next up previous contents index
Next: Bonding and Antibonding Up: The Hydrogen Molecule Ion Previous: Hamiltonian for   Contents   Index

The Rayleigh-Ritz Variational Method

For a given Hamiltonian \bgroup\color{col1}$ {H}$\egroup we minimise the expectation value of the energy over a sub-set of states \bgroup\color{col1}$ \vert\Psi\rangle$\egroup that are linear combinations of \bgroup\color{col1}$ n$\egroup given states \bgroup\color{col1}$ \vert\psi_i\rangle$\egroup,

$\displaystyle E$ $\displaystyle =$ min$\displaystyle \frac{\langle \Psi\vert H\vert \Psi\rangle }{\langle \Psi\vert\Psi\rangle },\quad
\vert\Psi\rangle= \sum_{i=1}^n x_i \vert\psi_i\rangle.$ (3.2)

The \bgroup\color{col1}$ \vert\psi_i\rangle$\egroup are assumed to be normalised but not necessarily mutually orthogonal, i.e., one can have \bgroup\color{col1}$ \langle \psi_i\vert\psi_j\rangle\ne 0$\egroup.

The energy \bgroup\color{col1}$ E=E(x_1,...,x_n)$\egroup is therefore minimized with respect to the \bgroup\color{col1}$ n$\egroup coefficients \bgroup\color{col1}$ x_i$\egroup, \bgroup\color{col1}$ i=1,...,n$\egroup. It can be written as

$\displaystyle E$ $\displaystyle =$ min$\displaystyle _{x_1,...,x_n} \frac{\sum_{i,j=1}^nx_i^*H_{ij}x_j}{\sum_{i,j=1}^nx_i^*S_{ij}x_j}
\equiv$   min$\displaystyle _{\bf x} \frac{{\bf x}^{\dagger}\underline{\underline{H}}{\bf x}}{{\bf x}^{\dagger}\underline{\underline{S}}{\bf x}},$ (3.3)

where one has introduced the matrices \bgroup\color{col1}$ \underline{\underline{H}}$\egroup and \bgroup\color{col1}$ \underline{\underline{S}}$\egroup with matrix elements
$\displaystyle H_{ij}=\langle \psi_i\vert H\vert\psi_j\rangle,\quad S_{ij}=\langle \psi_i\vert\psi_j\rangle.$     (3.4)

We find the minimum of
$\displaystyle f({\bf x}) \equiv \frac{{\bf x}^{\dagger}\underline{\underline{H}}{\bf x}}{{\bf x}^{\dagger}\underline{\underline{S}}{\bf x}}$     (3.5)

by setting the gradient to zero. We treat \bgroup\color{col1}$ x$\egroup and its complex conjugate \bgroup\color{col1}$ x^*$\egroup as independent variables and calculate
$\displaystyle \frac{\partial}{\partial x_k^*} \left( {\bf x}^{\dagger}\underline{\underline{H}}{\bf x}\right)$ $\displaystyle =$ $\displaystyle \frac{\partial}{\partial x_k^*} \sum_{ij} x_i^*H_{ij}x_j
= \sum_j H_{kj}x_j= (\underline{\underline{H}}{\bf x} )_k$  
$\displaystyle \leadsto {\bf\nabla}^* \left( {\bf x}^{\dagger}\underline{\underline{H}}{\bf x}\right)$ $\displaystyle =$ $\displaystyle \underline{\underline{H}}{\bf x}$ (3.6)

Correspondingly,
$\displaystyle {\bf\nabla}^* \left( {\bf x}^{\dagger}\underline{\underline{S}}{\bf x}\right)$ $\displaystyle =$ $\displaystyle \underline{\underline{S}}{\bf x}.$ (3.7)

Thus,
$\displaystyle {\bf\nabla}^* f({\bf x})$ $\displaystyle =$ $\displaystyle \frac{\underline{\underline{H}}{\bf x}}{{\bf x}^{\dagger}\underli...
...ine{\underline{S}}) {\bf x}}{{\bf x}^{\dagger}\underline{\underline{S}}{\bf x}}$  
  $\displaystyle \leadsto$ $\displaystyle (\underline{\underline{H}} -E \underline{\underline{S}}) {\bf x}=0,$ (3.8)

since \bgroup\color{col1}$ E=f({\bf x})$\egroup at the minimum! A necessary condition for a minimum therefore is the equation \bgroup\color{col1}$ (\underline{\underline{H}} -E \underline{\underline{S}}) {\bf x}=0$\egroup, which has a solution for \bgroup\color{col1}$ {\bf x}$\egroup only if
$\displaystyle {\rm det}\left\vert \underline{\underline{H}} -E \underline{\underline{S}}\right\vert=0.$     (3.9)

Exercise: Check which equations one obtains when taking the derivative \bgroup\color{col1}$ {\bf\nabla}$\egroup instead of \bgroup\color{col1}$ {\bf\nabla}^*$\egroup !

We summarise:

$\displaystyle E_{\rm Rayleigh-Ritz}$ $\displaystyle \equiv$ min$\displaystyle \frac{\langle \Psi\vert H\vert \Psi\rangle }{\langle \Psi\vert\Psi\rangle },\quad
\vert\Psi\rangle= \sum_{i=1}^n x_i \vert\psi_i\rangle$ (3.10)
  $\displaystyle \leadsto$ $\displaystyle (\underline{\underline{H}} -E \underline{\underline{S}}) {\bf x}=0$  
$\displaystyle H_{ij}$ $\displaystyle \equiv$ $\displaystyle \langle \psi_i\vert H\vert\psi_j\rangle,\quad S_{ij}\equiv\langle \psi_i\vert\psi_j\rangle,
{\bf x}\equiv(x_1,...,x_n)^T.$  

The minimization problem thus led us to an eigenvalue problem.


next up previous contents index
Next: Bonding and Antibonding Up: The Hydrogen Molecule Ion Previous: Hamiltonian for   Contents   Index
Tobias Brandes 2005-04-26