next up previous contents index
Next: Hartree-Fock Equations Up: Expectation value of Previous: Expectation value of   Contents   Index

Spin independent symmetric \bgroup\color{col1}$ \hat{U}$\egroup

In this case,
$\displaystyle U(\xi_i,\xi_j) = U\left(\vert{\bf r}_i -{\bf r}_j\vert\right).$     (2.7)

We write this explicitly with wave functions which are products of orbital wave functions \bgroup\color{col1}$ \psi_\nu({\bf r})$\egroup and spinors \bgroup\color{col1}$ \vert\sigma\rangle$\egroup,

$\displaystyle \langle \xi\vert\nu\rangle = \psi_\nu({\bf r})\vert\sigma\rangle,$     (2.8)

and take advantage of the fact that the interaction \bgroup\color{col1}$ U$\egroup does not depend on spin. Then, Eq. (IV.2.6) becomes
$\displaystyle \langle \Psi \vert\hat{U}\vert \Psi\rangle$ $\displaystyle =$ $\displaystyle \frac{1}{2}
\sum_{i\ne j}\left[\langle\nu_{j}\nu_{i}\vert U \vert...
...}\nu_{j}\rangle
-\langle\nu_{i}\nu_{j}\vert U \vert\nu_{i}\nu_{j}\rangle\right]$  
  $\displaystyle =$ $\displaystyle \frac{1}{2} \sum_{i\ne j}\int\int d{\bf r} d{\bf r}' \Big[
\psi_{...
...) \langle \sigma_i\vert \sigma_i \rangle
\langle \sigma_j\vert \sigma_j \rangle$  
  $\displaystyle -$ $\displaystyle \psi_{\nu_i}^*({\bf r}') \psi_{\nu_j}^*({\bf r}) U\left(\vert{\bf...
...gle \sigma_j\vert \sigma_i \rangle
\langle \sigma_i\vert \sigma_j \rangle \Big]$  
  $\displaystyle =$ $\displaystyle \frac{1}{2} \sum_{i\ne j}\int\int d{\bf r} d{\bf r}' \Big[
\vert\...
...t^2 \vert\psi_{\nu_i}({\bf r})\vert^2 U\left(\vert{\bf r} -{\bf r}'\vert\right)$  
  $\displaystyle -$ $\displaystyle \psi_{\nu_i}^*({\bf r}') \psi_{\nu_j}^*({\bf r}) U\left(\vert{\bf...
...t)
\psi_{\nu_i}({\bf r}) \psi_{\nu_j}({\bf r}') \delta_{\sigma_i\sigma_j}\Big].$ (2.9)

Using our direct and exchange term notation, Eq. (III.2.23), we can write this in a very simple form as a sum over direct terms \bgroup\color{col1}$ A_{\nu_i\nu_j}$\egroup and exchange terms \bgroup\color{col1}$ J_{\nu_i\nu_j}$\egroup,
$\displaystyle \langle \Psi \vert\hat{U}\vert \Psi\rangle$ $\displaystyle =$ $\displaystyle \frac{1}{2} \sum_{i,j} \left[ A_{\nu_i\nu_j}-J_{\nu_i\nu_j} \delta_{\sigma_i\sigma_j}\right].$ (2.10)

Here, we recognize that we actually don't need the restriction \bgroup\color{col1}$ i\ne j$\egroup in the double sum: this term is zero anyway.

Note that Eq. (IV.2.9) refers to states \bgroup\color{col1}$ \vert\Psi\rangle$\egroup which are simple Slater determinants. It cannot be used, e.g., for states like the \bgroup\color{col1}$ M=0$\egroup singlet or triplet which are linear combinations

$\displaystyle \vert\psi_{1\uparrow}\psi_{2\downarrow}\rangle_A \pm
\vert\psi_{1\downarrow}\psi_{2\uparrow}\rangle_A,$     (2.11)

because these would lead to mixed terms
$\displaystyle \langle \psi_{2\downarrow} \psi_{1\uparrow}\vert U \vert \psi_{1\downarrow}\psi_{2\uparrow}\rangle_A$     (2.12)

in the expectation value!


next up previous contents index
Next: Hartree-Fock Equations Up: Expectation value of Previous: Expectation value of   Contents   Index
Tobias Brandes 2005-04-26