next up previous contents index
Next: Expectation value of Up: The Hartree-Fock Method Previous: Periodic Table   Contents   Index

Hamiltonian for \bgroup\color{col1}$ N$\egroup Fermions

This is a preparation for the new method (Hartree-Fock) we learn in the next section where we deal with interactions between a large number of Fermions.

The Hamiltonian for \bgroup\color{col1}$ N$\egroup Fermions is given by the generalization of the \bgroup\color{col1}$ N=2$\egroup case, Eq. (III.2.17), and reads

$\displaystyle \hat{H}$ $\displaystyle =$ $\displaystyle \hat{\mathcal H}_0+\hat{U}\equiv
\sum_{i=1}^N \hat{H}_0^{(i)}+ \frac{1}{2}\sum_{i\ne j}^N U(\xi_i,\xi_j)$  
$\displaystyle \hat{H}_0^{(i)}$ $\displaystyle =$ $\displaystyle -\frac{\hbar^2}{2m}\Delta_i+ V({\bf r}_i).$ (2.1)



Subsections

Tobias Brandes 2005-04-26