next up previous contents index
Next: The Quantum Jump (Quantum Up: The Two-Level System I Previous: Mapping onto harmonic oscillator   Contents   Index

Expectation Values, Einstein Equations, Bloch Equations

We can write the Master equation with the help of
$\displaystyle \sigma_-$ $\displaystyle \equiv$ $\displaystyle \vert g\rangle \langle e\vert,\quad
\sigma_+ \equiv \vert e\rangl...
...ert g\rangle\langle g\vert,\quad \sigma_+ \sigma_-=\vert e\rangle\langle e\vert$  
$\displaystyle \leadsto\frac{d}{dt}{\rho}(t)$ $\displaystyle =$ $\displaystyle -i\frac{1}{2}\bar{\omega}_0[\vert e\rangle\langle e\vert-\vert g\rangle\langle g\vert,\rho]$  
  $\displaystyle -$ $\displaystyle \frac{1}{2}\gamma_+\Big\{ \vert e\rangle\langle e\vert \rho + \rh...
...\vert
-2 \vert g\rangle \langle e\vert{\rho}\vert e\rangle \langle g\vert\Big\}$  
  $\displaystyle -$ $\displaystyle \frac{1}{2}\gamma\Big\{ \vert g\rangle\langle g\vert\rho + \rho \...
...\vert
-2\vert e\rangle \langle g\vert{\rho}\vert g\rangle \langle e\vert\Big\}.$ (130)

Taking matrix elements, we obtain
$\displaystyle \frac{d}{dt} \langle e \vert\rho \vert e \rangle$ $\displaystyle =$ $\displaystyle -\gamma_+ \langle e\vert \rho \vert e\rangle + \gamma \langle g\vert{\rho}\vert g\rangle$ (131)
$\displaystyle \frac{d}{dt} \langle g \vert\rho \vert g \rangle$ $\displaystyle =$ $\displaystyle +\gamma_+ \langle e\vert \rho \vert e\rangle - \gamma \langle g\vert{\rho}\vert g\rangle$ (132)
$\displaystyle \frac{d}{dt} \langle e \vert\rho \vert g \rangle$ $\displaystyle =$ $\displaystyle \left(-i \bar{\omega}_0
-\frac{\gamma_++\gamma}{2} \right)\langle e \vert\rho \vert g \rangle$ (133)
$\displaystyle \frac{d}{dt} \langle g \vert\rho \vert e \rangle$ $\displaystyle =$ $\displaystyle \left(+i \bar{\omega}_0
-\frac{\gamma_++\gamma}{2}\right) \langle g \vert\rho \vert e \rangle .$ (134)

The first two equations for the diagonal elements (which are linearly dependent because $ \langle e \vert\rho \vert e \rangle +
\langle g \vert\rho \vert g \rangle =1$) are called Einstein equations. We can re-write the four equations, subtracting the second from the first, as three equations,
$\displaystyle \fbox{$ \begin{array}{rcl} \displaystyle
\frac{d}{dt} \langle \si...
...a}_0
-\frac{\gamma_++\gamma}{2}\right) \langle \sigma_-\rangle.
\end{array}$\ }$     (135)

These equations are called Bloch equations. Introducing the relaxation time $ T_1$ and the decoherence time $ T_2$,
$\displaystyle {T_1}= \frac{1}{2} T_2 \equiv (\gamma_++\gamma)^{-1},$     (136)

we can write
$\displaystyle \frac{d}{dt} \langle \sigma_z \rangle$ $\displaystyle =$ $\displaystyle -\frac{1}{T_1}\left( \langle \sigma_z \rangle
- \langle \sigma_z ...
...langle \sigma_z \rangle_{\infty}
\equiv \frac{\gamma-\gamma_+}{\gamma+\gamma_+}$  
$\displaystyle \frac{d}{dt} \langle \sigma_+\rangle$ $\displaystyle =$ $\displaystyle \left(+i \bar{\omega}_0
-\frac{1}{T_2}\right) \langle \sigma_+\rangle$  
$\displaystyle \frac{d}{dt} \langle \sigma_-\rangle$ $\displaystyle =$ $\displaystyle \left(-i \bar{\omega}_0
-\frac{1}{T_2}\right) \langle \sigma_-\rangle.$ (137)


next up previous contents index
Next: The Quantum Jump (Quantum Up: The Two-Level System I Previous: Mapping onto harmonic oscillator   Contents   Index
Tobias Brandes 2004-02-18