next up previous contents index
Next: First Order Perturbation Theory Up: Time-Dependent Perturbation Theory Previous: Model Hamiltonian   Contents   Index

The Interaction Picture

This is introduced in order to facilitate the solution of the Schrödinger equation
$\displaystyle \frac{d}{dt}\vert\Psi(t)\rangle$ $\displaystyle =$ $\displaystyle -i H(t)\vert\Psi(t)\rangle %%\nonumber\\
$ (3.2)

We define
$\displaystyle \vert\Psi(t)\rangle_I\equiv e^{iH_0 t} \vert\Psi(t)\rangle$     (3.3)

and derive the new Schrödinger equation for \bgroup\color{col1}$ \vert\Psi(t)\rangle_I$\egroup,
$\displaystyle \frac{d}{dt}\vert\Psi_I(t)\rangle$ $\displaystyle =$ $\displaystyle iH_0 \vert\Psi_I(t)\rangle + e^{iH_0 t} \frac{d}{dt}\vert\Psi(t)\rangle$  
  $\displaystyle =$ $\displaystyle iH_0 \vert\Psi_I(t)\rangle -i e^{iH_0 t}\left[ H_0 + V(t)\right] e^{-iH_0 t} \vert\Psi_I(t)\rangle$  
  $\displaystyle =$ $\displaystyle -i e^{iH_0 t} V(t) e^{-iH_0 t} \vert\Psi_I(t)\rangle \equiv -i V_I(t) \vert\Psi_I(t)\rangle.$ (3.4)

The Schrödinger equation therefore is transformed into the interaction picture
$\displaystyle \frac{d}{dt}\vert\Psi(t)\rangle$ $\displaystyle =$ $\displaystyle -i H(t)\vert\Psi(t)\rangle
\leftrightarrow \frac{d}{dt}\vert\Psi_I(t)\rangle=-i V_I(t) \vert\Psi_I(t)\rangle$  
$\displaystyle \vert\Psi(t)\rangle_I$ $\displaystyle \equiv$ $\displaystyle e^{iH_0 t} \vert\Psi(t)\rangle,\quad V_I(t)\equiv e^{iH_0 t} V(t) e^{-iH_0 t}.$ (3.5)


next up previous contents index
Next: First Order Perturbation Theory Up: Time-Dependent Perturbation Theory Previous: Model Hamiltonian   Contents   Index
Tobias Brandes 2005-04-26