

DETECTING NON-MARKOVIANITY OF QUANTUM EVOLUTION

SABRINA MANISCALCO UNIVERSITY OF TURKU AALTO UNIVERSITY FINLAND

University of Turku

Turku Quantum Technology S. Maniscalco

Non-Markovian Processes and Complex Systems J. Piilo

K.-A. Suominen Quantum Optics and Quantum Dynamics

I. Vilja **Cosmology**

DETECTING NON-MARKOVIANITY OF QUANTUM EVOLUTION

with Dariusz Chruscinski and Chiara Macchiavello

Phys. Rev. Lett. 118, 080404 (2017)

using the properties of the spectrum of the dynamical map

a dynamical analogue to entanglement witnesses

in an experimentally friendly way

Definition(s) of non-Markovianity

The problem of detection

Spectra of dynamical maps

Geometric interpretation

Geometric Interpretation

A dynamical analogue of entanglement witnesses

Examples

From zero to infinity

NON – MARKOVAN

A. Rivas, et al., Rep. Prog. Phys. 77, 094001 (2014)

H. -P. Breuer, et al., Rev. Mod. 88, 021002 (2016)

I. de Vega and D. Alonso, Rev. Mod. Phys. 89, 015001 (2017)

D. Chruscinski and S. Maniscalco, Phys. Rev. Lett. 112, 120404 (2014)

PAPER

D. Chruscinski, et al., Phys. Rev. Lett. 118, 080404 (2017)

Definition(s) of non-Markovianity

The problem of detection

Spectra of dynamical maps

Geometric interpretation

DYNANCAL VAP $\rho_t = \Lambda_t \rho_0$ $\Lambda_t = V_{t,s} \Lambda_s$ **CP-divisibility** \longrightarrow Lindblad-like time local ME $\mathbb{I}_n \otimes \Lambda_t$ positive orall n $V_{t,s}$ is CP

k-divisibility

 $V_{t,s}$ is k-positive

 $\mathbb{I}_n \otimes \Lambda_t$

positive for n = 1, 2... knot positive for n > k

CP-divisibility $V_{t,s}$ is CP $\mathbb{I}_n \otimes \Lambda_t$ positive $\forall n$ **k-divisibility**

 $V_{t,s}$ is k-positive

$$\mathbb{I}_n\otimes\Lambda_t$$

positive for n = 1, 2... knot positive for n > k

P-divisibility for n =1

 $V_{t,s}$ is positive

D. Chruscinski and S. Maniscalco, Phys. Rev. Lett. 112, 120404 (2014)

EXPERIMENT

N.K. Bernardes, et al., Scientific Reports 5, 17520 (2015)

REMEMBER!

non-Markovianity is a property of the dynamical map (t-parametrised family of CPTP maps)

MEMORY EFFECTS & INFORMATION FLOW

BLP MARKOVIANTY

Markovian dynamics

$$\frac{d}{dt} ||\Lambda_t[\rho_1 - \rho_2]||_1 \le 0$$

distinguishability between states decreases monotonically for ANY of initial state

BLP NON-MARKOVIANITY

Non-Markovian dynamics

there exist at least one pair of states and time interval for which $\frac{d}{dt}||\Lambda_t[\rho_1 - \rho_2]||_1 > 0$

information backflow memory effects

S/SEE

$\Lambda_t = V_{t,s} \Lambda_s$ is CP $\frac{d}{dt} ||\Lambda_t[\rho_1 - \rho_2]||_1 \le 0$ **BLP Markovian**

THE LINK

 $\Lambda_t = V_{t,s} \Lambda_s$ is CP $\frac{d}{dt} ||\Lambda_t[\rho_1 - \rho_2]||_1 \le 0$ **BLP Markovian**

SAME STORY FOR...

Fisher information

Channel capacity

Mutual information

Relative entropy

Definition(s) of non-Markovianity

The problem of detection

Spectra of dynamical maps

Geometric interpretation

there exist at least one pair of states and time interval for which $\frac{d}{dt} || \Lambda_t [\rho_1 - \rho_2] ||_1 > 0$

take a pair (or a state) evolve check for increase of trace distance

THE DIFFICULTY

take a pair (or a state)

check for increase of trace distance (or any other quantifier of information)

CAN WE DO ANY BETTER?

Can we define a witness that is related to the (spectral) properties of the dynamical map?

WITNESS FOR **PROPERTIES OF** QUANTUN CHANNELS

t-parametrised family of quantum channels

 $\rho_t = \Lambda_t \rho_0$

C. Macchiavello and M. Rossi, Phys. Rev. A 88, 042335 (2013)

Choi-Jamolkowski isomorphism

1 to 1 correspondence between CPTP maps Φ in $\mathcal{B}(\mathcal{H})$ and bipartite states

 $\dim \mathcal{H} = d$

 $\Phi (\Phi \otimes \mathbb{I}) | \alpha \rangle \langle \alpha |$ Choi state

$$|\alpha\rangle = \frac{1}{\sqrt{d}} \sum_{k=1}^{d} |k\rangle |k\rangle$$

C. Macchiavello and M. Rossi, Phys. Rev. A 88, 042335 (2013)
Choi-Jamolkowski isomorphism

1 to 1 correspondence between CPTP maps Φ in $\mathcal{B}(\mathcal{H})$ and bipartite states

 $\dim \mathcal{H} = d$

D channel

 $(\Phi\otimes\mathbb{I})|lpha
angle\langlelpha|$ Choi state

Consider properties that are based on the convex structure of the channel

Entanglement witness

C. Macchiavello and M. Rossi, Phys. Rev. A 88, 042335 (2013)

PROBLEM(S)!

Can you see why?

Let's see what we can say anyway...

Unital maps

$$\Lambda_t(\mathbb{I}) = \mathbb{I}$$

Normal maps

Commutative maps

$$\Lambda_t \Lambda_s = \Lambda_s \Lambda_t$$

Unital maps

$\Lambda_t(\mathbb{I}) = \mathbb{I}$ **Example: Pauli channels**

 $\gamma_k(\iota)$

 $\Lambda_t[\rho]$

Normal maps

$$\Lambda_t \Lambda_t^* = \Lambda_t^* \Lambda_t$$

Example: Weyl channels extension of Pauli channels to d-dimensional systems (d>2)

$$\mathcal{L}_t[\rho] = \sum_{k+l>0}^{d-1} \gamma_{kl}(t) [U_{kl}\rho U_{kl}^{\dagger} - \rho] \qquad U_{kl} = \sum_{m=0}^{d-1} \omega^{mk} |m\rangle \langle m+l|$$
$$\Lambda_t[\rho] = \sum_{k,l=0}^{d-1} p_{kl}(t) U_{kl}\rho U_{kl}^{\dagger} \qquad \omega = e^{2\pi i/d}$$

Commutative maps

but not normal!

 $\Lambda_t \Lambda_s = \Lambda_s \Lambda_t$

Example: Amplitude damping

$$\mathcal{L}_{t}[\rho] = -\frac{is(t)}{2} [\sigma_{+}\sigma_{-},\rho] + \gamma(t)(\sigma_{-}\rho_{+} - \frac{1}{2} \{\sigma_{+}\sigma_{-},\rho\})$$

$$CP-divisible iff \ \gamma(t) > 0$$

Definition(s) of non-Markovianity

The problem of detection

Spectra of dynamical maps

Geometric interpretation

Matrix representation

$$\Lambda_t \to F_{\alpha\beta}(t) := \operatorname{Tr}(G_{\alpha}\Lambda_t[G_{\beta}])$$

 $|G_lpha|$ orthonormal basis in $\,\mathcal{B}(\mathcal{H})|$

Gell-Mann matrices with $G_0 = \mathbb{I}/\sqrt{d}$ and G_α $\alpha = 1, \ldots, d^2 - 1$

$$F(t) = \begin{pmatrix} 1 & 0 \\ \hline \mathbf{q}_t & \Delta t \end{pmatrix} \qquad \mathbf{q}_t \in \mathbb{R}^{d^2 - 1}$$
$$(d^2 - 1) \times (d^2 - 1) \text{ real matrix}$$

Matrix representation

$$F(t) = \begin{pmatrix} 1 & 0 \\ \hline \mathbf{q}_t & \Delta_t \end{pmatrix}$$

singular value decomposition

$$F(t) = O_1(t)\Sigma(t)O_2^{-1}(t)$$
rotations

diagonal matrix containing singular values of ${\cal F}(t)$

Matrix representation

$$F(t) = \begin{pmatrix} 1 & 0 \\ \hline \mathbf{q}_t & \Delta_t \end{pmatrix}$$

$$F(t) = \mathcal{O}_1(t) \Sigma(t) \mathcal{O}_2^{-1}(t)$$

 $\begin{array}{l} 0\\ \text{singular values}\\ s\end{array}$

$$0 < s_k(t) \le 1$$

 $s_0(t) = 1$

$$|\operatorname{Det} F(t)| = |\operatorname{Det} \Delta_t| = \operatorname{Det} \Sigma(t) = \prod_{k=1}^{d^2 - 1} s_k(t)$$

Definition(s) of non-Markovianity

The problem of detection

Spectra of dynamical maps

Geometric interpretation

GENERALISED BLOCH REPRESENTATION

$$\rho = \frac{1}{d} \left(\mathbb{I} + \sum_{\alpha=1}^{d^2 - 1} x_\alpha G_\alpha \right)$$

action of the dynamical map

$$\mathbf{x} \to \mathbf{x}_t = \Delta_t \mathbf{x} + \mathbf{q}_t$$

P-divisibility

controlled by both Δ_t and \mathbf{q}_t

$$\Delta_{t,s}\Delta_s \qquad \mathbf{q}_t = \mathbf{q}_{t,s} + \Delta_{t,s}\mathbf{q}_s$$

BLP Markovianity

fully controlled by Δ_t

CP-divisibility

F(t) = F(t,s)F(s)

GENERALISED BLOCH REPRESENTATION

$$\rho = \frac{1}{d} \left(\mathbb{I} + \sum_{\alpha=1}^{d^2 - 1} x_\alpha G_\alpha \right)$$

action of the dynamical map

$$\mathbf{x} \rightarrow \mathbf{x}_t = \Delta_t \mathbf{x} + \mathbf{r}_t$$

 \mathbf{q}_t

P-divisibility

controlled by both Δ_t and \mathbf{q}_t

$$\Delta_t = \Delta_{t,s} \Delta_s$$

$$\Delta_{t,s} \mathbf{q}_s$$

BLP Markovianity

fully controlled by Δ_t

CP-divisibility

F(t) = F(t,s)F(s)

based on spectral properties of the map with a clear geometric interpretation

VOLUME OF ACCESSIBLE STATES

time

S. Lorenzo, et al., Phys. Rev. A 88, 020102(R) (2013)

VOLUME OF ACCESSIBLE STATES

B space of the density operators $B(t) = \Lambda_t[B]$ body of accessible states

S. Lorenzo, et al., Phys. Rev. A 88, 020102(R) (2013)

WHAT MORE?

Unital maps

$$\Lambda_t(\mathbb{I}) = \mathbb{I}$$

Normal maps

Commutative maps

$$\Lambda_t \Lambda_s = \Lambda_s \Lambda_t$$

Unital maps

The body of accessible states $B(t) \subset B(s)$ shrinks monotonicallyt > s

stronger conditions than

$$\frac{d}{dt}\operatorname{Vol}(t) = \frac{d}{dt}\prod_{k=1}^{d^2-1} s_k(t)\operatorname{Vol}(0)$$

Example: Pauli channel

$$B(t) \quad \frac{x_1^2}{s_1^2(t)} + \frac{x_2^2}{s_2^2(t)} + \frac{x_3^2}{s_3^2(t)} \le 1$$

Normal maps

$$\Lambda_t \Lambda_t^* = \Lambda_t^* \Lambda_t \longrightarrow F(t)$$
 normal matrix

 $\mathbf{q}_t = 0$ and Δ_t normal

normal maps are always unital

Normal maps

$$\Lambda_t \Lambda_t^* = \Lambda_t^* \Lambda_t$$

spectral representation of normal maps

$$\Lambda_t[\rho] = \sum_{k=0}^{d^2 - 1} \lambda_k(t) F_k(t) \operatorname{Tr}(F_k^{\dagger}(t)\rho)$$

same for the dual map with $\lambda_k(t) \rightarrow \lambda_k^*(t)$

 $\frac{d}{dt}\lambda_k(t) \le 0$

Hermitian maps $\lambda_k^*(t) = \lambda_k(t)$

P-divisibility

Geometric Interpretation

A dynamical analogue of entanglement witnesses

Examples

From zero to infinity

Entanglement witnesses

any such operator may be constructed as $W := (\mathbb{I} \otimes \Phi) |\alpha\rangle \langle \alpha | \quad \text{with} \quad |\alpha\rangle = \frac{1}{\sqrt{d}} \sum_{k=1}^{d} |k\rangle |k\rangle$ <u>positive but not CP map</u>

Non-Markovianity witness

for Hermitian maps

$$\frac{d}{dt} \langle \alpha | (\mathbb{I} \otimes \Lambda_t) [P^+] | \alpha \rangle \le 0$$

with
$$P^+ = |\alpha\rangle\langle\alpha|$$

 $|\alpha\rangle = \frac{1}{\sqrt{d}} \sum_{k=1}^d |k\rangle|k\rangle$

Experimentally friendly!

For 2-dimensional systems it requires only a single projection onto a Bell state (useful for linear optical systems)

Commutative maps $\Lambda_t \Lambda_s = \Lambda_s \Lambda_t$

more general than unital and normal

Commutativity implies time-independent eigenvectors of the dynamical map and its dual

$$\Lambda_t[F_\alpha] = \lambda_\alpha(t)F_\alpha , \quad \Lambda_t^*[G_\alpha] = \lambda_\alpha^*(t)G_\alpha$$

$$t = \int e^{\int_0^{\circ} \mathcal{L}_{\tau} d\tau}$$

eigenvalues of \mathcal{L}_t

eigenvalues of Λ_t $\lambda_{\alpha}(t) = e^{\int_0^t \mu_{\alpha}(\tau) d\tau}$

Commutative maps $\Lambda_t \Lambda_s = \Lambda_s \Lambda_t$

$\langle \alpha | (\mathbb{I} \otimes \mathcal{L}_t) [P^+] | \alpha \rangle \leq 0$

compare with the witness for Hermitian maps

$$\frac{d}{dt} \langle \alpha | (\mathbb{I} \otimes \Lambda_t) [P^+] | \alpha \rangle \le 0$$

Geometric Interpretation

A dynamical analogue of entanglement witnesses

Examples

From zero to infinity

EXAMPLE

Commutative but generally not normal

$$\mathcal{L}_t[\rho] = -\frac{is(t)}{2} [\sigma_+ \sigma_-, \rho] + \gamma(t)(\sigma_- \rho_+ - \frac{1}{2} \{\sigma_+ \sigma_-, \rho\})$$

$$\Lambda_t[\rho] = \begin{pmatrix} \rho_{11} + (1 - |G(t)|^2)\rho_{22} & G(t)\rho_{12} \\ G^*(t)\rho_{21} & |G(t)|^2\rho_{22} \end{pmatrix} \qquad s(t) = -2\mathrm{Im}\frac{\dot{G}(t)}{G(t)}$$
$$\gamma(t) = -2\mathrm{Re}\frac{\dot{G}(t)}{G(t)}$$

Eigenvalues

G(l)

EXAMPLE

Commutative but generally not normal

$$\mathcal{L}_t[\rho] = -\frac{is(t)}{2} [\sigma_+ \sigma_-, \rho] + \gamma(t)(\sigma_- \rho_+ - \frac{1}{2} \{\sigma_+ \sigma_-, \rho\})$$

$$\Lambda_t[\rho] = \begin{pmatrix} \rho_{11} + (1 - |G(t)|^2)\rho_{22} & G(t)\rho_{12} \\ G^*(t)\rho_{21} & |G(t)|^2\rho_{22} \end{pmatrix} \qquad s(t) = -2\mathrm{Im}\frac{\dot{G}(t)}{G(t)}$$

$$\gamma(t) = -2\mathrm{Re}\frac{\dot{G}(t)}{G(t)}$$

Eigenvalues

$$\begin{split} \lambda_0(t) &= 1 \quad \lambda_1(t) = G(t) \quad \lambda_2(t) = G^*(t) \quad \lambda_3(t) = |G(t)|^2 \\ & \text{depends on } J(\omega) \\ \frac{d}{dt} |\lambda_k(t)| \leq 0 \quad \longleftarrow \quad \gamma(t) \geq 0 \quad \bigoplus \quad \text{Markovianity} \end{split}$$

EXAMPLE

Commutative but generally not normal

$$\Lambda_t[\rho] = \begin{pmatrix} \rho_{11} + (1 - |G(t)|^2)\rho_{22} & G(t)\rho_{12} \\ G^*(t)\rho_{21} & |G(t)|^2\rho_{22} \end{pmatrix}$$

Eigenvalues

$$\lambda_0(t) = 1 \qquad \lambda_1(t) = G(t) \qquad \lambda_2(t) = G^*(t) \qquad \lambda_3(t) = |\mathbf{G}(t)|^2$$
depends on $J(\omega)$

Lorentzian spectral density (on resonance)

$$J(\omega) = rac{\gamma_M \lambda^2}{2\pi[(\omega - \omega_c)^2 + \lambda^2]}$$
 $G(t)$ REAL

SUMMARIZING....

P-divisibility

Unital maps $\frac{d}{dt}s_k(t) \le 0$ Normal&Commutative maps $\frac{d}{dt}|\lambda_k(t)| \le 0$ Hermitian maps $\frac{d}{dt}\lambda_k(t) \le 0$

Geometric interpretation

SUMMARIZING...

P-divisibility

Hermitian maps

 $\frac{d}{dt} \langle \alpha | (\mathbb{I} \otimes \Lambda_t) [P^+] | \alpha \rangle \le 0$

Commutative maps

$$\frac{d}{dt} \langle \alpha | (\mathbb{I} \otimes \Lambda_t) [P^+] | \alpha \rangle \le 0$$

Geometric Interpretation

A dynamical analogue of entanglement witnesses

Examples

From zero to infinity

2ND ARTIC SCHOOL ON OPEN QUANTUM SYSTEMS Kevo Subartic Research Station – Kevo, 10–15 September 2017

Lecturers

Michel Brune (Laboratoire Kastler Brossel – Paris) Michele Campisi (Scuola Normale Superiore – Pisa) Dariusz Chruscinski (Nicolaus Copernicus University – Torun) Elisabetta Paladino (University of Catania) Sorin Paraoanu (Aalto University) Matteo Paris (University of Milano) Jyrki Piilo (University of Turku) Kilian Singer (University of Kassel)

http://arcticschool.aalto.fi arcticschool@aalto.fi

Local Organisers: Rebecca Schmidt (University of Turku and Aalto University) Sabrina Maniscalco (University of Turku and Aalto University) Antti Kupiainen (University of Helsinki) Paolo Muratore Gianneschi (University of Helsinki) Jukka Pekola (Aalto University)

Magnus Ehrnrooth foundation

