next up previous contents index
Next: Properties of Spin-Singlets and Up: 2-Fermion Systems Previous: 2-Fermion Systems   Contents   Index


Two Electrons

Electrons have spin \bgroup\color{col1}$ \frac{1}{2}$\egroup and we now have to work out how the electron spin enters into the Slater determinants. The single particle wave functions for particle \bgroup\color{col1}$ 1$\egroup are products of orbital wave functions and spin wave functions,
$\displaystyle \psi(\xi_1)= \psi({\bf r}_1) \vert\sigma_1\rangle_{(1)}.$     (2.2)

For spin- \bgroup\color{col1}$ 1/2$\egroup, the spin label \bgroup\color{col1}$ \sigma_1$\egroup can take the two values \bgroup\color{col1}$ \sigma_1=\pm 1/2$\egroup which by convention are denoted as \bgroup\color{col1}$ \uparrow$\egroup and \bgroup\color{col1}$ \downarrow$\egroup. The two spinors have the following representation in the two-dimensional complex Hilbert space (spin-space),
$\displaystyle \vert\uparrow\rangle_{(1)} =\left( \begin{array}{c} 1  0 \end...
...narrow\rangle_{(1)}=\left( \begin{array}{c} 0  1 \end{array} \right)_{(1)}.$     (2.3)

Here, the index \bgroup\color{col1}$ _{(1)}$\egroup means that this spin referes to particle \bgroup\color{col1}$ (1)$\egroup.

We now consider the four possibilities for the spin projections \bgroup\color{col1}$ \sigma_1$\egroup and \bgroup\color{col1}$ \sigma_2$\egroup and the corresponding four sets of basis wave functions,

$\displaystyle \frac{1}{\sqrt{2}}\left[ \psi_{\nu_1}( {\bf r}_1)\psi_{\nu_2}( {\...
...\bf r}_2)\psi_{\nu_2}( {\bf r}_1) \vert\uparrow \uparrow \rangle_{(12)}
\right]$      
$\displaystyle \frac{1}{\sqrt{2}}\left[ \psi_{\nu_1}( {\bf r}_1)\psi_{\nu_2}( {\...
...f r}_2)\psi_{\nu_2}( {\bf r}_1) \vert\downarrow \uparrow \rangle_{(12)}
\right]$      
$\displaystyle \frac{1}{\sqrt{2}}\left[ \psi_{\nu_1}( {\bf r}_1)\psi_{\nu_2}( {\...
...f r}_2)\psi_{\nu_2}( {\bf r}_1) \vert\uparrow \downarrow \rangle_{(12)}
\right]$      
$\displaystyle \frac{1}{\sqrt{2}}\left[ \psi_{\nu_1}( {\bf r}_1)\psi_{\nu_2}( {\...
...}_2)\psi_{\nu_2}( {\bf r}_1) \vert\downarrow \downarrow \rangle_{(12)}
\right].$     (2.4)

Here,
$\displaystyle \vert\uparrow \downarrow \rangle_{(12)} \equiv \vert\uparrow \rangle_{(1)}\otimes\vert\downarrow \rangle_{(2)}$     (2.5)

is a product spinor, i.e. a spin wave function with particle (1) with spin up and particle (2) with spin down, and corresp[ondingly for the other product spinor.

We can now re-write the basis states Eq. (III.2.4) by forming linear combinations of the `mixed' spinors (exercise: check these !),

$\displaystyle \psi_S(\xi_1,\xi_2)$ $\displaystyle =$ $\displaystyle \psi^{\rm sym}_{\nu_1,\nu_2}({\bf r}_1,{\bf r}_2) \vert S\rangle$ (2.6)
$\displaystyle \psi_{T_{-1}}(\xi_1,\xi_2)$ $\displaystyle =$ $\displaystyle \psi^{\rm asym}_{\nu_1,\nu_2}({\bf r}_1,{\bf r}_2) \vert T_{-1}\rangle$ (2.7)
$\displaystyle \psi_{T_{0}}(\xi_1,\xi_2)$ $\displaystyle =$ $\displaystyle \psi^{\rm asym}_{\nu_1,\nu_2}({\bf r}_1,{\bf r}_2) \vert T_{0}\rangle$ (2.8)
$\displaystyle \psi_{T_{+1}}(\xi_1,\xi_2)$ $\displaystyle =$ $\displaystyle \psi^{\rm asym}_{\nu_1,\nu_2}({\bf r}_1,{\bf r}_2) \vert T_{+1}\rangle.$ (2.9)

Here, the symmetric and antisymmetric orbital wave functions are defined as
$\displaystyle \psi^{\rm sym}_{\nu_1,\nu_2}({\bf r}_1,{\bf r}_2)$ $\displaystyle =$ $\displaystyle \frac{1}{\sqrt{2}}\left[ \psi_{\nu_1}( {\bf r}_1)\psi_{\nu_2}( {\bf r}_2)
+ \psi_{\nu_1}( {\bf r}_2)\psi_{\nu_2}( {\bf r}_1)
\right]$ (2.10)
$\displaystyle \psi^{\rm asym}_{\nu_1,\nu_2}({\bf r}_1,{\bf r}_2)$ $\displaystyle =$ $\displaystyle \frac{1}{\sqrt{2}}\left[ \psi_{\nu_1}( {\bf r}_1)\psi_{\nu_2}( {\bf r}_2)
- \psi_{\nu_1}( {\bf r}_2)\psi_{\nu_2}( {\bf r}_1)
\right].$ (2.11)

Furthermore, the spin wave functions are defined as
\begin{displaymath}\begin{array}{ccc}
\vert S\rangle =& \frac{1}{\sqrt{2}}\left[...
...rrow \uparrow \rangle &\mbox{\rm Triplet State}\\
\end{array}.\end{displaymath}     (2.12)


next up previous contents index
Next: Properties of Spin-Singlets and Up: 2-Fermion Systems Previous: 2-Fermion Systems   Contents   Index
Tobias Brandes 2005-04-26