next up previous contents index
Next: Spontaneous Emission (Atom without Up: Atom + Electrical Field Previous: Dipole Approximation   Contents   Index

Rotating Wave Approximation (RWA)

We introduce the System Hamiltonian $ H_S^{\rm RWA}(t)$ in rotating wave approximation (RWA) by writing $ \cos(\omega t)=\frac{1}{2}(e^{i\omega t}+e^{-i\omega t})$ and neglecting the counter-rotating terms $ \sigma_- e^{-i\omega t}$ and $ \sigma_+ e^{i\omega t}$
$\displaystyle H_S^{\rm RWA}(t)$ $\displaystyle \equiv$ $\displaystyle \frac{\hbar\omega_0}{2}\sigma_z
- \left(\frac{\hbar\Omega}{2} \sigma_- e^{i\omega t} +
\frac{\hbar\Omega}{2} \sigma_+ e^{-i\omega t}\right).$ (120)

In this case, $ H_S^{\rm RWA}(t)={\bf B}^{\rm RWA}(t){\vec{\sigma}}$ with
\begin{displaymath}{\bf B}^{\rm RWA}(t)=\left(
\begin{array}[h]{c}
-\frac{1}{2}\...
...ga\sin(\omega t)\\
\frac{1}{2}\hbar\omega_0
\end{array}\right)\end{displaymath}     (121)



Tobias Brandes 2004-02-18