next up previous contents index
Next: Pure Vibrational Dipole Transitions Up: Pure Vibration Previous: Pure Vibration   Contents   Index

Recap of the Harmonic Oscillator

The Hamiltonian of the harmonic oscillator
$\displaystyle \hat{H}_{\rm osc}=\frac{\hat{p}^2}{2m}+\frac{1}{2}m\omega^2\hat{x}^2$     (2.6)

can be re-written using the ladder operators
$\displaystyle a$ $\displaystyle \equiv$ $\displaystyle \sqrt{\frac{m\omega}{2\hbar}}\hat{x}+\frac{i}{\sqrt{2m\hbar\omega...
...quiv \sqrt{\frac{m\omega}{2\hbar}}\hat{x}-\frac{i}{\sqrt{2m\hbar\omega}}\hat{p}$ (2.7)
$\displaystyle \hat{x}$ $\displaystyle =$ $\displaystyle \sqrt{\frac{\hbar}{2m\omega}}\left(a+a^{\dagger}\right),\quad
\hat{p} =-i\sqrt{\frac{m\hbar\omega}{2}}\left(a-a^{\dagger}\right),$ (2.8)

as
$\displaystyle \hat{H}_{\rm osc}=\hbar\omega\left(a^{\dagger}a+\frac{1}{2}\right).$     (2.9)

The commutation relation is
$\displaystyle [\hat{x},\hat{p}]=i\hbar,\quad [a,a^{\dagger}]=1.$     (2.10)

The eigenfunctions of the harmonic oscillator are \bgroup\color{col1}$ n$\egroup-phonon states,
$\displaystyle \hat{H}_{\rm osc}\vert n\rangle$ $\displaystyle =$ $\displaystyle \varepsilon_n \vert n\rangle, \quad \varepsilon_n =
\hbar\omega\left(n+\frac{1}{2}\right),\quad n=0,1,2,...$  
$\displaystyle \vert n\rangle \leftrightarrow \psi_n(x)$ $\displaystyle =$ $\displaystyle \left(\frac{m\omega}{\pi\hbar}\right)^{1/4}
\frac{1}{\sqrt{n! 2^n}}H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right)e^{-\frac{m\omega}{2\hbar}x^2},$ (2.11)

where \bgroup\color{col1}$ H_n$\egroup are the Hermite polynomials.

The ladder operators are also called creation ( \bgroup\color{col1}$ a^{\dagger}$\egroup) and annihiliation \bgroup\color{col1}$ (a)$\egroup operators. They act on the states \bgroup\color{col1}$ \vert n\rangle$\egroup as

$\displaystyle a^{\dagger} \vert n\rangle = \sqrt{n+1} \vert n+1\rangle,\quad
a\vert n\rangle = \sqrt{n} \vert n-1\rangle,\quad a\vert n\rangle =0.$     (2.12)

The state \bgroup\color{col1}$ \vert\rangle$\egroup is called ground state.


next up previous contents index
Next: Pure Vibrational Dipole Transitions Up: Pure Vibration Previous: Pure Vibration   Contents   Index
Tobias Brandes 2005-04-26