next up previous contents index
Next: Coulomb Gauge Up: Potentials Previous: Potentials   Contents   Index

Gauge Transformations

The potentials are not uniquely determined by the fields which are left invariant under a gauge transformation
$\displaystyle \mathbf{A}'=\mathbf{A}+ \nabla f,\quad \phi' = \phi -\partial_t f.$     (1.14)

Again in Fourier space,
$\displaystyle \hat{\mathbf{A}}'({\bf k})= \hat{\mathbf{A}}({\bf k}) + i {\bf k}...
...k})\leadsto
\hat{\mathbf{A}}'_\perp({\bf k}) = \hat{\mathbf{A}}_\perp({\bf k}).$     (1.15)

The important transverse component of the vector potential, from which the transverse components \bgroup\color{col1}$ \hat{\mathbf{E}}_\perp({\bf k})$\egroup and \bgroup\color{col1}$ \hat{\mathbf{B}}({\bf k})$\egroup are derived via Eq. (VII.1.12), is therefore left invariant under a gauge transformation.



Tobias Brandes 2005-04-26