next up previous contents index
Next: `Direct' and `Exchange' Operators Up: The Variational Principle for Previous: The Variational Principle for   Contents   Index

Functional Derivative

We use the Hamiltonian Eq. (IV.2.1),
$\displaystyle \hat{H}$ $\displaystyle =$ $\displaystyle \hat{\mathcal H}_0+\hat{U}\equiv
\sum_{i=1}^N \hat{H}_0^{(i)}+ \frac{1}{2}\sum_{i\ne j}^N U_{ij}$  
$\displaystyle \hat{H}_0^{(i)}$ $\displaystyle =$ $\displaystyle -\frac{\hbar^2}{2m}\Delta_i+ V({\bf r}_i),\quad U_{ij}=
U(\xi_i,\xi_j).$ (3.13)

The energy functional now depends on the \bgroup\color{col1}$ N$\egroup wave functions \bgroup\color{col1}$ \psi_{\nu_i}({\bf r},\sigma)$\egroup, \bgroup\color{col1}$ i=1,...,N$\egroup,
$\displaystyle F[\Psi]= F[\psi_{\nu_1},...,\psi_{\nu_N}]=F[\{\psi_{\nu_i}\}].$     (3.14)

The definition of the functional derivative is not more complicated than in the one-component case,
$\displaystyle \frac{\delta F[\Psi]}{\delta \Psi}\equiv
\lim_{\varepsilon\to 0} ...
..._{\nu_i}+\varepsilon \cdot \delta \psi_i\}] -F[\{\psi_{\nu_i}\}]}{\varepsilon},$     (3.15)

where we now have \bgroup\color{col1}$ i=1,...,N$\egroup independent `deviations' \bgroup\color{col1}$ \delta \psi_i$\egroup from the functions \bgroup\color{col1}$ \psi_i$\egroup. We furthermore want to ensure that all single particle states \bgroup\color{col1}$ \vert\nu_i\rangle$\egroup are normalised. Therefore, we introduce our functional \bgroup\color{col1}$ F[\Psi]$\egroup with \bgroup\color{col1}$ N$\egroup Lagrange multipliers \bgroup\color{col1}$ \lambda_i$\egroup,
$\displaystyle F[\Psi] \equiv \langle \nu_N,...,\nu_1 \vert\hat{H}\vert\nu_1,...,\nu_N\rangle_A
+ \sum_{i=1}^N \lambda_i[ \langle \nu_i\vert\nu_i\rangle -1 ].$     (3.16)

We have calculated the energy expectation values already in Eq. (IV.2.5) and Eq. (IV.2.9),
$\displaystyle F[\{\psi_{\nu_i}\}]$ $\displaystyle =$ $\displaystyle \sum_{i=1}^{N}\langle\nu_{i}\vert\hat{H}_0\vert\nu_{i}\rangle + \...
...j}\rangle
-\langle\nu_{i}\nu_{j}\vert U_{ij} \vert\nu_{i}\nu_{j}\rangle \right]$  
  $\displaystyle +$ $\displaystyle \sum_{i=1}^N \lambda_i [ \langle \nu_i\vert\nu_i\rangle -1 ].$ (3.17)

The individual terms are simply calculated:
    $\displaystyle \frac{\delta}{\delta \Psi} \sum_{i=1}^{N}\langle\nu_{i}\vert\hat{H}_0\vert\nu_{i}\rangle=$  
  $\displaystyle =$ $\displaystyle \lim_{\varepsilon\to 0} \frac{1}{\varepsilon}
\left[ \sum_{i=1}^{...
..._i\rangle-
\sum_{i=1}^{N}\langle\nu_{i}\vert\hat{H}_0\vert\nu_{i}\rangle\right]$  
  $\displaystyle =$ $\displaystyle \sum_{i=1}^{N} \left[\langle \delta\nu_i\vert\hat{H}_0\vert\nu_{i}\rangle + \langle \nu_i\vert\hat{H}_0\vert\delta\nu_{i}\rangle\right].$ (3.18)

The term from the interaction \bgroup\color{col1}$ U$\egroup yields
    $\displaystyle \frac{\delta}{\delta \Psi}
\frac{1}{2}\sum_{ij}\left[\langle\nu_{...
...\nu_{j}\rangle
-\langle\nu_{i}\nu_{j}\vert U \vert\nu_{i}\nu_{j}\rangle \right]$ (3.19)
  $\displaystyle =$ $\displaystyle \frac{1}{2} \sum_{ij}\Big[\langle \delta \nu_{j}\nu_{i}\vert U\ve...
...{j}\rangle
+ \langle\nu_{j}\nu_{i}\vert U\vert\nu_{i}\delta \nu_{j}\rangle\Big]$  
  $\displaystyle -$ $\displaystyle \frac{1}{2} \sum_{ij}\Big[\langle \delta \nu_{i}\nu_{j}\vert U\ve...
...j}\rangle
+ \langle\nu_{i}\nu_{j}\vert U\vert\nu_{i}\delta \nu_{j}\rangle\Big].$  

We can use the symmetry property (Exercise: proof!)
$\displaystyle \langle \nu_i \nu_k \vert U\vert\nu_l \nu_m \rangle = \langle \nu_k \nu_i \vert U\vert\nu_m \nu_l\rangle$     (3.20)

to simplify things by using, e.g., \bgroup\color{col1}$ \langle\nu_{j} \delta \nu_{i}\vert U \vert\nu_{i}\nu_{j}\rangle
= \langle \delta \nu_{i}\nu_{j}\vert U \vert\nu_{j}\nu_{i}\rangle$\egroup and changing the summation indices \bgroup\color{col1}$ i$\egroup, \bgroup\color{col1}$ j$\egroup such that
    $\displaystyle \frac{\delta}{\delta \Psi}
\frac{1}{2}\sum_{ij}\left[\langle\nu_{...
...\nu_{j}\rangle
-\langle\nu_{i}\nu_{j}\vert U \vert\nu_{i}\nu_{j}\rangle \right]$ (3.21)
  $\displaystyle =$ $\displaystyle \sum_{ij}\Big[\langle \delta \nu_{j}\nu_{i}\vert U\vert\nu_{i}\nu...
...j}\rangle
- \langle\nu_{i}\nu_{j}\vert U\vert\nu_{i}\delta \nu_{j}\rangle \Big]$  
  $\displaystyle =$ $\displaystyle \sum_{ij}\Big[\langle \delta \nu_{j}\nu_{i}\vert U\vert\nu_{i}\nu...
...- \langle \delta \nu_{j}\nu_{i}\vert U\vert\nu_{j}\nu_{i}\rangle + (H.c.)\Big],$  

where again in the ` \bgroup\color{col1}$ -$\egroup' term we have swapped indices, and \bgroup\color{col1}$ H.c$\egroup means that there are two terms which are the hermitian conjugates of the two others.
next up previous contents index
Next: `Direct' and `Exchange' Operators Up: The Variational Principle for Previous: The Variational Principle for   Contents   Index
Tobias Brandes 2005-04-26