next up previous contents index
Next: Explicit Calculation of , Up: Bonding and Antibonding Previous: Bonding and Antibonding   Contents   Index

Rayleigh-Ritz Results

We require the matrices \bgroup\color{col1}$ \underline{\underline{H}}$\egroup and \bgroup\color{col1}$ \underline{\underline{S}}$\egroup,
$\displaystyle \underline{\underline{H}}$ $\displaystyle =$ $\displaystyle \left(\begin{array}{cc}
\alpha & \beta \\
\beta & \alpha \end{ar...
...rline{\underline{S}}=\left(\begin{array}{cc}
1 & S \\
S & 1 \end{array}\right)$ (3.12)
$\displaystyle \alpha$ $\displaystyle \equiv$ $\displaystyle \langle \psi_1 \vert H\vert \psi_1 \rangle = \langle \psi_2 \vert...
...si_1 \vert H\vert \psi_2 \rangle,
\quad S = \langle \psi_1 \vert\psi_2 \rangle.$  

We have to solve
$\displaystyle {\rm det}\left\vert \underline{\underline{H}} -E \underline{\underline{S}}\right\vert$ $\displaystyle =$ \begin{displaymath}0
\leadsto {\rm det}\left\vert
\begin{array}{cc}
\alpha-E & \beta-ES \\
\beta-ES & \alpha-E \end{array}\right\vert=0\end{displaymath}  
  $\displaystyle \leadsto$ $\displaystyle (\alpha-E)^2 - (\beta-ES)^2= 0 \leadsto
\alpha-E = \pm (\beta-ES)$  
$\displaystyle E_+$ $\displaystyle =$ $\displaystyle \frac{\alpha+\beta}{1+S},\quad E_- = \frac{\alpha-\beta}{1-S}.$ (3.13)

This give the eigenvalues of the energy, \bgroup\color{col1}$ E_{\pm}$\egroup. We find the eigenvectors \bgroup\color{col1}$ (x_1,x_2)$\egroup from
    $\displaystyle (\alpha-E_{\pm} ) x_1 + (\beta-E_{\pm} S) x_2 =0$ (3.14)
$\displaystyle E_+$ $\displaystyle :$ $\displaystyle ((1+S)\alpha -(\alpha+\beta)) x_1 +
((1+S)\beta - (\alpha+\beta)S) x_2 =0$  
    $\displaystyle (S\alpha-\beta) x_1 + (\beta -S\alpha)x_2=0\leadsto x_1=x_2\equiv x_+ .$  
$\displaystyle E_-$ $\displaystyle :$ $\displaystyle ((1-S)\alpha -(\alpha-\beta)) x_1 +
((1-S)\beta - (\alpha-\beta)S) x_2 =0$  
    $\displaystyle (-S\alpha+\beta) x_1 + (\beta -S\alpha)x_2=0\leadsto x_1=-x_2\equiv x_-.$ (3.15)

The normalisation constant is determined from
$\displaystyle 1$ $\displaystyle =$ $\displaystyle \langle \Psi \vert \Psi \rangle = x_1^2 + x_2^2 + 2 x_1x_2 \langle \psi_1 \vert\psi_2 \rangle
= x_1^2 + x_2^2 + 2 x_1x_2S$  
$\displaystyle \leadsto 1$ $\displaystyle =$ $\displaystyle x_+^2 + x_+^2 + 2 x_+^2 S \leadsto \underline{x_+=\frac{1}{\sqrt{2(1+S)}}}$ (3.16)
$\displaystyle \leadsto 1$ $\displaystyle =$ $\displaystyle x_-^2 + x_-^2 - 2 x_-^2 S \leadsto \underline{x_-=\frac{1}{\sqrt{2(1-S)}}}.$ (3.17)

Summarising, we therefore have obtained the two molecular orbitals (MOs) with energies \bgroup\color{col1}$ E_{\pm}$\egroup,
$\displaystyle E_+$ $\displaystyle :$ $\displaystyle \Psi_+ = \frac{1}{\sqrt{2(1+S)}} \left( \psi_1 + \psi_2\right)$   bonding (3.18)
$\displaystyle E_-$ $\displaystyle :$ $\displaystyle \Psi_- = \frac{1}{\sqrt{2(1-S)}} \left( \psi_1 - \psi_2\right)$   antibonding$\displaystyle .$ (3.19)

Note that the normalisation factor is different for the two MOs, this is due to the fact that the original AOs (atomic orbitals) are not orthogonal.


next up previous contents index
Next: Explicit Calculation of , Up: Bonding and Antibonding Previous: Bonding and Antibonding   Contents   Index
Tobias Brandes 2005-04-26