next up previous contents index
Next: Radial SE Up: Angular Momentum Previous: Angular Momentum   Contents   Index

Spin \bgroup\color{col1}$ {\bf S}=0$\egroup

This is the simplest case. The total angular momentum of the nuclei is then
$\displaystyle {\bf J} = {\bf K} - {\bf L}.$     (1.16)

Since we have neglected geometric phase terms, we can replace \bgroup\color{col1}$ \Delta_{\bf r}$\egroup by its expectation value in the electronic state \bgroup\color{col1}$ \alpha$\egroup under consideration,
$\displaystyle \Delta_{\bf r}$ $\displaystyle =$ $\displaystyle \langle \psi_\alpha\vert \Delta_{\bf r}\vert \psi_\alpha\rangle$ (1.17)
$\displaystyle \leadsto {\bf J}^2$ $\displaystyle =$ $\displaystyle \langle \psi_\alpha\vert {\bf J}^2 \vert \psi_\alpha\rangle
= \langle \psi_\alpha\vert ({\bf K} - {\bf L})^2 \vert \psi_\alpha\rangle.$ (1.18)

This allows one to express everything in terms of total angular quantum numbers \bgroup\color{col1}$ K$\egroup as follows: We first write
$\displaystyle {\bf J}^2$ $\displaystyle =$ $\displaystyle \langle \psi_\alpha\vert ({\bf K} - {\bf L})^2 \vert \psi_\alpha\rangle$ (1.19)
  $\displaystyle =$ $\displaystyle \langle \psi_\alpha\vert{\bf K}^2 \vert\psi_\alpha\rangle
- 2 \la...
...psi_\alpha\rangle +
\langle \psi_\alpha \vert{\bf L}^2 \vert\psi_\alpha\rangle.$  

First, \bgroup\color{col1}$ {\bf K}^2$\egroup is conserved and can be replaced by its eigenvalue \bgroup\color{col1}$ K(K+1)$\egroup whence
$\displaystyle \langle \psi_\alpha\vert{\bf K}^2 \vert\psi_\alpha\rangle = K(K+1).$     (1.20)

Second, \bgroup\color{col1}$ \langle \psi_\alpha\vert {\bf L}^2 \vert\psi_\alpha\rangle$\egroup only depends on the electronic degrees of freedom and can therefore be simply added to the potential \bgroup\color{col1}$ E_\alpha(r)$\egroup.

Finally, we assume that the electronic state \bgroup\color{col1}$ \alpha$\egroup is an eigenstate of the \bgroup\color{col1}$ z$\egroup component \bgroup\color{col1}$ L_z$\egroup with eigenvalue \bgroup\color{col1}$ \Lambda$\egroup of the electronic angular momentum. Then,

$\displaystyle \langle \psi_\alpha\vert{\bf K}{\bf L} \vert\psi_\alpha\rangle$ $\displaystyle =$ $\displaystyle {\bf K} \langle \psi_\alpha\vert {\bf L}\vert \psi_\alpha\rangle = {\bf K}{\bf e}_z \Lambda.$ (1.21)

On the other hand, we have \bgroup\color{col1}$ {\bf J}{\bf e}_z=0$\egroup since the angular momentum of the two nuclei is perpendicular to the molecule axis \bgroup\color{col1}$ {\bf e}_z\propto {\bf r}$\egroup, thus
$\displaystyle (K_z-L_z) =0 \leadsto K_z = L_z$     (1.22)

and
$\displaystyle \langle \psi_\alpha\vert{\bf K}{\bf L} \vert\psi_\alpha\rangle$ $\displaystyle =$ $\displaystyle {\bf K}{\bf e}_z \Lambda
= L_z \Lambda$  
  $\displaystyle =$ $\displaystyle \langle \psi_\alpha\vert L_z \vert \psi_\alpha\rangle \Lambda = \Lambda^2.$ (1.23)

Summarizing, we now have for the radial part
    $\displaystyle - \frac{\hbar^2}{2\mu} \left(\frac{\partial^2}{\partial r^2}+\fra...
...gle \psi_\alpha\vert{\bf L}^2\vert \psi_\alpha\rangle}{2\mu r^2}
+ E_\alpha(r)}$  
  $\displaystyle \equiv$ $\displaystyle - \frac{\hbar^2}{2\mu} \left(\frac{\partial^2}{\partial r^2}+\frac{2}{r}\frac{\partial}{\partial r}\right) + \frac{K(K+1)}{2\mu r^2} + U_\alpha(r).$  

Thus we have finally arrived at the form for the effective potential energy,
$\displaystyle \frac{K(K+1)}{2\mu r^2} + U_\alpha(r).$     (1.24)

The first term \bgroup\color{col1}$ \frac{K(K+1)}{2\mu r^2}$\egroup is the centrifugal energy as in the hydrogen problem. Since \bgroup\color{col1}$ K_z = L_z$\egroup with fixed eigenvalue \bgroup\color{col1}$ \Lambda$\egroup for the given state \bgroup\color{col1}$ \alpha$\egroup, the eigenvalues of the total angular momentum must fulfill
$\displaystyle K \ge \Lambda.$     (1.25)


next up previous contents index
Next: Radial SE Up: Angular Momentum Previous: Angular Momentum   Contents   Index
Tobias Brandes 2005-04-26