next up previous contents index
Next: Rotating Wave Approximation (RWA) Up: Atom + Electrical Field Previous: Model Atom   Contents   Index

Dipole Approximation

Consider an electrical field in the form of a linearly polarised, monochromatic plain wave with wave vector $ {\bf k}$,
$\displaystyle {\bf E}({\bf r},t) = {\bf E} \cos({\bf kr}-\omega t).$     (114)

Describe the interaction of the atom with the electrical field in dipole approximation: the energy of a dipole $ {\bf d}$ in a field $ {\bf E}({\bf r},t)$ is given by $ -{\bf d E}({\bf r},t)$. Treating the field classically, we obtain the time-dependent dipole Hamiltonian
$\displaystyle H_L(t)$ $\displaystyle =$ $\displaystyle -\langle g\vert {\bf d E}({\bf r},t)\vert e\rangle \vert g\rangle...
...langle e\vert {\bf d E}({\bf r},t)\vert g\rangle \vert e\rangle \langle g \vert$  
  $\displaystyle \approx$ $\displaystyle - \left(\hbar \Omega \sigma_- + \hbar \Omega^* \sigma_+ \right)\cos(\omega t),$ (115)

where we used $ {\bf kr}\ll 1$ in the overlap integral (wave length $ \gg$ dimension of atom, `dipole approximation'), and introduced
$\displaystyle \sigma_- \equiv \vert g\rangle \langle e\vert,\quad
\sigma_+ \equiv \vert e\rangle \langle g\vert.$     (116)

and the Rabi frequency
$\displaystyle \Omega\equiv \frac{1}{\hbar}\langle g\vert {\bf d E}\vert e\rangle,$     (117)

which in general is a complex number. The total system Hamiltonian therefore is
$\displaystyle H_S(t) = H_{\rm atom}+H_L(t)= \frac{\hbar\omega_0}{2}\sigma_z
- \left(\hbar \Omega \sigma_- + \hbar \Omega^* \sigma_+ \right)\cos(\omega t).$     (118)

One usually assumes real $ \Omega=\Omega^*$, in this case we can formally write $ H_S(t)={\bf B}(t){\vec{\sigma}}$ with
\begin{displaymath}{\bf B}(t)=\left(
\begin{array}[h]{c}
-\hbar\Omega\cos(\omega t)\\ 0\\ \frac{1}{2}\hbar\omega_0 \end{array} \right).\end{displaymath}     (119)


next up previous contents index
Next: Rotating Wave Approximation (RWA) Up: Atom + Electrical Field Previous: Model Atom   Contents   Index
Tobias Brandes 2004-02-18