next up previous contents index
Next: Symmetries of MOs in Up: Bonding and Antibonding Previous: Rayleigh-Ritz Results   Contents   Index

Explicit Calculation of \bgroup\color{col1}$ \alpha$\egroup, \bgroup\color{col1}$ \beta$\egroup, \bgroup\color{col1}$ S$\egroup

This is required in order to find the values for the two energies \bgroup\color{col1}$ E_{\pm}$\egroup, and also in order to find out which of the two states \bgroup\color{col1}$ \Psi_{\pm}$\egroup has lower energy! The calculations are performed by introducing elliptical coordinates \bgroup\color{col1}$ 1\le \mu\le \infty$\egroup, \bgroup\color{col1}$ -1\le \nu\le 1$\egroup, \bgroup\color{col1}$ 0\le \phi\le 2\pi$\egroup,
$\displaystyle \mu=\frac{r_a+r_b}{R},\quad \nu=\frac{r_a-r_b}{R}$     (3.20)

and noting that the volume element in these coordinates is
$\displaystyle dV=\frac{1}{8}R^3(\mu^2-\nu^2) d\mu d\nu d\phi.$     (3.21)

The result for \bgroup\color{col1}$ \alpha$\egroup, \bgroup\color{col1}$ \beta$\egroup, and \bgroup\color{col1}$ S$\egroup is found as a function of the (fixed) distance \bgroup\color{col1}$ R$\egroup between the two protons. Using this together with Eq. (V.3.13), one finally obtains
$\displaystyle E_+$ $\displaystyle =$ $\displaystyle E_{1s}+\frac{e^2}{4\pi\varepsilon_0 a_0}\left[\frac{1}{R}-\frac{j+k}{1+S}\right]$  
$\displaystyle E_-$ $\displaystyle =$ $\displaystyle E_{1s}+\frac{e^2}{4\pi\varepsilon_0a_0}\left[\frac{1}{R}+\frac{j-k}{1-S}\right]$  
$\displaystyle R$ $\displaystyle \equiv$ $\displaystyle \vert{\bf r}_a-{\bf r}_b\vert/a_0,\quad
S \equiv \left(1+R+\frac{1}{3}R^2\right)e^{-R}$ (3.22)
$\displaystyle j$ $\displaystyle \equiv$ $\displaystyle a_0\int dV \frac{\vert\psi_{1s}({\bf r}-{\bf r}_a)\vert^2}{\vert{\bf r}-{\bf r}_b\vert)}
= \frac{1}{R}\left(1-(1+R)e^{-2R}\right)$  
$\displaystyle k$ $\displaystyle \equiv$ $\displaystyle a_0\int dV \frac{\psi_{1s}({\bf r}-{\bf r}_a)\psi_{1s}({\bf r}-{\bf r}_b) }{\vert{\bf r}-{\bf r}_a\vert)}= (1+R)e^{-R}
.$  

Be careful because I haven't checked these explicit expressions, which are from Atkins/Friedman [5] ch. 8.3.

Figure: Energy level splitting for $ \Psi_+$ (a) and $ \Psi_-$ (b), from Weissbluth [4].
\includegraphics[width=1\textwidth]{splitting_H2}

REMARKS:

The charge distribution in \bgroup\color{col1}$ \Psi_+$\egroup and \bgroup\color{col1}$ \Psi_-$\egroup is shown in Fig.(V.3.3.2).
Figure: Charge distribution in $ \Psi_+$ (a) and $ \Psi_-$ (b), from Weissbluth [4].
\includegraphics[width=1\textwidth]{charge_H2}


next up previous contents index
Next: Symmetries of MOs in Up: Bonding and Antibonding Previous: Rayleigh-Ritz Results   Contents   Index
Tobias Brandes 2005-04-26