next up previous contents index
Next: Direct and Exchange Term: Up: The Exchange Interaction Previous: Spin-independent Hamiltonian   Contents   Index


Perturbation Theory

Assume we treat the interaction term \bgroup\color{col1}$ V\left(\vert{\bf r}_1 -{\bf r}_2\vert\right)$\egroup in the Hamiltonian Eq. (III.2.17) as a perturbation,
$\displaystyle \hat{H}$ $\displaystyle =$ $\displaystyle \hat{H}_0+ \hat{H}_1,\quad
\hat{H}_0 = -\frac{\hbar^2}{2m}\Delta_1+ V({\bf r}_1) -\frac{\hbar^2}{2m}\Delta_2
+ V({\bf r}_2)$  
$\displaystyle \quad \hat{H}_1$ $\displaystyle =$ $\displaystyle U\left(\vert{\bf r}_1 -{\bf r}_2\vert\right).$ (2.19)

We seek the first correction to an energy level \bgroup\color{col1}$ E^{(0)}_{\alpha\beta}$\egroup of \bgroup\color{col1}$ \hat{H}_0$\egroup,
$\displaystyle \hat{H}_0 \phi_{\alpha\beta}^{\pm}({\bf r}_1,{\bf r}_2)$ $\displaystyle =$ $\displaystyle E^{(0)}_{\alpha\beta}\phi_{\alpha\beta}^{\pm}({\bf r}_1,{\bf r}_2),\quad E^{(0)}_{\alpha\beta} = E^{(0)}_{\alpha} + E^{(0)}_{\beta}$  
$\displaystyle \phi_{\alpha\beta}^{\pm}({\bf r}_1,{\bf r}_2)$ $\displaystyle =$ $\displaystyle \frac{1}{\sqrt{2}}\left[\phi_{\alpha}({\bf r}_1)
\phi_{\beta}({\bf r}_2) \pm \phi_{\alpha}({\bf r}_2) \phi_{\beta}({\bf r}_1) \right],$ (2.20)

where \bgroup\color{col1}$ \phi_{\alpha}$\egroup and \bgroup\color{col1}$ \phi_{\beta}$\egroup are two eigenstates with eigenenergies \bgroup\color{col1}$ E^{(0)}_{\alpha}$\egroup and \bgroup\color{col1}$ E^{(0)}_{\beta}$\egroup of the (identical) single particle Hamiltonians \bgroup\color{col1}$ -\frac{\hbar^2}{2m}\Delta+ V({\bf r})$\egroup.

We assume the single particle levels to be non-degenerate. Still, the two-electron level \bgroup\color{col1}$ E^{(0)}_{\alpha\beta}$\egroup is degenerate because it corresponds to the two states \bgroup\color{col1}$ \vert\phi_{\alpha\beta}^{\pm}\rangle$\egroup ( \bgroup\color{col1}$ ^+$\egroup for the symmetric and \bgroup\color{col1}$ ^-$\egroup for the anti-symmetric state. The corresponding two-by-two matrix of \bgroup\color{col1}$ \hat{H}_1$\egroup we need diagonalise for the degenerate first order perturbation theory in the sub-space spanned by \bgroup\color{col1}$ \vert\phi_{\alpha\beta}^{\pm}\rangle$\egroup is however diagonal so that things become easy:

\begin{displaymath}\underline{\underline{H}}_1 = \left(
\begin{array}{cc}
\langl...
...\\
0 & A_{\alpha\beta}-J_{\alpha\beta} \\
\end{array}\right).\end{displaymath}     (2.21)

Inserting the definitions, we have ( \bgroup\color{col1}$ i,j,=\pm$\egroup)
$\displaystyle \langle \phi_{\alpha\beta}^{i} \vert \hat{H}_1 \vert \phi_{\alpha...
...rt{\bf r}_1 -{\bf r}_2\vert\right)
\phi_{\alpha\beta}^{j}({\bf r}_1,{\bf r}_2).$     (2.22)

Exercise: Show that \bgroup\color{col1}$ \langle \phi_{\alpha\beta}^{+} \vert \hat{H}_1 \vert \phi_{...
...{\alpha\beta}^{-} \vert \hat{H}_1 \vert \phi_{\alpha\beta}^{+} \rangle=0$\egroup.

The explicit calculation of the remaining diagonal elements \bgroup\color{col1}$ \langle \phi_{\alpha\beta}^{+} \vert \hat{H}_1 \vert \phi_{\alpha\beta}^{+} \rangle$\egroup and \bgroup\color{col1}$ \langle \phi_{\alpha\beta}^{-} \vert \hat{H}_1 \vert \phi_{\alpha\beta}^{-} \rangle$\egroup yields

$\displaystyle A_{\alpha\beta}$ $\displaystyle =$ $\displaystyle \int \int d{\bf r}_1 d{\bf r}_2
\vert\phi_\alpha({\bf r}_1)\vert^2 U\left(\vert{\bf r}_1 -{\bf r}_2\vert\right) \vert\phi_{\beta}({\bf r}_2)\vert^2$  
    (direct term) (2.23)
$\displaystyle J_{\alpha\beta}$ $\displaystyle =$ $\displaystyle \int \int d{\bf r}_1 d{\bf r}_2
\phi_{\alpha}^*({\bf r}_2) \phi_\...
...t{\bf r}_1 -{\bf r}_2\vert\right)
\phi_{\alpha}({\bf r}_1)\phi_\beta({\bf r}_2)$  
    (exchange term, exchange integral) (2.24)

Exercise: Verify these expressions.

The symmetrical orbital wave function ( \bgroup\color{col1}$ +$\egroup) belongs to the \bgroup\color{col1}$ S=0$\egroup (singlet) spinor, whereas the anti-symmetrical orbital wave function ( \bgroup\color{col1}$ -$\egroup) belongs to the \bgroup\color{col1}$ T=0$\egroup (triplet) spinors. Therefore, the unperturbed energy level \bgroup\color{col1}$ E^{(0)}_{\alpha\beta}$\egroup splits into two levels

$\displaystyle E^{(1)}_{\alpha\beta,S=0}$ $\displaystyle =$ $\displaystyle E^{(0)}_{\alpha\beta}+ A_{\alpha\beta} + J_{\alpha\beta}, \quad S=0$   singlet (2.25)
$\displaystyle E^{(1)}_{\alpha\beta,S=1}$ $\displaystyle =$ $\displaystyle E^{(0)}_{\alpha\beta}+ A_{\alpha\beta} - J_{\alpha\beta}, \quad S=1$   triplet$\displaystyle .$ (2.26)


next up previous contents index
Next: Direct and Exchange Term: Up: The Exchange Interaction Previous: Spin-independent Hamiltonian   Contents   Index
Tobias Brandes 2005-04-26