next up previous contents index
Next: Bibliography Up: Time-Dependence Previous: .   Contents   Index

.

We discuss the interaction picture with respect to a Hamiltonian \bgroup\color{col1}$ H=H_0+V$\egroup in this problem.

a) Prove that for any given operator \bgroup\color{col1}$ M$\egroup, the interaction picture operator \bgroup\color{col1}$ M_I(t)\equiv e^{iH_0 t} M e^{-iH_0 t}$\egroup fulfills

$\displaystyle \frac{d}{dt}M_I(t) = i[H_0,M_I(t)],$     (6.3)

where \bgroup\color{col1}$ [A,B]\equiv AB-BA$\egroup is the commutator of two operators.

b) Prove the rule \bgroup\color{col1}$ [AB,C] = A[B,C]+ [A,C]B$\egroup for any three operators \bgroup\color{col1}$ A$\egroup, \bgroup\color{col1}$ B$\egroup, \bgroup\color{col1}$ C$\egroup.

c) Now consider the harmonic oscillator \bgroup\color{col1}$ H_0 = \omega a^{\dagger} a$\egroup. Use b) and the fundamental relation \bgroup\color{col1}$ [a,a^{\dagger}]=1$\egroup to find the interaction picture operator \bgroup\color{col1}$ a_I(t)$\egroup and \bgroup\color{col1}$ a_I^{\dagger}(t)$\egroup.

d) Now consider the time-dependent Hamiltonian of a harmonic oscillator in a damped, oscillating radiation field,

$\displaystyle H(t) = H_0 + V(t),\quad H_0 = \omega a^{\dagger} a, \quad V(t)= V_0e^{-t/\tau} \left[e^{-i\omega_0t}
a^{\dagger} + e^{i\omega_0t} a\right].$     (6.4)

i) Use c) to calculate the transition probability from the ground state \bgroup\color{col1}$ \vert\rangle$\egroup at \bgroup\color{col1}$ t=0$\egroup to the first excited state \bgroup\color{col1}$ \vert 1\rangle$\egroup after time \bgroup\color{col1}$ t\to \infty$\egroup,

$\displaystyle P_{0\to 1}(t\to \infty)$ $\displaystyle =$ $\displaystyle \left\vert\int_{0}^{\infty} dt' \langle 1\vert V_I(t')\vert\rangle\right\vert^2.$ (6.5)

Hint: Use \bgroup\color{col1}$ a\vert \rangle =0 $\egroup and \bgroup\color{col1}$ a^{\dagger}\vert \rangle =\vert 1\rangle $\egroup.

ii) Sketch \bgroup\color{col1}$ P_{0\to 1}(t\to \infty)$\egroup as a function of the radiation frequency \bgroup\color{col1}$ \omega_0$\egroup.


next up previous contents index
Next: Bibliography Up: Time-Dependence Previous: .   Contents   Index
Tobias Brandes 2005-04-26