next up previous contents index
Next: Born Approximation Up: Perturbation Theory in the Previous: Equation of Motion for   Contents   Index

Assumption (factorising initial condition):


$\displaystyle {\chi}(t=0)$ $\displaystyle =$ $\displaystyle R_0 \otimes \rho(t=0)$ (18)
$\displaystyle R_0$ $\displaystyle \equiv$ $\displaystyle {\rm Tr}_S [\chi(t=0)],\quad \rho(t=0)\equiv {\rm Tr}_B [{\chi}(t=0)].$  

This factorisation assumption is key to most of the results that follow. Its validity has been discussed and criticised in the past (see Weiss book for further references). Some of the issues are: A theoretical formulation of time-evolution for arbitrary initial condition is sometimes possible: `preparation function' (exact solution of dissipative quantum oscillator; Grabert, Ingold et al); generalisation of many-body Keldysh GF (three-by-three matrix instead of two-by-two matrix, M. Wagner).


next up previous contents index
Next: Born Approximation Up: Perturbation Theory in the Previous: Equation of Motion for   Contents   Index
Tobias Brandes 2004-02-18