
  dynamics.	
  

Perturba'on	
  Analysis	
  

!

L = L0 + δL 

R’s are Redfield tensors resulting from the probe 
R12 ~ 0 because of detailed balance 
R21 = 0  for a single site probe (complex conjugate eigen-values) 
R21 is non-zero for a double site probe  (real eigen-values) 



Effects	
  of	
  Probe	
  Loca'on	
  

Single	
  site	
  probe	
   Double	
  site	
  probe	
  

γ	





Bi-­‐exponen'al	
  Relaxa'on	
  

5

τ2
τ1

1000 2000 3000
γt

0.006

0.007

0.008

J
L
/
Γ

1000 2000 3000
γt

0.006

0.007

0.008

J
L
/
Γ

•  Buttiker probe breaks the symmetries i.e. the degeneracy	


•  number of exponents = number of symmetries 
•  dynamical control of current is robust against static disorder 

Thingna, Manzano, and Cao, Scientific Reports 6, 28027 (2016) 



Systems	
  of	
  Interest	
  

ladder of rings  stacked rings  

ballistic 
spin chain 

diffusive 
spin ladder 

Manzano, Chern, and Cao, NJP 18, 043044 (2016) 

gσ+
kσ-

k+1+ cc 



Degenerate Heat Engines  

TH TC
|gi

|fi

|e1i |e2i ~E

Use degeneracy to control coherence and thus energy flux  
 
B=|e1>+|e2>  is bright, J < 4Jsingle  η = ηsingle ,  
 
D=|e1>-|e2>   is dark to the phonon baths but can be bright to photons 
 
Non-equilibrium systems with symmetry will be further explored 



•  Dynamics and thermodynamics in the polaron frame  
•  Symmetry and multiple steady-states  

 coherent control of steady-state current 

 dynamical signatures of hidden symmetry 

Summary
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