next up previous contents index
Next: . Up: Time-Dependence Previous: Time-Dependence   Contents   Index

.

Consider the Hamiltonian for a particle in a double well potential with both energies left and right \bgroup\color{col1}$ \varepsilon_R=\varepsilon_L=0$\egroup and tunnel coupling \bgroup\color{col1}$ T_c$\egroup,
$\displaystyle H = \left(\begin{array}{cc}
0 & T_c \\
T_c & 0 \\
\end{array}\right).$     (6.1)

Consider an initial state at time \bgroup\color{col1}$ t=0$\egroup,
$\displaystyle \vert\Psi(t=0)\rangle = \vert L\rangle = \left(\begin{matrix}1 0 \end{matrix}\right).$     (6.2)

a) Calculate the state vector \bgroup\color{col1}$ \vert\Psi(t)\rangle= \left(\begin{matrix}\alpha_L(t)  \alpha_R(t) \end{matrix}\right)$\egroup for times \bgroup\color{col1}$ t>0$\egroup.

b) Use the result from a) to calculate the probability to find the particle in the left well after time \bgroup\color{col1}$ t$\egroup.



Tobias Brandes 2005-04-26