next up previous contents index
Next: Putting everything together Up: Perturbation Theory for Fine Previous: Degenerate Perturbation Theory   Contents   Index

Degenerate Perturbation Theory for Spin-Orbit Coupling

Including spin, the level \bgroup\color{col1}$ E_n$\egroup of hydrogen belongs to the states
$\displaystyle \vert n l s m_l m_s\rangle,\quad s=1/2,\quad m_s=\pm 1/2,$     (3.20)

which are eigenstates of \bgroup\color{col1}$ \hat{L}^2$\egroup, \bgroup\color{col1}$ \hat{S}^2$\egroup, \bgroup\color{col1}$ \hat{L}_z$\egroup, and \bgroup\color{col1}$ \hat{S}_z$\egroup (`uncoupled representation'). With \bgroup\color{col1}$ \hat{\bf L} $\egroup and \bgroup\color{col1}$ \hat{\bf S}$\egroup adding up to the total angular momentum \bgroup\color{col1}$ \hat{\bf J} = \hat{\bf L} + \hat{\bf S}$\egroup, an alternative basis is the `coupled representation'
$\displaystyle \vert n l s j m \rangle,\quad j=l+s, l+s-1, ..., \vert l-s\vert,\quad m=m_l+m_s.$     (3.21)

of eigenfunctions of \bgroup\color{col1}$ \hat{J}^2$\egroup, \bgroup\color{col1}$ \hat{L}^2$\egroup, \bgroup\color{col1}$ \hat{S}^2$\egroup, and \bgroup\color{col1}$ \hat{J}_z$\egroup. Here, \bgroup\color{col1}$ s=1/2$\egroup is the total electron spin which of course is fixed and gives the two possibilities \bgroup\color{col1}$ j=l+1/2$\egroup and \bgroup\color{col1}$ j=l-1/2$\egroup for \bgroup\color{col1}$ l\ge 1$\egroup and \bgroup\color{col1}$ j=1/2$\egroup for \bgroup\color{col1}$ l=0$\egroup ( \bgroup\color{col1}$ l$\egroup runs from 0 to \bgroup\color{col1}$ n-1$\egroup).

The perturbation \bgroup\color{col1}$ \hat{H}_{\rm SO}$\egroup, Eq. (II.3.12), can be diagonalised in the \bgroup\color{col1}$ \vert n l s j m \rangle$\egroup basis, using

$\displaystyle \hat{\bf S}\hat{\bf L}$ $\displaystyle =$ $\displaystyle \frac{1}{2}\left( \hat{\bf J}^2-\hat{\bf L}^2 - \hat{\bf S}^2 \right)$ (3.22)
$\displaystyle \leadsto \langle n l' s j' m'\vert \hat{\bf S}\hat{\bf L} \vert n l s j m \rangle$ $\displaystyle =$ $\displaystyle \frac{1}{2}\hbar^2 \left( j(j+1) - l(l+1) -s(s+1) \right)\delta_{jj'}\delta_{ll'}\delta_{mm'}.$  

For fixed \bgroup\color{col1}$ n$\egroup, \bgroup\color{col1}$ l$\egroup, and \bgroup\color{col1}$ m$\egroup, ( \bgroup\color{col1}$ s=1/2$\egroup is fixed anyway and therefore a dummy index), the basis of degenerate states from the previous subsection therefore for \bgroup\color{col1}$ l\ge 1$\egroup has two states, \bgroup\color{col1}$ \vert n l s j=l\pm 1/2 m \rangle$\egroup, and the two-by-two matrix \bgroup\color{col1}$ \underline{\underline{H}}$\egroup is diagonal,
$\displaystyle \underline{\underline{H}} \leftrightarrow \langle n l s j' m\vert...
...{2}\hbar^2\left( \begin{array}{cc}
l & 0 \\
0 & -(l+1)
\\
\end{array}\right),$     (3.23)

where \bgroup\color{col1}$ \left\langle \frac{1}{r^3} \right\rangle_{nl}$\egroup indicates that this matrix elements has to be calculated with the radial parts of the wave functions \bgroup\color{col1}$ \langle {\bf r} \vert n l s j=l\pm 1/2 m \rangle$\egroup, with the result
$\displaystyle \left\langle \frac{1}{r^3} \right\rangle_{nl} = \frac{Z^3}{a_0^3}\frac{2}{n^3l(l+1)(2l+1)},\quad l\ne 0.$     (3.24)

The resulting energy shifts \bgroup\color{col1}$ E'_{\rm SO}$\egroup corresponding to the two states with \bgroup\color{col1}$ j=l\pm 1/2$\egroup are
\begin{displaymath}E'_{\rm SO}=\frac{Z^4e^2\hbar^2}{2m^2c^2a_0^3 4\pi\varepsilon...
...+\frac{1}{2}\\
-(l+1), & j=l-\frac{1}{2}\\
\end{array}\right.\end{displaymath}     (3.25)


next up previous contents index
Next: Putting everything together Up: Perturbation Theory for Fine Previous: Degenerate Perturbation Theory   Contents   Index
Tobias Brandes 2005-04-26