next up previous contents index
Next: Spin-Orbit Coupling in Solids Up: Spin-Orbit Coupling Previous: Spin-Orbit Coupling   Contents   Index

Spin-Orbit Coupling in Atoms

In the hydrogen atom, the magnetic moment \bgroup\color{col1}$ \hat{\bf\mu}$\egroup of the electron interacts with the magnetic field \bgroup\color{col1}$ {\bf B}$\egroup which the moving electron experiences in the electric field \bgroup\color{col1}$ {\bf E}$\egroup of the nucleus,

$\displaystyle {\bf B} = -\frac{{\bf v} \times {\bf E}}{c^2}.$     (3.8)

One has
$\displaystyle \hat{\bf\mu} = -\frac{e}{2m}g\hat{\bf S},\quad g=2,$     (3.9)

where \bgroup\color{col1}$ g$\egroup is the g-factor of the electron and
$\displaystyle \hat{\bf S} = \frac{1}{2}\hbar {\bf\sigma}$     (3.10)

is the electron spin operator. Therefore,
$\displaystyle -{\bf v} \times {\bf E}$ $\displaystyle =$ $\displaystyle {\bf v} \times {\bf\nabla} \frac{Ze}{4\pi \varepsilon_0 r}
= {\bf...
...i \varepsilon_0 r}
= \frac{1}{m} \hat{\bf L} \frac{Ze}{4\pi \varepsilon_0 r^3},$ (3.11)

where \bgroup\color{col1}$ \hat{\bf L} $\egroup is the orbital angular momentum operator. This is reduced by an additional factor of \bgroup\color{col1}$ 2$\egroup (relativistic effects) such that
$\displaystyle \hat{H}_{\rm SO} = -\hat{\bf\mu} {\bf B}=
\frac{Ze^2}{4\pi\varepsilon_0}\frac{1}{2m^2c^2}\frac{\hat{\bf S}\hat{\bf L}}{r^3},$     (3.12)

which introduces a coupling term between spin and orbital angular momentum. Note that Eq. (II.3.12) can directly been derived by inserting Eq. (II.3.11) as \bgroup\color{col1}$ {\bf E} \times {\bf v} =-{\bf v} \times {\bf E}$\egroup into Eq. (II.3.6).


next up previous contents index
Next: Spin-Orbit Coupling in Solids Up: Spin-Orbit Coupling Previous: Spin-Orbit Coupling   Contents   Index
Tobias Brandes 2005-04-26