next up previous contents index
Next: Dipole Approximation Up: Atom + Electrical Field Previous: Atom + Electrical Field   Contents   Index

Model Atom

Assume a single electron within an atom, described as a two-level system with states $ \vert g\rangle$ (ground state), $ \vert e\rangle$ (excited state), and energy difference $ \hbar\omega_0$ between ground and excited state. Then,
\begin{displaymath}H_{\rm atom} = \frac{\hbar\omega_0}{2}\sigma_z,\quad
\sigma_z...
... \vert e\rangle \langle e\vert - \vert g\rangle \langle g\vert.\end{displaymath}     (112)

Remember
$\displaystyle \sigma_x$ $\displaystyle \equiv$ $\displaystyle \left( \begin{array}[h]{cc}
0 & 1\\
1 & 0
\end{array}\right),\qu...
...d
\sigma_z\equiv \left( \begin{array}[h]{cc}
1 & 0\\
0 & -1
\end{array}\right)$  
$\displaystyle \sigma_-$ $\displaystyle \equiv$ \begin{displaymath}\left(
\begin{array}[h]{cc}
0& 0\\
1 & 0
\end{array}\right),...
...iv \left(
\begin{array}[h]{cc}
0& 1\\
0 & 0
\end{array}\right)\end{displaymath}  
$\displaystyle \sigma_{\pm}$ $\displaystyle =$ $\displaystyle \frac{1}{2}(\sigma_x\pm i\sigma_y),\quad \sigma_x=\sigma_++\sigma_-,\quad
\sigma_y=-i(\sigma_+-\sigma_-)$  
$\displaystyle \left[\sigma_+,\sigma_-\right]$ $\displaystyle =$ $\displaystyle \sigma_z,\quad [\sigma_z,\sigma_{\pm}]=\pm 2\sigma_{\pm}.$ (113)



Tobias Brandes 2004-02-18