next up previous contents index
Next: Rates and Energy Shift Up: Master Equation (RWA) Previous: Master Equation (RWA)   Contents   Index

Thermal Bath Correlation Functions (RWA)

The bath correlation functions simply are
$\displaystyle C_{12}(t)$ $\displaystyle \equiv$ $\displaystyle {\rm Tr}_B \left[\tilde{B}_1(t){B}_2R_0\right]
= {\rm Tr}_B \left[\sum_{QQ'}\gamma_Q\gamma_{Q'}a_Qe^{-i\omega_Q t}
a^{\dagger}_{Q'}R_0\right]$  
  $\displaystyle =$ $\displaystyle \sum_Q \gamma_Q^2 e^{-i\omega_Q t}(1+n_B(\omega_Q))
= \int_0^{\infty}
d\omega \rho(\omega) e^{-i\omega t}(1+n_B(\omega))$  
$\displaystyle C_{21}(t)$ $\displaystyle \equiv$ $\displaystyle {\rm Tr}_B \left[\tilde{B}_2(t){B}_1R_0\right]
= {\rm Tr}_B \left[\sum_{QQ'}\gamma_Q\gamma_{Q'}a_Q^{\dagger}e^{i\omega_Q t}
a_{Q'}R_0\right]$  
  $\displaystyle =$ $\displaystyle \sum_Q \gamma_Q^2 e^{i\omega_Q t}n_B(\omega_Q)
= \int_0^{\infty}
d\omega \rho(\omega) e^{i\omega t}n_B(\omega)$  
$\displaystyle C_{11}(t)$ $\displaystyle =$ $\displaystyle C_{22}(t)=0,$ (36)

where all the information on the microscopic coupling to the bath in now comprised within one single function, the bath spectral density $ \rho (\omega )$
$\displaystyle \fbox{$ \begin{array}{rcl} \displaystyle
\rho(\omega) &\equiv& \sum_Q \gamma_Q^2\delta(\omega_Q-\omega).
\end{array}$\ }$     (37)

Using $ \tilde{S}_1(t)=a^{\dagger}e^{i\Omega t}$, $ \tilde{S}_2(t)=ae^{-i\Omega t}$, we have

$\displaystyle D_{1}$ $\displaystyle \equiv$ $\displaystyle \int_0^{\infty}d \tau C_{12}(\tau)\tilde{S}_2(-\tau)=
\int_0^{\infty}d \tau C_{12}(\tau) ae^{i\Omega t}
= \hat{C}_{12}(-i\Omega) a$ (38)
$\displaystyle D_{2}$ $\displaystyle \equiv$ $\displaystyle \int_0^{\infty}d \tau C_{21}(\tau)\tilde{S}_1(-\tau)=
\int_0^{\in...
...\tau C_{21}(\tau) a^{\dagger}e^{-i\Omega t}
= \hat{C}_{21}(i\Omega) a^{\dagger}$  
$\displaystyle E_{1}$ $\displaystyle \equiv$ $\displaystyle \int_0^{\infty}d \tau C_{21}^*(\tau)\tilde{S}_2(-\tau)=
\int_0^{\...
...\tau C_{21}^*(\tau) ae^{i\Omega t}
= [\hat{C}_{21}(i\Omega)]^* a =D_2^{\dagger}$  
$\displaystyle E_{2}$ $\displaystyle \equiv$ $\displaystyle \int_0^{\infty}d \tau C_{12}^*(\tau)\tilde{S}_1(-\tau)=
\int_0^{\...
...^{\dagger}e^{-i\Omega t}
= [\hat{C}_{12}(-i\Omega)]^* a^{\dagger}=D_1^{\dagger}$  

Here, we defined the Laplace transformation of a function $ f(t)$,
$\displaystyle \hat{f}(z) = \int_{0}^{\infty}dt e^{-zt} f(t).$     (39)

The Master equation therefore is
$\displaystyle \frac{d}{dt}\rho(t)$ $\displaystyle =$ $\displaystyle -i[\Omega a^{\dagger}a,{\rho}(t)]$  
  $\displaystyle -$ $\displaystyle \sum\Big\{
{S}_k D_k {\rho}(t) - D_k {\rho}(t)
{S}_k+
{\rho}(t)E_k {S}_k - {S}_k{\rho}(t)
E_k \Big\}$ (40)
  $\displaystyle =$ $\displaystyle -i[\Omega a^{\dagger}a,{\rho}(t)]$  
  $\displaystyle -$ $\displaystyle \Big\{ \left[\hat{C}_{12}(-i\Omega)a^{\dagger} a + \hat{C}_{21}(i...
...{21}(i\Omega)]^*a a^{\dagger} + [\hat{C}_{12}(-i\Omega)]^* a^{\dagger} a\right]$  
  $\displaystyle -$ $\displaystyle \hat{C}_{12}(-i\Omega) a{\rho}(t)a^{\dagger}
-\hat{C}_{21}(i\Omeg...
...\dagger}{\rho}(t) a
- [\hat{C}_{12}(-i\Omega)]^*a {\rho}(t) a^{\dagger}
\Big\}.$  


next up previous contents index
Next: Rates and Energy Shift Up: Master Equation (RWA) Previous: Master Equation (RWA)   Contents   Index
Tobias Brandes 2004-02-18