next up previous contents index
Next: Gauge invariance for many Up: Local Gauge Transformation Previous: Local Gauge Transformation   Contents   Index

Example: spatially constant electric field, zero magnetic field

We choose a gauge (set \bgroup\color{col1}$ c=1$\egroup)
$\displaystyle \phi=0, \mathbf{A}= - \int_{-\infty}^t dt' \mathbf{E}(t').$     (2.9)

We transform to a new gauge
$\displaystyle \mathbf{A}'$ $\displaystyle =$ $\displaystyle \mathbf{A}+ \nabla f=0, \quad \phi' = \phi -\partial_t f= -\partial_t f$  
  $\displaystyle \leadsto$ $\displaystyle \nabla f = - \mathbf{A},\quad f({\bf r},t) = {\bf r} \int_{-\infty}^t dt' \mathbf{E}(t')
\leadsto \phi'({\bf r},t) = -{\bf r}\mathbf{E}(t)$  
  $\displaystyle \leadsto$ $\displaystyle i\partial_t \psi'= H'(t)\psi'$   with$\displaystyle \quad H'(t) = \frac{p^2}{2m} -q{\bf r}\mathbf{E}(t).$ (2.10)



Tobias Brandes 2005-04-26