next up previous contents index
Next: Longitudinal and transversal parts Up: Interaction with Light Previous: Interaction with Light   Contents   Index

Electromagnetic Fields and Maxwells Equations

Literature here: R. Loudon `The Quantum Theory of Light' [6] and C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg `Atom-Photon Interactions' [7].

Electromagnetism brings in the notion of fields as described by Maxwell's equations

$\displaystyle \div\mathbf{B}$ $\displaystyle =$ 0 (1.1)
$\displaystyle \mathbf{\nabla \times} \mathbf{E}+ \frac{\partial \mathbf{B}}{\partial t}$ $\displaystyle =$ 0 (1.2)
$\displaystyle \varepsilon_0 \div\mathbf{E}$ $\displaystyle =$ $\displaystyle \rho$ (1.3)
$\displaystyle \mathbf{\nabla \times} \mathbf{B}- \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$ $\displaystyle =$ $\displaystyle \mu_0 \j$ (1.4)

in a shorthand notation where \bgroup\color{col1}$ \mathbf{B}=\mathbf{B}({\bf r},t)$\egroup etc. The transversal parts of \bgroup\color{col1}$ \mathbf{E}$\egroup and \bgroup\color{col1}$ \mathbf{B}$\egroup are dynamical variables:



Subsections

Tobias Brandes 2005-04-26