next up previous contents index
Next: Gauge Transformations Up: Electromagnetic Fields and Maxwells Previous: Longitudinal and are `trivial'   Contents   Index

Potentials

The Maxwell equations are a system of first order PDEs that can be transformed into second order equations by introduction of potentials. One has
$\displaystyle \mathbf{E}= -\nabla \phi - \partial_t \mathbf{A},\quad \mathbf{B}= \mathbf{\nabla \times} \mathbf{A}$     (1.11)

with the scalar potential \bgroup\color{col1}$ \phi$\egroup and the vector potential \bgroup\color{col1}$ \mathbf{A}$\egroup. In Fourier space,
$\displaystyle \hat{\mathbf{E}}({\bf k})$ $\displaystyle =$ $\displaystyle -i {\bf k}\phi({\bf k}) - \partial_t\hat{\mathbf{A}}({\bf k})\leadsto
\hat{\mathbf{E}}_\perp({\bf k})= - \partial_t\hat{\mathbf{A}}_\perp({\bf k})$ (1.12)
$\displaystyle \hat{\mathbf{B}}({\bf k})$ $\displaystyle =$ $\displaystyle i {\bf k}\times \hat{\mathbf{A}}({\bf k})= i{\bf k}\times \hat{\mathbf{A}}_\perp({\bf k}).$ (1.13)

The`non-trivial' transverse components of the field are therefore determined only by the transverse component \bgroup\color{col1}$ \hat{\mathbf{A}}_\perp$\egroup of the vector potential.



Subsections
next up previous contents index
Next: Gauge Transformations Up: Electromagnetic Fields and Maxwells Previous: Longitudinal and are `trivial'   Contents   Index
Tobias Brandes 2005-04-26