next up previous contents index
Next: Spin independent symmetric Up: Hamiltonian for Fermions Previous: Expectation value of   Contents   Index

Expectation value of \bgroup\color{col1}$ \hat{U}$\egroup

This is only slightly more complicated: consider for example the term \bgroup\color{col1}$ U(\xi_1,\xi_2)$\egroup,
    $\displaystyle \langle \Psi \vert U(\xi_1,\xi_2)\vert \Psi\rangle= \frac{1}{N!}\...
...}\nu_{p(1)}\vert U(\xi_1,\xi_2)\vert\nu_{p'(1)}\nu_{p'(2)}...\nu_{p'(N)}\rangle$  
  $\displaystyle =$ $\displaystyle \frac{1}{N!}\sum_{pp'}
\langle \nu_{p(N)}...\nu_{p(3)}\vert\nu_{p...
...gle\nu_{p(2)}\nu_{p(1)}\vert U(\xi_1,\xi_2)\vert\nu_{p'(1)}\nu_{p'(2)}\rangle
.$  

Again, only those terms survive where \bgroup\color{col1}$ \nu_{p(N)}=\nu_{p'(N)}$\egroup,..., \bgroup\color{col1}$ \nu_{p(3)}=\nu_{p'(3)}$\egroup. We could have, e.g., \bgroup\color{col1}$ p(1)=4$\egroup and \bgroup\color{col1}$ p(2)=7$\egroup in which case neither \bgroup\color{col1}$ 4$\egroup nor \bgroup\color{col1}$ 7$\egroup can't be among the \bgroup\color{col1}$ p'(3)$\egroup,..., \bgroup\color{col1}$ p'(N)$\egroup (this would yield zero overlap in \bgroup\color{col1}$ \langle \nu_{p(N)}...\nu_{p(3)}\vert\nu_{p'(3)}...\nu_{p'(N)}\rangle$\egroup) and therefore \bgroup\color{col1}$ 4$\egroup and \bgroup\color{col1}$ 7$\egroup must be among \bgroup\color{col1}$ {p'(1)}$\egroup and \bgroup\color{col1}$ {p'(2)}$\egroup.

This means we get two possibilities for the permutation pairs \bgroup\color{col1}$ p$\egroup and \bgroup\color{col1}$ p'$\egroup now: one with \bgroup\color{col1}$ \nu_{p(1)}=\nu_{p'(1)}$\egroup and \bgroup\color{col1}$ \nu_{p(2)}=\nu_{p'(2)}$\egroup, and the other with \bgroup\color{col1}$ \nu_{p(1)}=\nu_{p'(2)}$\egroup and \bgroup\color{col1}$ \nu_{p(2)}=\nu_{p'(1)}$\egroup. In the first case \bgroup\color{col1}$ \nu_{p(1)}=\nu_{p'(1)}$\egroup, \bgroup\color{col1}$ \nu_{p(2)}=\nu_{p'(2)}$\egroup, \bgroup\color{col1}$ \nu_{p(3)}=\nu_{p'(3)}$\egroup,..., \bgroup\color{col1}$ \nu_{p(N)}=\nu_{p'(N)}$\egroup which means the permutaton \bgroup\color{col1}$ p'$\egroup is the same as \bgroup\color{col1}$ p$\egroup. In the second case, \bgroup\color{col1}$ p'$\egroup is the same permutation as \bgroup\color{col1}$ p$\egroup apart from one additional swap of \bgroup\color{col1}$ p(1)$\egroup and \bgroup\color{col1}$ p(2)$\egroup: this means that \bgroup\color{col1}$ {\rm sign}(p')= - {\rm sign}(p)$\egroup and therefore

    $\displaystyle \langle \Psi \vert U(\xi_1,\xi_2)\vert \Psi\rangle= \frac{1}{N!}\...
...ngle\nu_{p(1)}\nu_{p(2)}\vert U(\xi_1,\xi_2) \vert\nu_{p(1)}\nu_{p(2)}\rangle
.$  

The sum over all pairs \bgroup\color{col1}$ i,j$\egroup now again yields
    $\displaystyle \langle \Psi \vert\hat{U}\vert \Psi\rangle=
\frac{1}{N!}\sum_{p}\...
...le
-\langle\nu_{p(i)}\nu_{p(j)}\vert U \vert\nu_{p(i)}\nu_{p(j)}\rangle \right]$  
  $\displaystyle =$ $\displaystyle \frac{1}{2} \sum_{i\ne j}\left[\langle\nu_{j}\nu_{i}\vert U \vert...
...\nu_{j}\rangle
-\langle\nu_{i}\nu_{j}\vert U \vert\nu_{i}\nu_{j}\rangle\right].$ (2.6)



Subsections
next up previous contents index
Next: Spin independent symmetric Up: Hamiltonian for Fermions Previous: Expectation value of   Contents   Index
Tobias Brandes 2005-04-26