next up previous contents index
Next: Rayleigh-Ritz Results Up: The Hydrogen Molecule Ion Previous: The Rayleigh-Ritz Variational Method   Contents   Index

Bonding and Antibonding

(Cf. Atkins and Friedman [5], ch. 8.3, for this section). We now apply the Rayleigh-Ritz variational method to the Hydrogen Molecule Ion \bgroup\color{col1}$ H_2^+$\egroup, restricting ourselves to just \bgroup\color{col1}$ n=2$\egroup real wave functions (atomic orbitals) \bgroup\color{col1}$ \psi_i$\egroup ( \bgroup\color{col1}$ i=1,2$\egroup), i.e.

MO $\displaystyle =$ $\displaystyle \Psi =$   LCAO$\displaystyle = x_1 \psi_1+ x_2 \psi_2$ (3.11)
$\displaystyle \psi_1({\bf r})$ $\displaystyle =$ $\displaystyle \psi_{n=1,l=0,m=0}({\bf r}-{\bf r}_a),\quad
\psi_2({\bf r}) = \psi_{n=1,l=0,m=0}({\bf r}-{\bf r}_b)$  

with two hydrogen groundstate \bgroup\color{col1}$ s$\egroup-orbitals for nuclei at \bgroup\color{col1}$ {\bf r}_a$\egroup and \bgroup\color{col1}$ {\bf r}_b$\egroup, respectively.



Subsections

Tobias Brandes 2005-04-26