next up previous contents index
Next: Hartree-Fock Equations Up: The Variational Principle for Previous: Functional Derivative   Contents   Index

`Direct' and `Exchange' Operators

We defining these one-particle operators by their matrix elements (excessive use of Dirac notation, hurrah!)
$\displaystyle \langle \mu \vert\hat{J_i} \vert\nu\rangle$ $\displaystyle \equiv$ $\displaystyle \langle \mu \nu_i \vert U \vert\nu_i \nu\rangle
\leadsto\langle \...
...\nu_{j}\rangle = \langle \delta \nu_{j}\nu_{i}\vert U\vert\nu_{i}\nu_{j}\rangle$ (3.22)
$\displaystyle \langle \mu \vert\hat{K_i} \vert\nu\rangle$ $\displaystyle \equiv$ $\displaystyle \langle \mu \nu_i \vert U \vert\nu \nu_i\rangle
\leadsto \langle ...
...nu_{j}\rangle =
\langle \delta \nu_{j}\nu_{i}\vert U\vert\nu_{j}\nu_{i}\rangle.$ (3.23)

Note that both these operators depend on the still to be determined single particle states \bgroup\color{col1}$ \vert\nu_i\rangle$\egroup!.

We can now write the functional derivate in a very elegant manner,

    $\displaystyle \frac{\delta}{\delta \Psi}
\frac{1}{2}\sum_{ij}\left[\langle\nu_{...
...{j=1}^{N}\langle \delta \nu_{j}\vert \hat{J}-\hat{K}\vert \nu_{j}\rangle+(H.c.)$  
$\displaystyle \hat{J}$ $\displaystyle \equiv$ $\displaystyle \sum_i\hat{J}_i,\quad \hat{K}\equiv \sum_i\hat{K}_i,$ (3.24)

and the total functional derivative becomes
$\displaystyle \frac{\delta F[\Psi]}{\delta \Psi}$ $\displaystyle =$ $\displaystyle \sum_{j=1}^{N}\langle \delta \nu_{j}\vert \hat{H_0}+\lambda_j + \hat{J}-\hat{K}\vert \nu_{j}\rangle + (H.c.).$ (3.25)

As we set the functional derivative to zero
$\displaystyle \frac{\delta F[\Psi]}{\delta \Psi}$ $\displaystyle =$ $\displaystyle 0\leadsto \left(\hat{H_0}+\lambda_j + \hat{J}-\hat{K}\right)\vert \nu_{j}\rangle=0,$ (3.26)

as all the deviations \bgroup\color{col1}$ \delta \nu_{j}$\egroup are independent.


next up previous contents index
Next: Hartree-Fock Equations Up: The Variational Principle for Previous: Functional Derivative   Contents   Index
Tobias Brandes 2005-04-26